Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29149
標題: 高溫對‘台農二號’番木瓜果實後熟之影響
Effect of High Temperature on Ripening of 'Tainung No.2' Papaya (Carica papaya L.) Fruits
作者: 趙筱倩
Chao, Hsiao-Chien
關鍵字: high temperature
番木瓜
papaya
softening
ethylene
β-galactosidase
軟化
乙烯
β-半乳糖苷酶
出版社: 園藝學系所
引用: 柒、參考文獻 王仁晃。2007。木瓜採收標準作業程序。高雄區農技報導。行政院農業委員會高雄區農業改良場. pp. 1-15。 王德男、李文立。2006。台灣番木瓜產業問題及發展方向。台灣果樹產業調整及發展策略研討會專刊 pp. 59-67。 王德男、劉碧娟、李文立。2006。台灣木瓜產業之變遷。木瓜產業發展研討會專刊 pp. 1-20。 王德男。1972。包裝方式及貯藏溫度對木瓜果實更年期上昇抑制效果之研究。中國園藝 18: 86-93。 王德男。1974。日陞新品種木瓜栽培之研究。台灣農業 10: 119-130。 王德男。1989。木瓜優良品種簡介。興農雜誌 242: 10-13。 王德男。1991。台灣木瓜栽培之回顧與展望。台灣果樹之生產及研究發展研討會專刊 pp. 357-371。 王德男。2005。番木瓜。台灣農家要覽農作篇(二)。農委會。pp. 129-136。 朱德民。1995。植物與環境逆境。國立編譯館主編。pp. 122-145。 吳秋霖。2002。橡皮木瓜中果膠酯抑制劑之探討。國立屏東科技大學食品科學系碩士論文。175pp.。 吳國政。2007。熱處理及氣變包裝對‘台農二號’番木瓜果實採後品質及炭疽病之影響。國立中興大學園藝學系碩士論文。96pp.。 吳寶芬、黃美華。2003。我國木瓜產業面臨的問題及因應措施。農政與農情 133: 53-59。 李文立。2009。木瓜栽培管理手冊。行政院農業委員會農業試驗所鳳山熱帶園藝試驗分所。pp. 6-25。 李皇照。2006。全球木瓜生產與貿易。農政與農情 172: 118-125。 李雪如。1996。‘金煌’芒果果實生育、採收後處理與果肉劣變之關係。國立中興大學園藝學系碩士論文。台灣:台中。119 pp.。 林玉茹。2007。‘台農二號’番木瓜果實品質、礦物營養與生理性汙斑之周年性調查。國立中興大學園藝學系碩士論文。台灣: 台中。99 pp. 。 林慧玲。1998。番石榴果實後熟生理之研究。國立台灣大學園藝學研究所博士論文。台灣:台北。pp. 103-116。 林澤群。2008。聚甘露糖酶生產菌之篩選及培養條件探討與酵素特性分析。中臺科技大學食品科技研究所。台灣:臺中。pp. 11-14。 林馥君。2003。1-甲基環丙稀對於番木瓜果實後熟之影響。國立臺灣大學園藝學系碩士論文。台灣:台北。96 pp. 。 陳忠男。1976。木瓜(Carica papaya L. cv Tainon Hybrid No. 3)果腔內氣體組成對後熟作用之影響。中國園藝 22: 129-137。 陳琇瑜、盧義光、周昌弘、楊棋明。1996。木瓜後熟過程外果皮色素崩解之分析。中國農業化學會誌 34: 460-468。 陳福旗譯。1986。番木瓜之演進。中國園藝 32: 146-150。 郭銀港。2001。葡萄果實軟化生理之研究。國立中興大學園藝學研究所博士論文。台灣: 台中。174pp.。 蔣明南。1986。園藝作物採收後呼吸作用測定方法之研究。中華農學會報 135: 34-47。 蔡雅惠、柯立祥。2005。不同發育階段番木瓜果實採後呼吸及乙烯產生行為之探討。中國園藝 51: 29-40。 蔡雅惠。2003。三種番木瓜栽培品種果實生長發育之理化特性與採收後生理之研究。國立屏東科技大學熱帶農業暨國際合作研究所碩士論文。台灣:屏東。167pp.。 謝明憲、張龍生。2002。兩性株型表現在番木瓜品種間之差異。中國園藝 48: 211-218。 謝慶昌。1990。愛文芒果後熟生理與採收後處理之研究。國立台灣大學園藝學研究所博士論文。台灣:台北。pp. 174-186。 謝慶昌。2001。採收成熟度、貯藏溫度、後熟溫度及強制熱風處理對‘臺農二號’番木瓜品質之影響。中國園藝 47: 391-408。 Akamine, E. K. and T. Goo. 1971. Relationship between surface color development and total soluble solids in papaya. Hortscience 6: 567-568. Akamine, E. K. and T. Goo. 1979. Concentration of carbon dioxide and ethylene in the cavity of attached papaya fruit. HortScience 14: 138-139. Ali, Z. M. A., L-H. Chin, and H. Lazan. 2004. A comparative study on wall degrading enzymes, pectin modifications and softiening during ripening of selected torpical fruits. Plant Sci. 167: 317-327. Ali, Z. M.,S.Y.Ng, R. Othman, L.Y. Goh, and H. Lazan. 1998. Isolation, characterization and significance of papaya β-galactanases to cell wall modification and fruit softening during ripening. PHysiol. Plant. 104: 105-115. Allan, P. 2002. Carica papaya responses under cool subtropical growth conditions. Acta Hort. 575: 757-761. Almora, K., J. A. Pino, M. Hernandez, C. Duarte, J. Gonzalez, and E. Roncal. 2004. Evaluation of volatiles from riening papaya (Carica papaya L., var. Maradol roja). Food Chem. 86: 127-130. An, J. R. and R. E. Paull. 1990. Storage temperature and ethylene influence on ripening of papaya fruit. J. Amer. Soc. Hort. Sci. 115: 949-953. Antunes, M. D. C., E. M. Sfakiotakis. 2000. Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of ‘Hayward’kiwifruit. Postharvest Biol. Technol. 20: 251-259. Arriola, M. C., C. Madrid, and C. Rolz. 1975. Some pHysical and chemical changes in pawpaw during storage. J. Amer. Soc. Hort. Sci. 19: 97-109. Azevedo, I. G., J. G. Oliveira, M. G. da Silva, T. Pereira, S. F. Corrêa, H. Vargas, and A. R. Façanha. 2008. P-type H+-ATPases activity, membrane integrity, and apoplastic pH during papaya fruit ripening. Postharvest Biol. Technol. 48: 242-247. Bergh, O., J. Franken, E. J. Van Zyl, F. Kloppers, and A. Dempers. 1980. Sunburn on apples- preliminary results of an investigation conducted during the 1978/ 79 season. Decid. Fruit Grower 30: 8-22. Biale, J. B. and R. E. Young. 