Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29146
標題: 短期葉菜類輪作之探討
Studies on the Rotation Crop of Leafy Vegetables
作者: 陳彥宇
Chen, Yen-Yu
關鍵字: crop rotation
輪作
leafy vegetable
phenolic compound
allelopathy
葉菜類
酚類化合物
相剋作用
出版社: 園藝學系所
引用: 王銀波、吳正宗. 1990. 培養液之理論與實際. 沈再發、許淼淼主編. 養液栽培技術講習會專刊第三輯. 行政院農業委員會. pp:14-26. 王鐘和、林毓雯、黃維廷、張愛華. 2001. 作物營養診斷與土壤診斷技術. 永續農業第一輯作物篇. 中華永續農業協會. pp:104~117. 王鐘和、譚增偉、黃維廷、江志峰. 2002. 有機農場的輪間作制度. 作物有機栽培. 農委會農業試驗所特刊102號. pp:171-184 王鐘和. 2004. 作物有機栽培營養管理的若干問題-貳、高營養鹽累積造成之營養失衡. 農業世界. 246:56-59. 王鐘和. 2004. 有機農業面面觀(十七) 蔬菜有機栽培~(一)肥料管理要領. 農業世界. 250:64-68. 朱德民. 1995. 植物與環境逆境. 明文書局股份有限公司. 309-338pp. 吳正宗、王銀波. 1991. 夏季小白菜水耕液配方初擬. 農林學報 40:109-117. 吳純宜、蔡永暭. 2006. 有機蔬菜連作與輪作組合之研究. 高雄區農業改良場研究彙報. 17(1): 42 -50. 沈再發、許淼淼. 1991. 蕹菜水耕養液之研究. 中華農業研究 40(4):407~416. 卓文君. 1995. 設施葉菜類連作障礙之研究. 國立中興大學園藝學系. 碩士論文. 108pp. 周昌弘. 1990. 植物生態學. 聯經出版有限公司. pp:344~348. 柯忠德、陳慶忠、劉興隆. 1993. 中部地區簡易設施蔬菜害蟲發生調查. 台中區農業改良場研究彙報. 40:45-54. 柯勇 2004 植物生理學 藝軒圖書出版社 pp:406-419. 袁秋英、蔣慕琰 1990 雜草之相剋作用 農試所專題報導第十六期 8 pp. 袁秋英、蔣慕琰 1993 三十種冬裡作田雜草之相剋潛勢 (I) 對高等植物之影響 雜草學會會刊 14(1): p:10-20 張愷、林中茂. 1996. 農業概論. 台灣開明書店. pp50~54. 許苑培 1996 蔥植體對蔥、萵苣與蘿蔔發芽抑制之生物檢定及連作對後作生育與產量之影響 國立中興大學園藝學系 碩士論文 p85. 連深. 1991. 酸性土壤之利用與改良. 土壤管理手冊. 國立中興大學土壤調查試驗中心. pp. 263-274. 陳玉雯. 2001. 芹菜連作障礙之研究. 國立中興大學園藝學系. 碩士論文. 140pp. 陳玉雯、李文汕. 2001. 砂耕芹菜灌溉排液對芹菜種子發芽之影響. 興大園藝26(3):43~57. 陳信雄. 2007. 美洲含羞草相剋物質之研究. 國立中興大學土壤學研究所. 碩士論文. 40p 陳世輝. 1985. 蘆筍田土壤之植物毒物質之萃取及鑑定. 國立中興大學土壤學研究所. 碩士論文. 陳清文. 1993. 台中地區農友使用有機質肥料之現況及意願調查. 永續農業研討會專輯. 台中區農業改良場. pp:161-168. 陳仁炫. 1999. 作物輪作制度和減少耕犁次數對土壤品質的影響. 農業世界. 194:23-28. 陳慶忠、柯文華、李建霖. 1990. 黃條葉蚤(Phyllotreta striolata (Fabricius))之生態及防治研究(I)外部型態、飼養方法、生活習性及寄主植物調查. 台中區農業改良場研究彙報. 27:37-48. 陳添來. 1991. 桃園縣沿海地區不同短期葉菜類在設施內週年生長可行性之研究 桃園區農業改良場 81年年報 p.101. 黃裕銘、陳建中. 2003. 養液氯及鉀濃度對小白菜生長、硝酸態氮及其他養分含量之影響. 土壤與環境. 6: 87-96. 黃裕銘. 2000. 蔬菜合理化施肥原則與推薦量. 合理化施肥推廣手冊. 行政院農業委員會與臺灣省政府農林廳出版. 豐年社編印. 黃祥慶、蔡宜峰、賴文龍. 1989. 中部地區主要蔬菜栽培之土壤障礙因子調查. 台中區農業改良場研究彙報. 24:63-70. 楊秋忠. 2004. 土壤與肥料. 農世股份有限公司. P181-301. 楊秋忠、周泰鈞 1984 蘆筍殘質之自毒作用 中華農學會報 128:43-52 劉建玲、廖文華、王新軍、賈可、孟娜 2006 大量施用磷肥和有機肥對白菜產量和土壤磷累積的影響 中國科學農業 39(10):2147:2153 蔡淑玫. 2008. 不同有機肥料及施用量對土壤性質及小白菜與蕹菜生育的影響. 國立屏東科技大學農園生產系. 碩士論文. PP157. 蔡永皡. 2003. 蔬菜連作與輪作效應. 高雄區農業專訊. 46:12-14. 蔡東融. 2006. 有機耕作年期對土壤與蔬菜的影響 國立台灣大學農藝學系 碩士論文PP.100 鄭志聖. 1993. 綠豆連作之相剋作用研究. 國立台灣大學植物學研究所. 碩士論文. 115 pp. 鄧耀宗、蔡永暭、劉英杰. 1998. 輪作體系在有機農法中之應用. 中華土壤肥料學會. ”農業與生態平衡”研討會專刊. pp. 26-46. 操家顺、李欲如、陳娟. 2006. 水蕹菜對重污染河道净化及克藻功能. 水资源保護. 22:36-38. 賴文龍. 2000. 綠肥與輪作. 菠菜綜合管理. 楊秀珠主編. 德基水庫集水區第四期整體治理規劃肥料農藥使用管理研究與推廣技術專刊第5:25-30. 譚增偉、王鐘和. 2000. 當今農業對輪作制度應有的認識(一)輪作制度的起源、歷史、意義與範圍. 技術服務. 44:1-5. 平野曉 1977 作物の連作障礙 農文協。 Anaya, A.L., R., Cruz-Ortega, and G.R., Waller, 2006. Metabolism and ecology of purine alkaloids. Front. Biosci. 11:2354–2370. Anderson I. C. and R. M. Cruse. 1995. Tillage and allelopathic aspects of the corn-soybean rotation effect. P. 184-192. in: Inderrjit, K. M. M. Dadshini and F. A. Einhellig(eds.). 