1981. Respiration and ripening in fruit-retrospect and prospect. pp. 1-39. In: J. Friend and M. J. C. Rhodes (eds). Recent advamces in the biochemistry of fruit and vegetables. Academic Press, New York. Biggs, M. S, W. R. Woodson, and A. K. Handa. 1988. Biochemical basis of high temperature in hibition of ethylene biosynthesis in ripening tomato fruit. PHysiol. Plant. 72: 572-578. Bron, I. U., R. V. Ribeiro, M. Azzolini, A. P. Jacomino, and E. C. Machado. 2004. ChloropHyll fluorescence as a tool to evaluate the ripening of ‘Golden’papaya fruit. Postharvest Biol. Technol. 33: 163-173. Brown, B. I. 1987. Effect of maturity at harvest and ripening on the eating qyality of papaw fruit. Queensland J. Agri. Animal Sci. 44: 31-36. Burg, S. P. and E. A. Burg. 1965. Ethylene action and ripening of fruits. Science 148: 1190-1196. Burns, J. K. and R. Pressey. 1987. Ca in cell walls of ripening tomato and peach. J. Amer. Soc. Hort. Sci. 112: 783-787. Chan, H. T. and E. Linse. 1989. Conditioning cucumbers to increase heat resistance in the EFE system. J. Food Sci. 54: 1375-1376. Chan, H. T. J., K. L. Hibbard, T. Goo, and E. K. Akamine. 1979. Sugar composition of papayas during fruit development. Hort. Sci. 14: 140-141. Chan, H.T., J. Chan, S. Y. T. Tam, S. T. Seo. 1981. Papaya polygalacturonase and its role in thermally injured ripening fruit. J. Food Sci. 46: 190–197. Chan, Y. K. 1986. Comparative performance of female and hermapHrodite tress in four gynodioecious varieties of papaya. Technol. Buahbuahan. 2: 25-31. Chen, N. and R. E. Paull. 2001. Fruit temperature and crown removal on the occurrence of pineapple fruit translucency. Sci. Hortic. 88: 85-95 Cheng, T. S., J. D. Floros, R. L. Shewfelt, and C. J. Chang. 1988. The effect of high-temperature stress on ripening of tomatoes (Lycopersicon esculentum). J. Plant PHysiol. 132: 459–464. Choi, S. T., P. Tsouvaltzis , C. I. Lim , and D. J. Huber. 2008. Suppression of ripening and induction of asynchronous ripening in tomato and avocado subjected to complete or partial exposure to aqueous solutions of 1-methylcyclopropene. Postharvest Biol. Technol. 48: 206-214. Clark, C. J. and G. S. Smith. 1991. Seasonal changes in the form and distribution of calcium in fruit of kiwifruit vines. J. Hort. Sci. 66: 747-753. Coombe, B. G. 1987. Influence of temperature on composition and quality of grapes. Acta Hortic. 206: 23-35. Cosgrove, D. J. 2000. Loosening of plant cell walls by expansions. Nature. 407: 321-326. Davenport, T. L. and C. W. Campbell. 1977. Stylar-end break-down in‘Tahiti’lime: Affravation effects of field heat and fruit maturity. J. Amer. Soc. Hort. Sci. 102: 484-486. Dekker, R. F. H., and G. N. Richards. 1976. Hemicellulases: their occurrence, purification, properties and mode of action. Adv. Carbohydr. Chem. Biochem. 32: 277-352. Desai, U. T. and A. N. Wagh. 1995. PaPaya. Handbook of fruits science and technology production, composition, storage and processing. (ed Salunke, D. K. and S. S. Kadam.) New York Basel: Marcel Dekker. pp. 297-313. Dubois, M. 1956. Colorimeteric method for determination of sugar and related substances. Anal. Chem. 28:350-356. Dunlap, J. R., S. E. Lingle, and G. E. Lester. 1990. Ethylene production in netted muskmelon subjected to postharvest heating and refrigerated storage. HortScience. 25: 207-209. Eaks, I. L. 1978. Ripening, respiration, and ethylene production of ‘Hass’ avocado fruits at 20 to 40°C. J. Am. Soc. Hort. Sci. 103: 576–578. Fabi, J. P., B. R. Cordenunsi, G. P. de M. Barreto, A. Z. Mercadante, F. M. Lajolo, and J. R. O. do Nascimento. 2007. Papaya fruit ripening: Response to Ethylene and 1-methylcyclopropene(1-MCP). J. Agric. Food Chem. 55: 6118-6123. Famiani, F., N. G. M. Cultrera, A. Battistelli, V. Casulli, P. Proietti, A. Standardi, Z. H. Chen, R. C. Leegood, and R. P. Walker. 2005. PHospHoenolpyruvate carboxykinase and its potential role in the catabolim of organic acid in the flesh of soft fruit during ripening. J. Exp. Bot. 56: 2959-2969. Fayyaz, A., B. A. Asbi, H. M. Ghazali, Y. B. Che Man, and S. Jinap. 1994. Purification and molecular properties of papaya pectinesterase. Food Chem. 49: 373-378. Figueroa, C. R., P. Pimentel, M. C. Dotto, P. M. Civello, G. A. Martinez, R. Herrera, and M. A. Moya-Leon. 2009. Expression of five expansin genes during softening of Fragaria chiloensis fruit: Effect of auxin treatment. Postharvest Biol. Technol. 53: 51-57. Fisher, D. F., C. P. Harley, and C. Brooks. 1930. The influence of temperature on the development of watercore. Proc. Amer. Soc. Hort. Sci. 27: 276-280. Fogarty, W. M. and O. P. Ward. 1972. Pectic substances and pectinolytic enzymes. Process Biochem. 6:11-17. Gautier, H., V. Diakou-Verdin, C. Benard, M. Reich, M. Buret, F. Bourgaud, J. L. Poessel, C. Caris-Veyrat, and M. Genard. 2008. How does Tomato quality ( sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agric. Food Chem. 56: 1241-1250. Giacometti, D. C. and D. H. van Sloten. 1987. Genetic resources of banana, citrus, mango, papaya and pineapple. Acta Hort. 196: 7-24. Giovannoni, J. J., D. DellaPenna, A. B. B ennett and R. L. Fischer. 1989. Expression of a chimeric polygalacturonase gene in transgenic rin(ripening ingibitor ) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1: 53-63. Goni, O. M. Munoz, J. Ruiz-Cabello, M. I. Escribano, and C. Merodio. 2007. Chages in water status of cherimoya fruit during ripening. Postharvest Biol. Technol. 45: 147-150. Goodwin, T.W. and M. Jamikorn. 1952. Biosynthesis of carotenes in ripening tomatoes. Nature. 170: 104-105. Goujon, T., Z. Minic, A. ElAmrani, O. Lerouxel, E. Aletti, C. Lapierre, J. Joselau, and L. Jouanin. 2003. AtBXL1, a novel higher plant (Arabidopsis thaliana) putative b-xylosidase gene, is involved in secondary cell wall metabolism and plant development.Plant J. 33: 677–690. Goulao, L. F., J. Santos , I. d. Sousa, and C. M. Oliveira. 2007. Patterns of enzymatic activity of cell wall-modifying enzymes during growth and ripening of apples. Postharvest Biol. Technol. 43: 307-318. Hagerman, A. E. and P. J. Austin. 1986. Continuous spectropHotometric assay for plant pectin methyl esterase. J. Agric. Food Chem. 34: 440-444. Hanger, B. C. 1979. The movement of calcium in plants. Commun. Soil Sci. Plant Anal. 10: 171-193. Ho, L. C., R. Belda, M. Brown. J. Andrews, and P. Adams. 1993. Uptake and transport of calcium and the possible causes of blossom-end Rot in Tomato. J. Exp. Bot. 259: 509- 518. Honda, S., Y. Hishimura, M. Takahashi, H. Chida, and K. Kakeji. 1982. A manual method for the spectropHotomertic determination of reduction carbohydrates with 2-cyanoacetamide. Anal. Biochem. 119: 194-199. Huber, D. J. 1983. The role of cell wall hydrolases in fruit softening. Hort. Rev. 5: 169- 219. Inaba, M. and K. Chachin. 1988. Influence of and recovery from high-temperature stress on harvested mature green tomatoes. HortScience 23: 190–192. Jiang, C. M., M. C. Wu, C. L. Wu, and H. M. Chang. 2003. Pectinesterase and polygalacturonase activities and textural properties of rubbery papaya (Carica papaya Linn.) J. Food Sci. 68: 1590-1594. Jones, H. G. 1981. Carbon dioxide exchange of developing apple fruits. J. Exp. Bot. 321: 1203-1210. Jones, W. W. and H. Kubota. 1940. Some chemical and respiration changes in the papaya fruit during ripening, and the effect of cold storage on these changes. Plant PHysiol. 15: 711-717. Karakurt, Y. and D. J. Huber. 2003. Activities of several membrane and cell-wall hydrolases, ethylene biosynthetic enzymes, and cell wall polyuronide degradation during low-temperature storage of intact and fresh-cut papaya (Carica papaya) fruit. Postharvest Biol. Technol. 