1995. Allelopathy organisms, processes, and applicatons. American chemical society, Washington, DC. Asao, T., K. Hasegawa, Y. Sueda, K. Tomita, K. Tanguchi, T. Hosoki, and M.H.R. Pramanik. 2003. Autotoxic of root exudates from taro. Sci Hort. 97: 389-396. Asao, T., H. Hasegawa, T. Ban, M. H. R. Pramanik, Y. Matsui and T. Hosoki. 2004. Search of autotoxic substances in some leafy vegetables. J. Japan Soc. Hort. Sci. 73(3):247-249. Asghar M. and Y. Kanehiro. 1976. Effects of sugarcane trash and pineapple residue incorporation on soil nitrogen, pH, and redox potential. Plant Soil. 44:209-218. Asghar M. and Y. Kanehiro. 1976. Effects of sugarcane trash and pineapple residue on soil nitrogen, pH, redox potential, extractable Al, Fe and Mn. Trop. Agric., 57:245-258. Ashihara, H., H. Sano and A. Crozier. 2008. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering Phytochemistry 69:841–856. Berzsenyi, z., B. Györffy, and D. Lap, 2000. Effect of crop rotation and fertilisation on maize and wheatyields and yield stability in a long-term experiment. European Journal of Agronomy 13: 225–244. Bending, G. D., C. Putland, and F. Rayns. 2000. Changes in microbial community metabolism and labile organic matter fractions as early indicators of the impact of management on soil biological quality. Biol. Fertil. Soils 31: 78-84. Bezemer, T. M., R. Wagenaar, N. M. van Dam, W. H. van Der Putten, and F. L. Wackers. 2004. Above- and below-ground terpenoid aldehyde induction in cotton, Gossypium herbaceum, following root and leaf injury. J. Chem. Ecol. 30: 53-67. Bogatek, R., A. Gniazdowska, W. Zakrzewska, K. Oracz and S. W. Gawronski. 2006. Allelopathic effects of sunflower extracts. Onntarum 50:156-158. Boydston, R.A.and H. A. Hang, 1995. Rapeseed (Brassica napus) green manure crop suppresses weeds in potato (Solanum tuberosum). Weed Technol. 9:669–675. Briar, S. S., P. S. Grewal, N. Somasekhar, D. Stinner, and S. A. Miller. 2007. Soil nematode community, organic matter, microbial biomass and nitrogen dynamics in field plots transitioning from conventional to organic management. Applied Soil Ecology 37:256-266. Brown, P.D. and Morra, M.J., 1995. Glucosinolate-containing plant tissues as bioherbicides. J. Agric. Food Chem. 43: 3070–3074. Brown, P.D., Morra, M.J., 1997. Control of soilborne plant pests using glucosinolate-containing plants. Adv. Agron. 61:167–231. Buskov, S., B. Serra, E. Rosa, H. Sorense, J. C. Sorensen, 2002. Effects of intact glucosinolates and products produced from glucosinolates in myrosinase-catalyzed hydrolysis on the potato cyst nematode (Globodera rostichiensis). J. Agric. Food Chem. 50, 690–695. Chon, S. U. and H. O. Boo. 2004. Difference in Allelopathic Potential as Influenced by Root Periderm Colour of Sweet Potato (Ipomoea batatas). Journal of Agronomy and Crop Science 191(1) Pages 75 – 80. Chon, S. U., H. G. Jang, D. K. Kim, Y. M. Kim, H. O. Boo, and Y. J. Kim. 2005. Allelopathic potential in lettuce (Lactuca sativa L.) plants. Sci. Hort. 106:309-317. Djurdjevic, L., A. Dinic, P. Pavlovic, M. Mitrovic, B. Karadzic and V. Tesevic. 