28: 219-229. Ketsa, S., S. Chidtragool, J. D. Klein, and S. Kurie. 1999. Ethylene synthesis in mango fruit following heat treatment. Postharvest Biol. Technol. 15: 65-72. Kintner, P. K. and J. P. Van Buren. 1982. Carbohydrate interference and its correction in pectin analysis using the m-HydroxydipHenyl method. J. Food Sci. 47: 756-760. Klein, J.D. and Lurie, S. 1990. Prestorage heat treatment as a means of improving poststorage quality of apples. J. Am. Soc. Hort. Sci. 115: 265-269. Kliewer, M. W. and L. A. Lider. 1970. Effects of day temperature and ligh intensity on growth and composition of Vitis vinifera L. fruits. J. Amer. Soc. Hort. Sci. 95: 766-769. Koh, T. and L. Melton. 2002. Ripening-related changes in cell wall polysaccharides of strawberry cortical and pith tissues. Postharvest Biol. Technol. 26: 23-33. Lakso, A. N. and W. M. Kliewer. 1975. The influences of temperature on malic acid metabolism in grape berries I. Enzyme responses. Plant PHysiol. 56: 370-372. Lara, I., P. Garcia, and M. Vendrell. 2004. Modifications in cell wall composition after cold storage of calcium-treated strawberry (Fragaria × ananassa Duch.) fruit. Posthav. Biol. Technol. 34: 331-339. Lazan, H, S. Y. Ng, L. Y. Goh, and Z. M. Ali. 2004. Papaya β- galactosidase/ galactanase isoforms in differential cell wall hydrolysis and fruit softening during ripening. Plant PHysiol. Biochem. 42: 847-853. Lazan, H., M. K. Selamat, and Z. M. Ali. 1995. β-galactosidase, polygalacturonase and pectinesterase in differential softening and cell wall modification during papaya fruit ripening. PHysiol. Plant. 95: 106-112. Lazan, H., Z. N. Ali, K. S. Liang, and K. L. Lee. 1989. Polygalacturonase activity and variation in ripening of papaya fruit with tissue depth and heat treatment. PHysio Plant 77: 93-98. Lizada, M. C. and S. F. Yang. 1979. A simple and sensitive assay for 1-aminochclopropane-1-carvoxylic acid. Anal. Biochem. 100: 140-145. Lowry, D. H., N. J. Rosebrough, A. L. Farr, and R. J. Randal. 1951. Protein measurement with the folin pHenol reagent. J. Biol. Chem. 193: 265-275. Lurie, S., and J. D. Klein. 1991. Acquisition of low temperature tolerance in tomatoes by exposure to high temperature stress. J. Amer. Soc. Hhor. Sci. 116: 1007-1012. Manenoi, A. and R. E. Paull. 2007. Papaya fruit softening, endoxylanase gene expression, protein and activity. PHysiol. Plant. 131: 470-480. Manganaris, G. A., M. Vasilakakis, G. Diamantidis and I. Mignani. 2007. The effect of postharvest calcium application on tissue calcium concentration, quality attributes, incidence of flesh browning and cell wall pHysicochemical aspects of peach fruits. Food Chem. 100: 1385-1392. Manganaris, G. A., M. Vasilakakis, I. Mignani, G. Diamantidis, and K. Tzavella-Klonari. 2005. The effect of preharvest calcium sprays on quality attributes, pHysicochemical aspects of cell wall components and susceptibility to brown rot of peach fruits (Prunus persica L. cv. Andross) Sci. Hortic. 107: 43-50. Manrique G.D. and F. M. Lajolo. 2004. Cell-wall polysaccharide modifications during postharvest ripening of papaya fruit(Carica papaya). Postharvest Biol. Technol. 33: 11-26. Marschner, H. 1986. Long-distance transport in the xylem and pHloem and its regulation. In: Mineral nutrition in higher plants. Academic Press, London. pp. 98-103. Martínez, G. A. and P. M. Civello. 2008. Effect of heat treatments on gene expression and enzyme activities associated to cell wall degradation in strawberry fruit. Postharvest Biol. Technol. 49:38-45. Maxie, E. C., F. G. Mitchell, N. F. Sommer, R. G. Snyder, and H. L. Rae. 1974. Effects of elevated temperatures on ripening of ‘Bartlett’ pears Pyrus communis L. J. Am. Soc. Hort. Sci. 99: 344–349. Miller, W. R. and R. E. McDonald. 1991. Quality of stored ‘Marsh’and ‘Ruby Red’grapefruit after high-temperature, forced air treatment. HortScience 266: 1188-1191. Mitcham, E. J., and R. E. McDonald. 1993. Respiration rate, internal atmospHere, ethanol and acetaldehyde accumulation in heat-treatment mango fruit. Postharvest Biol. Technol. 3: 77–86. Moya-leon, M. A. and P. John. 1994. Activity of 1-amioncyclopropane-1carboxylate (ACC) oxidase in the pulp and peel ripening banana. J. Hort. Sci. 69: 243-250. Paiva, E. A. S., R. A. Sampaio, and H. E. P. Martinez. 1998. Composition and quality of tomato fruit cultivated in nutrient solutions containing different calcium concentrations. J. Plant Nutr. 21: 2653-2661. Palmer, J. K. and W. B. McGlasson. 1969. Respiration and ripening of banana fruit slices. Aust. J. Biol. Sci. 22: 87-99. Pan, H. H. and Z. H. Shu. 2007. Temperature affects color and quality characteristics of ‘Pink’wax apple fruit discs. Sci. Hortic. 112: 290-296. Paull, R. E. 1993. Pineapple and papaya. Biochemistry of fruit ripening. pp. 302-323. In: Seymour, G. B., J. E. Taylor, and G. A. Tucker. Chapman and Hall, London, UK. Paull, R. E. 1995. Preharvest factors and the heat sensitivity of field grown ripening papaya fruit. Postharvest Biol. Technol. 6: 167-175. Paull, R. E. and N. J. Chen. 1990. Heat shock response in field grown ripening papaya fruit. J. Amer. Soc. Hort. Sci 115: 623-631. Paull, R. E. and N. J. Chen. 2000. Heat treatment and fruit ripening. Postharvest Biol. Technol. 21: 21-37. Paull, R. E., and N. J. Chen. 1983. Postharvest variation in cell wall-degrading enzymes of papaya (Carica papaya L.) during fruit ripening. Plant PHysiol. 72: 382-385. Paull, R. E., K. Gross, and Y. Qiu. 1999. Change in papaya cell walls during fruit ripening. Postharvest Biol. Technol. 16: 79-89. Paull, R. E., W. Nishijima, M. Reyes, and C. Cavaletto. 1997. Postharvest handling and losses during marketing of papaya (Carica papaya L.). Postharvest Biol. Technol. 11: 165-179. Pech, J. C., M. Bouzayen, and A. Latche. 2008. Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 175: 114-120. Poovaiah, B. W. 1993. Biochemical and aspects of calcium action. Acta. Hort. 326: 139-147. Pressey, R. and J. K. Avants. 1978. Difference in polygalacturonase composition of clingstone and freestone peaches. J. Food Sci. 43: 1415-1418. Qiu, Y., M. S. Nishina, and R. E. Paull. 1995. Papaya fruit growth, calcium uptake, and fruit ripening. J. Amer. Hort. Sci. 120: 246-253. Redgwell, R. J., E. MacRae, I. Hallett, M. Fischer, J. Perry, and R. Harker. 1997. In vivo and in vitro swelling of cell walls during fruit ripening. Planta. 203: 162-173. Redgwell, R. J., L. D. Melton and D. J. Brasch. 1992. Cell Wall dissolution in ripening kiwifruit (Actinidia deliciosa). Plant PHysiol. 98: 71-81. Redgwell, R. J., M. Fischer, M. Kendall, and E. A. MacRae. 1997. Galactose loss and fruit ripening: high- molecular- weight arabinogalactans in the pectic polysaccharides of fruit cell walls. Planta 203: 174-181. Reese, E. T., R. G. H. Sui, and H. S. Levinson. 1950. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose gydrolysis. J. Bacteriol. 59: 485-497. Saladié, M., A. J. Matas, T. Isaacson, M. A. Jenks, S. M. Goodwin, K. J. Niklas, R. Xiaolin, J. M. Labavitch, K. A. Shackel, A. R. Fernie, A. Lytovchenko, M. A. O’Neill, C. B. Watkins, and J. K. C. Rose. 2007. A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant pHysiol. 144: 1012-1028. Salunkhe, D. K. and B. B. Desai. 1984. Papaya. pp.13-26. Postharvest biotechnology of fruits Volume II. CRC. Press, Inc. Sankat, C. K. and R. Maharaj. 1997. Papaya. pp. 167-189. In: Mitra, S. K. Postharvest pHysiology and storage of tropical and subtropical fruit. CAB Internation. New York. Sañudo-Barajas, J. A., J. Labavitch, C. Greve, T. Osuna-Enciso, D. Muy-Rangel, and J. Siller-Cepeda. 2009. Cell wall disassembly during papaya softening: Role of ethylene in changes in composition, pectin-derived oligomers (PDOs) production and wall hydrolases. Postharvest Biol. Technol. 