2004. Allelopathic potential of Allium ursinum L. Biochemical Systematics and Ecology. 32: 533-544. Dormaar, J. F. and C. Chang. 1995. Effects of 20 annual application of excess feedlot manure on labile soil phosphorus. Can. J. Soil Sci. 75:507-512. Douglas A. B., P. V. Nelson, W. C. Fonteno, J. W. Lee. and J. S. Huang. 1995. Plug pH- the make or beak factoring nutrition. Grower Talks. 59(9):6-13. Eghball, B. and J. F. Power 1999 Phosphorus- and nitrogen- based manure and compost applications : corn production and soil phosphorus Soil Sci. Soc. Am. J. 63:247-253. Fergolaa, P., M. Cerasuolo, A. Pollio , G. Pintob and M. DellaGrecac. 2007. Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: Experiments and mathematical model. Ecological Modelling 208:205-214 Hung, C. H., F. Kodama,K. Akashi and K. Konno 2002 Impact of Crop Rotation on Soilborne Diseases and Yield of Kidney Bean: a Case Study in Northern Japan. Plant Pathology Bulletin. 11(2):87-96 Ikeda, H. 1991 Utilization of nitrogen by vegetable crops. JARQ, 25:117-124. Jacobs, L. W. 1990. Potential hazards when using organic materials as fertilizers for crop production. Biol. Agric. Horti. 9:181-199. James, R. V. 2002. Allelochemicals as leads for new herbicids and agro- chemicals. Tetrahedron 58:1631-1646. Jefferson, L.V. and M. Pennacchio. 2003. Allelopathic effects of foliage extracts from four Chenopodiaceae species on seed germination. Journal of Arid Environments. 55:275-285. Jung. V., E. Olsson, S. Caspersen. H. Asp, P. Jensén, and B. W. Alsanius 2004. Response of young hydroponically grown tomato plant to phenolic acids. Sci. Hort. 100:23-37. Kang, H.M. and M.E. Saltveit. 2003. Wound-induced increases in phenolic content of fresh-cut lettuce is reduced by a short immersion in aqueous hypertonic solutions. Postharvest Biology and Technology 29:271-277 Khaleel, R., B. R. Reddy and M. R. Overcash. 1981. changes in soil physical properties due to organic waste application: A review. J. Environ. Qual., 11:133-141. Kirkegaard, J.A., Wong, P.T.W. and Desmarchelier, J.M., 1996. In vitro suppression of fungal root pathogens of cereals by Brassica tissues. Plant Pathol. 45:593–603. Kordali, S. and M. Kesdek. A. 2007. Cakir Toxicity of monoterpenes against larvae and adults of Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) Industrial Crops and Products 26:278–297. Kremer, R.J. and J. Li. 2003. Developing weed suppressive soils through improved soil quality management. Soil Till. Res. 72:193-202. Krupinsky, J.M., D.L. Tanaka, S.D. Merrill, M.A. Liebig and J.D. Hanson. 