51: 158-167. Schirra, M., G. D’hallewin, P. Inglese, T. La Mantia. 1999. Epicuticular changes and storage potential of cactus pear (Opuntia ficus-indica Miller L.) fruit following gibberellic acid preharvest sprays and postharvest heat treatment. Postharvest Biol. Technol. 17: 79-88. Schoreder, C. A. and E. Kay. 1961. Temperature conditions and tolerance of avocado fruit tissue. Calif. Avocado Soc. Yearbook. 45: 87-92. Schroeder, C. A., 1965. Temperature relationships in fruit tissues under extreme conditions. Proc. Amer. Soc. Hort. Sci. 87: 199-203. Selvaraj, Y. and D. K. Pal. 1982. Changes in the chemical composition of papaya (Thailand variety) during growth and development. J. Food. Sci. 19: 257-259. Selvaraj, Y., D. K. Pal, M. D. Subramanyam, and C. P. A. Iyer. 1982. Changes in the chemical composition of four cultivars of papaya (Carica papaya L.) during growth and development. J. Hort. Sci. 57: 135-143. Seymour, G. B., P. John, and A. K. Thompson, 1987. Inhibition of degreening in the peel of bananas ripened at tropical temperatures II. Role of ethylene, oxygen and carbon dioxide. Annu. Appl. Biol. 110: 153–161. Shieh, M. W. and D. J. Cosgrove. 1998. Expansiins. J. Plant Res. 111: 149-157. Silacci, M. W. and J. C. Morrison. 1990. Changes in pectin content of ‘Cabernet Sauvignon’grape berries during maturation. Am. J. Enol. Vitic. 41: 111-115. Simith, C. J. S., C. F. S. Watson, J. Ray, C. R. Bird, P. C. Morris, W. Schuch and D. Grierson. 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334: 724-726. Soh, C. P., Z. M. Ali, and H. Lazan. 2006. Characterization of an α-galactosidase with potential relevance to ripening related texture changes. PHytochemistry. 67: 242-54. Song, J., L. Fan, C. F. Forney, and M. A. Jordan. 2001. Using volatile emissions and chloropHyll fluorescence as indicators of heat injury in apples. J. Amer. Soc. Hort. Sci. 32: 771-777. Song, J., W. Deng, R. M. Beaudry, and P. R. Armstrong. 1997. Changes in chloropHyll fluorescence of apple fruit during maturation, ripening, and senescence. HortScience 32: 891-896. Taiz, L. and E. Zeiger. 2006. Plant pHysiology. Sinauer Associates, pp690. Inc., Sunderland. Tateish, A., H. Inoue, and S. Yamaki. 2001. Fluctuations in activities of three β-galactosidase Isoforms from ripening avocado (Persea americana) Fruit and their different activities against its cell wall polysaccharides as substrates. J. Japan. Soc. Hort.Sci. 70: 586-592. Tateishi, A. 2008. β-Galactosidase and α-L-arabinofuranosidase in cell wall modification related with fruit development and softening. J. Japan. Soc. Hort. Sci. 77: 329-340. Tateishi, A., H. Inoue, and S. Yamaki. 2002. Cloning and expression of β-galactosidase cDNA related to softening of Avocado (Persea americana) fruit. J. Japan. Soc. Hort. Sci. 71: 48-55. Tateishi, A., H. Shiba, J. Ogihara, K. Isobe, K. Nomura, K. Watanabe, and H. Inoue. 2007. Differential expression and ethylene regulation of β-galactosidase genes and isozymes isolated from avocado (Persea americana Mill.) fruit. Postharvest Biol. Technol. 45: 56-65. Thorpe, M. R., 1974. Radiant heating of apples. J. Appl. Ecol. 11: 755-760. Tucker, G. A. 1993. Introduction. pp. 1-52. In: G. B. Seymour, J. E. Taylor, and G. A. Tucker. (eds). Biochemistry and fruit ripening. Chamam&Hall. London. Turrell, F. M. and R. L. Perry. 1957. Specific heat and heat conductivity of citrus fruit. Proc. Amer. Soc. Hort. Sci. 70: 261-265. Varela, P., A. Salvador and S. M. Fiszman. 2007. The use of calcium chloride in minimally processed apples: A sensory approach Eur. Food Res. Technol. 224: 461-467. Vicente A. R., M. L. Costa , G. A. Martínez , A. R. Chaves , and P. M. Civello. 2005. Effect of heat treatments on cell wall degradation and softening in strawberry fruit. Postharvest Biol. Technol. 38: 213-222. Vicente, A. R., G. A. Martinez, A. R. Chaves, and P. M. Civello. 2006. Effect of heat treatment on strawberry fruit damage and oxidative metabolism during storage. Postharvest Biol. Technol. 40: 116-122. Virendra S. G. and S. Mishra. 1989. Regulatory aspects of cellulose biosynthesis and secretion. Crit. Rev. Biotechnol. 9: 61- 103. Wahid, A., S. Gelani, M. Ashraf, and M. R. foolad. 2007. Heat tolerance in plants: An overview. Environ. Exp. Bot. 61: 199-223. Wills, R., B. Mcglasson, D. Graham, and D. Joyce. 1998. Postharvest: an introduction to the pHysiology and handling of fruit, vegetables and ornamentals. Hyde Park Press, South Australia. Wood, T. M. 1985. Properties of celluloytic enzyme systems. Biochem. Soc. Trans. 13: 407-410. Woolf, A. B. and I. B. Ferguson. 2000. Postharvest responses to high fruit temperatures in the field. Postharvest Biol. Technol. 21: 7-20. Woolf, A. B. and W. A. Laing. 1996. Avocado fruit skin fluorescence following hot water treatments and pretreatments. J. Amer. Soc. Hort. Sci. 121: 147-151. Woolf, A. B., A. Wexler, D. Prusky, E. Kobiler, and S. Lurie. 2000. Direct sunlight influences postharvest temperature responses and ripening of five avocado cultivars. J. Amer. Soc. Hort. Sci. 125: 370-376. Woolf, A. B., I. B. Ferguson, L. C. Requejo-Tapia, L. Boyd, W.A. Laing, A. White. 1999b. Impact of sun exposure on harvest quality of ‘Hass’ avocado fruit. In: Proc. a IV World Avocado Congress, Uruapan, Mexico. Revista Chaingo Serie Horticultura. vol. 5, pp. 352-358. Woolf, A. B., J. H. Bowen, and I. B. Ferguson. 1999a. Preharvest exposure to the sun influences postharvest responses of ‘Hass’avocado fruit. Postharvest Biol. Technol. 15: 143-153. Yang, R. F., M. T. S. Cheng, and R. L. Shewfelt. 1990. The effect of high temperature and ethylene treatment on the ripening of tomatoes. J. Plant PHysiol. 136, 941-942. Yang, S. F. 1985. Biosynthesis and action of ethylene. HortScience 20: 41-45. Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant PHysiol. 35: 155-189. Yashoda, H. M., T. N. Prabha, and R. N. Tharanathan. 2007. Mango ripening-Role of carbohydrases in tissue softening. Food Chem. 102: 691-698 Yon, R. M. 1994. Papaya fruit development, postharvest pHysiology, handling and marketing in ASEAN. Malaysia. pp. 35-78. Yu, Y. B., D. O. Adams, and S. F. Yang. 1980. Inhibition of ethylene production by 2,4-dinitropHenol and high temperature. Plant PHysiol. 66: 286-290. Zhou, L. and R. E. Raull. 2001. Sucrose metabolism during papaya (Carica papaya L.) fruit growth and ripening. J. Amer. Soc. Hort. Sci. 126: 351-357.
摘要: 番木瓜採收成熟度會影響果實採後品質與貯藏能力,尤其番木瓜果實後熟軟化快速,有嚴重的運輸損耗,另一方面‘台農二號’番木瓜果實又會發生果肉不軟化現象,稱為‘橡皮木瓜’。本試驗探討番木瓜果實後熟變化及影響軟化之因子,及高溫對番木瓜果實後熟之影響與橡皮木瓜發生原因。 ‘台農二號’番木瓜果實呼吸率與乙烯釋放率變化與腔內二氧化碳與乙烯氣體濃度變化相似。因此可藉由測定腔內氣體濃度得知果實之生理狀態。一般而言,外銷最佳成熟度(果皮25%轉色)果實呼吸率為20.69 ml CO2 kg-1 hr-1,乙烯釋放率為0.036 μl C2H4 kg-1 hr-1,腔內二氧化碳濃度為2.17 %,乙烯濃度為0.032 ppm;當果實後熟達可食用階段呼吸率為47.6-50.7 ml CO2 kg-1 hr-1,乙烯釋放率為5.18 μl C2H4 kg-1 hr-1,腔內二氧化碳濃度4.6-5.7 %,乙烯濃度為6.2- 9.9 ppm。果實後熟期間,果皮由綠轉黃,色相角自120.6°下降至65.9°。而葉綠素螢光也可用以輔助果實後熟狀態之測定。當‘台農二號’番木瓜果實後熟軟化時,除了呼吸率與乙烯釋放率上升外,失重率、澱粉、不可溶果膠含量與總鈣含量會下降,可溶性糖與可溶性果膠含量會增加。在番木瓜果實軟化原因中,失水可能造成細胞膨壓的下降,進而影響果實硬度;當後熟第2天硬度明顯下降之後無明顯變化,但失重率依然持續下降,因此膨壓的下降與軟化前期較為有關。澱粉含量的下降也可能造成硬度下降,但番木瓜果實內澱粉含量相當低,因此影響成分可能較小。果膠溶解程度變化與硬度快速變化相符,水溶性鈣比例的增加也顯示果膠結構逐漸鬆散;β-葡萄糖苷酶活性上升,可能輔助降解細胞壁多醣體結構。因此番木瓜果實後熟軟化可能受乙烯反應與組織內細胞壁物質的降解所相輔造成。 高溫造成‘台農二號’番木瓜果實乙烯釋放量下降,主要原因是ACC氧化酶對於高溫敏感,導致活性下降。高溫處理會造成轉色不良及抑制軟化之現象。當熱傷害累積到一定程度,果肉會出現硬塊。40℃高溫處理6天,果實即使經由催熟處理,部分果肉依然無法完全軟化。由於高溫抑制果肉的呼吸作用及乙烯生合成,造成果實後熟作用受阻,導致果皮與果肉之轉色不良,並抑制β-半乳糖苷酶活性與β-葡萄糖苷酶活性,及減緩果膠溶解速度。以上結果顯示高溫可能誘導番木瓜橡皮肉之發生,並且與乙烯釋放率下降及果膠溶解速度緩慢有關。