2006. Crop sequence effects of 10 crops in the northern Great Plains. Agricultural Systems 88:227–254. Larkin, R.P., 2003. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol. Biochem. 35, 1451–1466. Larkin, R.P. and Honeycutt, C.W., 2006. Effects of different 3 year cropping systems on soil microbial communities and soilborne disease of potato. Phytopathology 96, 68–79. Larkin, R. P. and T. S. Griffin. 2007. Control of soilborne potato diseases using Brassica green manures. Crop Protection. 26: 1067-1077. Lee, J. G., B. Y. Lee, and H. J. Lee. 2006. Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Sci. Hort. 110:119–128. Hao, Z.P., Q. Wang , P. Christie, and X.L. Li. 2007. Allelopathic potential of watermelon tissues and root exudates. Sci. Hort. 112:315-320. Hazebroek, J.P., S.A. Garrison, T. Gianfagna. 1989. Allelopathic substances in asparagus roots: extraction, characterization, and biological activity.. J. Amer. Soc. Hort. Sci. 114(1):152-158. Hue, N. V., I. Amen and J. Hansen. 1989. Aluminum detoxification with green manure. Commun. Soil Sci. Plant Anal., 20:1799-1511. Macías, F. A., A. Torres, J. L.G. Galindo, R. M. Varela, J. A. Á lvarez, Jose´ and M.G. Molinillo. 2002. Bioactive terpenoids from sunflower leaves cv. Peredovick Phytochemistry 61:687–692. Maffei. M., C. M. Bertea., F. Garneri, and S. Scannerini 1999.Effect of benzoic hydroxyl- and methoxy- ring substituents during cucumber (Cucumis satinus L.) germinatin. I. Isocitrate Lyase and catalase active. Plant scil : 139-147. MacRae, R.J., S.B., Hill, G.R., Mehuys, and J., Henning. 1990. Farm-scale agronomic and economic conversion from conventional to sustainable agriculture. Advances in Agronomy 43, 155–198. Marriott, E. E. and M. Wander. 2006. Qualitative and quantitative differ- ences in articulate organic matter fractions in organic and conventional farming systems. Soil Biology & Biochemistry 38: 1527-1536 Martini, E. A., J. S. Buyer, D. C. Bryant, T. K. Hartz, and R. F. Denison. 2004. Yield increases during the organic transition: improving soil quality or increasing experience? Field Crops Researsh 86:255-266. McGuire, A.N., 2003. Mustard green manures replace fumigant and improve infiltration in potato cropping system. Online. Crop Management doi:10.1094/CM-2003-0822-01-RS Melero, S., J. C. R. Porras, J. F. Herencia, and E. Madejon. 2006. Chemical and biochemical properties in a silty loam soil under conven- tional and organic management. Soil Tillage Research 90:162-170. Mengel, K., E. A. Kirkby, H. Kosegarten, and T. Appel. 2001. Principles of plant nutrition. 5th Edition. Kluwer Academic Publishers. London. p:51-62. Narwal, S.S., 1999. Allelopathy Update. Basic and Applied Aspects. Science Publishers, Enfield, NH. Parsa, A. A. and A. Wallace. 