The maturity of papaya fruit when harvested affects postharvest quality and storage capacity. For example, if the papaya fruit softens quickly, there is serious loss of product during transportation. On the other hand, when ‘Tainung No.2' papaya fruit pulp does not soften, it known as ‘rubber papaya'. This research will discuss the changes in papaya fruit as it ripens; suggest an index of ripening stage and what factors affect softening; examine the effect of temperature on papaya fruit ripening and if high temperature causes rubber papaya. ‘Tainung No.2' papaya fruit respiration rate is similar to its internal carbon dioxide concentration, while ethylene production rate is similar to its internal ethylene concentrations. Therefore, by measuring the atmospHeric composition of fruit cavity, the pHysiological state of fruit can be known. In general, the best export maturity (25% of skin turning color) had a respiration rate of 20.69 ml CO2 kg-1 hr-1; ethylene produce rate of 0.036μl C2H4 kg-1 hr-1; internal carbon dioxide concentration of 2.17 %; and an internal ethylene concentration of 0.032ppm. When fruit ripened to the stage of edibility, it had a internal respiration rate of up to 47.6-50.7 ml CO2 kg-1 hr-1; internal ethylene concentration of 5.18μl C2H4 kg-1 hr-1; internal carbon dioxide concentration of 4.6-5.7%; and an internal ethylene concentration of 6.2-9.9ppm. During fruit ripening, fruit skin changed from green to yellow in a hue angle expressed as 120.6° to 65.9°. ChloropHyll fluorescence can also be used to support the determination of the ripening state of fruit. When the ‘Tainung No.2' papaya fruit ripened and softened, respiration rate and ethylene production rate increased, an indication of the ripening process. Weight, starch, insoluble pectin content, and total calcium content were significantly decreased, while soluble sugar and soluble pectin content increased, all of which are chemical reactions carried out in fruits ripening. Water loss may be the reason for the papaya softening, because the decline in cellular turgor, affects fruit firmness. Two days after ripening, the firmness decreased but then there was no other significant changes. However, the weight loss rate continued to decrease, so turgor was more related to early stage softening. The decrease in starch content also caused firmness to decrease, but the starch content of papaya fruit is very low, thus the effect of starch may be relatively small. Firmness changed at the same rate at which pectin dissolved. Additionally, an increase in the ratio of water-soluble calcium resulted in a loosening in the pectin structure. Increased β-glucosidase activity caused the degradation of cell wall polysaccharides. The ripening and softening of papaya fruit may be affected by the complementary reaction of ethylene response and degradation of cell wall material. High temperature treatment caused ‘Tainung No.2' papaya fruit ethylene production rate to decrease, mainly because of ACC oxidase's sensitivity to high temperatures, which resulted in decrease in ACC oxidase activity. Heat treatment also caused poor color change and inhibited the softening process, and accumulated thermal damage resulted in hard lumps. For example, even after 6 days at 40℃ and 3 days ripening with calcium carbide at 30℃, some pulp still had not softened. High temperatures caused inhibition of respiration and ethylene biosynthesis which blocked fruit ripening. This further resulted in peel and pulp color changing poorly; the inhibition of β-galactosidase and β-glucosidase activity; and the slowdown of the pectin dissolution rate. In conclusion, 40℃ temperature may induce the occurrence of papaya rubber pulp because of the decrease in the ethylene rate and the slow dissolution of pectin.
URI: http://hdl.handle.net/11455/29149
其他識別: U0005-1108201015130800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1207201016463800
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.