1979 Organic solid waste from urban environment as iron source for sorghum. Plant Soil. 53:455-461 Pavloua, G.C., and D.J. Vakalounakis. 2005. Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by lettuce soil amendment. Crop Protection 24(2):135-140 Pavlou ,G. C., C. D. Ehaliotis, and V. A. Kavvadias. 2007. Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Sci. Hort. 111 (2007) 319–325. Petterson B. D. and von Wistinghaucen. 1979. Effects organic and inorganic fertilizers on soils and crops. In “Results of Long-term Experiment in Sweden” Misc. Publications. Woods End Agric. Inst. No. 1, 44p Popa, V. I., M. Dumitrua, I. Volf, and N. Anghel. 2007. Lignin and polyphenols as allelochemicals. Industrial crops and products. 27:144-149 Rahn, C.R., Vaidyanathan, L.V., Paterson, C.D., 1992. Nitrogen residues from Brassica crops. Aspects Appl. Biol. 30, 263–270. Rice, E. L. 1974 Allelopathy. Academic Press. Orlando, FL Rietveld, W. J. 1983. Allelopathic effects of juglone on germination and growth of several herbaceous and woody species. J. Chem. Ecol. 9:295-308. Rizvi, S. J. and V. Rizvi. 1992. Exploitation of allelochemicals in improving crop productivity. pp.443-472 in:Rizvi, S. J. H. and V. Rizvi. (eds.)Allelopathy. Chapman&Hall, London. Sarwar, M., Kirkegaard, J.A., Wong, P.T.W., and Desmarchelier, J.M., 1998. Biofumigation potential of Brassicas. III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 210:103–112. Sharpley, A., and Moyer, B. 2000. Phosphorus Forms in Manure and Compost and Their Release during Simulated Rainfall. Journal of Environmental Quality 29(5): 1462-1469. Singh, B. P. and W. F. Whitehead. 1992. Response of vegetable amaranth to different soil pH and moisture regimes. Acta Hort. 318:225-229. Singh, H. P., D. R. Batish and R. K. Kohli, 2002. Allelopathic effect of two volatile monoterpenesagains t bill goat weed (Ageratum conyzoides L.). Crop Protection 21:347–350. Smolinska, U. and Horbowicz, M., 1999. Fungicidal activity of volatiles from selected cruciferous plants against resting propagules of soil-borne fungal pathogens. J. Phytopathol. 147:119–124. Srivastava, R., D. Roseti and A. K. Sharma. 2007. The evaluation of microbial diver- sity in a vegetable based cropping system under organic farming practices. Applied Soil Ecology 36:116-123 Taiz L. and E. Zeiger. 2008. Plant Physiology. The Benjamin Cummings Publishing Company, Inc. pp.302-307 Tejada, M., C. Benitez, and J. L. Gonzalez. 2002. Nitrogen mineralize- ation in soil with conventional and organomineral fertilization practices. Commun. Soil Sci. Plant Anal. 33: 3679-3702. Thi, H. L., T. T. Toshiaki, S. Kiyotake, D. V. Chin, and H. Kato-Noguchi. 2008. Allelopathy and the allelothathic activity of a phenylpropanol from cucumber plants. Plant Growth Regul. 56:1-5. Tsuchiya, K., and Y. Ohno. 2002. Analysis of allelopathy in vegetable cultivation. I. Possibility of occurrence of allelopathy in vegetable cultivation. Bull. Natl. Res. Inst. Veg. Ornam. Plants Tea Jpn. 5 (1992), pp. 37–44. van Dam, N. M., L. Witjes, and A. Svatoš. 2004. Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytol. 161: 801-810. Whalen J. K., C. Chang, G. W. Clayton and J. P. Carffoot. 2000. Cattle manure amendments can increase the pH of acid soils. Soil Science Society of America journal. (64):962-966. Yan F., S. Schubert and K. Mengel. 1996 Soil pH changes during legume growth and application of plant material . Biol Fertil Soils 23:236-242. Zaman, M., M. Matsushima, S. X. Chang, K. Inubushi, L. Nguyen, S. Goto, F. Kaneko, and T. Yoneyama. 2004. Nitrogen mineralization, N2O production and soil microbiological properties as affected by long-term applications of sewage sludge composts. Biol. Fertil. Soils 40: 101-109. Zocconi, F., A. Monaco, M.Forte, and M. de. Bertoldi. 1985. Phytotoxins during the stabilization of organic matter. In “Composting of Agricultural and Other Wastes” Gasser, J.K.R. Elsevier. London . P.73-86 .
摘要: 短期葉菜生產具有高複作特性,故輪作系統建立對短期葉菜生產具重要性。本研究在有機農法栽培模式下,以芥藍、萵苣、菠菜、白菜、蕹菜及莧菜連作及輪作栽培下,探討其對土壤物理化學特性變化及對植株生育之影響及莧菜與蕹菜水溶液浸出物對莧菜與蕹菜種子發芽率之影響。 在兩地試驗中,分別調查不同葉菜連作後對土壤pH值變化,發現不同葉菜連作2作後對土壤pH值有顯著影響。連續種植莧菜後得到較低的土壤pH,而連作白菜後可得到較高之土壤pH值。連續種植莧菜後土壤氨態氮、鉀及鈣含量均為各處理中最低,而硝酸態氮含量則為各處理中最高,推測可能為種植莧菜後,因土壤酸化之所造成之結果。連續種植十字花科葉菜後,土壤硝酸態氮含量較低,則可能為導致土壤pH值升高之結果。 土壤EC方面,調查發現在同樣施肥條件下,栽培莧菜及萵苣後之土壤其EC值顯著高於種植白菜及芥藍後的土壤EC值,推測十字花科可能具較強之需肥性。 針對葉菜類種子田間出土率之試驗,發現不同葉菜類連作兩次後,其土壤對不同蔬菜種子之出土率有不同程度的影響。菠菜、蕹菜及莧菜在第三作連作時導致種子之田間出土率顯著下降。前作芥藍連作兩作處理後,顯著抑制萵苣、白菜及蕹菜之種子田間出土率。前作為菠菜時,對後作白菜、芥藍、蕹菜及莧菜等種子之田間出土率亦有顯著之影響。前作為莧菜時對後作芥藍、萵苣、白菜及莧菜等種子之田間出土率均有抑制現象,而前作為蕹菜則顯著抑制萵苣及莧菜種子之田間出土率。 莧菜及蕹菜地上部水溶液浸出液經分析後發現兩種浸出液分別含有120ppm及109ppm總酚含量。浸出液經發芽試驗結果顯示對莧菜及蕹菜種子發芽均有抑制之現象。 本研究在田間試驗生育調查中發現,芥藍與萵苣不受前作影響,且對所有後作葉菜之生育均無顯著之影響。白菜連作兩作後發生黃條葉蚤之危害嚴重,並造成後作芥藍之生育嚴重受損。蕹菜連作兩作後,造成後作菠菜及莧菜之生育受損,並抑制第三作蕹菜之生育。莧菜連作兩作後會抑制後作芥藍、萵苣、菠菜及本身幼苗生育。 綜合以上結果,不同種葉菜連作及輪作具有不同程度之影響,試驗結果顯示芥藍及萵苣較不受前作之影響,亦無不利後作之表現。適合為各種葉菜輪作之考慮,另菠菜、莧菜及蕹菜對後作則均有不同程度之影響,因此在選擇此類作物前宜考慮前後作關係,以獲得最佳輪作效益。
Abstract Leafy vegetable are crops of high cropping index, hence the how to manage rotation crop system is the major factor in leafy vegetable production. Experiments were couducted to study the vegetative growth of chinese kale, lettuce, spinach, Pak-cho and water spinach as affected by repeat planting or by rotation with different previous leafy vegetables crops. Soil pH value was significantly affected by different leafy vegetables where soil pH value decreased by repeat planting of edible amaranth yet increased by repeat planting of pak-cho. It was found that the ammonium nitrogen, potassium and calcium contents in soil were the lowest while the nitrate content was the highest among all treatments after repeat planting of edible amaranth. In contrast, continuous cultivation of cruciferous leafy vegetables resulted in lower nitrate contents. As to EC value of soil, under the similar fertilization managements, lower EC value was observed in the soil after the cultivation of lettuce and edible amaranth than those of cruciferous leafy vegetables. It is postulated that cruciferous leafy vegetables are of higher fertilizer requirement than other crops. Field seed emergence rates of leafy vegetables were under the influence of repeat planting and rotation among different crops. The field emergence rates of spinach, edible amaranth and water spinach decreased significantly after repeat planting for there times. The seed emergence of spinach, water spinach and edible amaranth were inhibited in the soil after two continuous crops of leafy kale. Similar phenomenon were also observed on pak-cho, leafy kale, water spinach and edible amaranth after the repeat planting of spinach, and on kale, lettuce and pak-cho after the repeat planting of edible amaranth. Continuous cultivation of water spinach inhibited the seed emergence of lettuce and edible amaranth. Water leaching solusion from the above ground parts of edible amaranth and water spinach were found containing total phenolic compounds of 120 ppm and 109 ppm, respectively. Inhibition effects over the seed germination by the leaching solusion were observed on different leafy vegetables. The vegetative growth of lettuce as affected by different previous leafy vegetables and they didn''t affect subsequent leafy vegetables. The Pak -chore peat replant cause the serious insect for phyllotreta striolata, and decrease the vegetative growth of Chinese kale. The vegetative growth of spinach and edible amaranth were inhibited in the soil after two continuous crops of water spinach. Continuous cultivation of edible amaranth inhibited the vegetative growth of leafy kale and lettuce spinach and the seedling of edible amaranth., In conclusion, The growth of leafy vegetable was under the influence by rotation or monoculture. We obtained the vegetative growth of lettuce as affected by different previous leafy vegetables and they didn''t affect subsequent leafy vegetables. They were recommended to rotation with other leafy vegetable. Growth of leafy vegetables were under the influence of repeat planting by spinach, edible amaranth and water spinach. In the contrast, the growth of leafy vegetables has different influence by subsequent crops. Consider of the crop rotation be important for leafy production.
URI: http://hdl.handle.net/11455/29146
其他識別: U0005-1108201014323700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108201014481300
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.