Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29201
標題: 直立式栽培整枝方式及氯化鈉處理對東方型甜瓜植株生育、果實產量與品質之影響
Effects of training and NaCl treatment on plant growth, fruit yield and quality of oriental melon(Cucumis melo L. var. makuwa Makino)
作者: 莊國誌
Chuang, Kuo-Chih
關鍵字: oriental melon
東方型甜瓜
training
NaCl treatment
fruit yield
fruit quality
整枝
氯化鈉處理
果實產量
果實品質
出版社: 園藝學系所
引用: 山崎肯哉。1982。養液栽培全篇。博友社。 王銀波。1989。培養液之化學性及其管理。沈再發,許淼淼和徐森彥主編。 養液栽培技術講習會專刊第二輯。行政院農業委員會。p.60-68。 生生種子公司。< http://www.evergrowseed.com/>。 李文汕。1999。蔬菜無土介質容器栽培。蔬菜容器栽培技術研討會專集。國 立中興大學園藝學系編印。p.1-17。 李國明。1999。哈密瓜產期調節之研究-不同節位留果對產期及產量之影響。 花蓮區研究彙報17 : 73-79。 李曙軒。1984。茄果類的栽培生理。李曙軒(編)。蔬菜栽培生理。上海科學 技術出版社。p.281-345。 沈再發、許淼淼。1989。作物的營養特性及影響養液組成之因素。沈再發, 許淼淼和徐森彥主編。養液栽培技術講習會專刊第二輯。行政院農業委 員會。p.44-59。 林大村、顏永福、黃子彬。2007。高鹽分養液中磷濃度對番茄果實產量、品 質及植株生長之影響。台灣園藝53: 13-26。 林大村、顏永福、趙秀淓、黃子彬。2007。高鹽分養液中鉀濃度對番茄果實 產量和品質之影響。台灣園藝53: 127-43。 金子賢一、宮城慎、佐久間文雄。短側枝性メロンの地這い栽培における整 枝および摘果管理の省力効果。2006。茨城県農業総合センター園芸研 究所研究報告。14: 9-14。 林傳琦、高景輝。2000。細胞壁與鹽分逆境所抑制之生長。科學農業48(7,8): 169-175。 吳敬德、賴宏煇。1980。葡萄植株光合產物運移之研究 (I)不同誘引方式下 葡萄植株中光合產物的運移模式。中國園藝26(2-3): 78-86。 高德錚。1989。國內外各種養液栽培法特性之比較。沈再發,許淼淼和徐森 彥主編。養液栽培技術講習會專刊第二輯。行政院農業委員會。p.17-43。 黃賢良。2004。設施之作物栽培-洋香瓜設施栽培。農試所編印。p.200-202。 農友種苗公司。<http://www.knownyou.com/index.jsp>。 萩原十、余吾卓也。西瓜の葉面積と果実との関係。1944。園学雑。13(3): 272-276。 戴振洋、李汶汕。2009。高品質東方型甜瓜栽培技術。台中區農業改良場。 <http://tdares.coa.gov.tw/files/web_articles_files/tdares/6381/1705.pdf>。 戴振洋、蔡宜峯。2008。不同養液肥料對介質栽培東方甜瓜之影響。臺中區 農業改良場研究彙報99: 61-72。 Adams, P. 1991. Effect of increasing the salinity of the nutrient solution with major nutrients or sodium chloride on the yield, quality and composition of tomatoes grown in rockwool. J. Hort. Sci. 66(2): 201-207. Adams, P. and L. C. Ho. 1989. Effects of constant and fluctuating salinity on the yield, quality and calcium status of tomatoes. J. Hort. Sci. 64(6): 725-732. Alarcon, J. J., M. J. Sanchez-Blanco, M. C. Bolarin, and A. Torrecillas. 1994. Growth and osmotic adjustment of tomato cultivars during and after saline stress. Plant Soil. 166: 75-82. Amor, F. M., V. Martinez, and A. Cerda. 1999. Salinity duration and concentration affect fruit yield and quality, and growth and mineral compostition of melon plants growth in perlite. HortScience. 34(7): 1234-1237. Aranda, R. R. and T. S. J. Cuartero. 2001. Tomato plant water uptake and plant water relationships under saline growth conditions. Plant Sci. 160: 265-272. Awang, Y. B. and J. G. Atherton. 1995. Growth and fruiting responses of strawberry plants grown on grown on rockwool to shading and salinity. Sci. Hort. 62: 25-31. Awang Y. B., J. G. Atherton, and A. J. Taylor. 1993a. Salinity effects on strawberry plants grown in rockwool. I. Growth and leaf water relations. J. Hort. Sci. 68: 783-790. Awang Y. B., J. G. Atherton, and A. J. Taylor. 1993b. Salinity effects on strawberry plants grown in rockwool. II. Fruit quality. J. Hort. Sci. 68: 783-790. Balibrea, M. E., A. M. S. Cruz, M. C. Bolarin, and F. Perez-Alfocea. 1996. Sucrolytic activities in relation to sink strength and carbohydrate composition in tomato fruit growing under salinity. Plant Sci. 118: 47-55. Balibrea, M. E., E. Cayuela, F. Artes, and F. Perez-Alfocea. 1996. Salinity effects on some postharvest quality factors in a commercial tomato hybrid. J. Hort. Sci. 72(6):885-892. Baudoin, W. O. 1990. Soilless culture for horticultural crop production. FAO of the United Nations. Rome. Botia, P., J. M. Navarro, A. Cerda, and V. Martinez. 2005. Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. Europ. J. Agron. 23: 243-253. Carvajal, M., V. Martinez, and A. Cerda. 1999. Influence of magnesium and salinity on plant grown in hydroponic culture. J. Plant Nutr. 22(1):177-190. Chartzoulakis, J. M. 1992. Effect of NaCl salinity on germination, growth and yield of greenhouse cucumber. J. Hort. Sci. 67: 115-119. Chrost, B. and K. Schmitz. 1997. Changes in soluble sugar and activity of galactosidase and acid invertase during muskmelon (Cucumis melo L.) fruit development. J. Plant Physiol. 151: 41-50. Cruz, V., J. Cuartero, J., M. Bolarin, and M. Romero. 1990. Evaluation of characters for ascertaining salt stress responses in Lycopersicon species. J. Amer. Soc. Hort. Sci. 115: 1000-1003. Cuartero, J. and R. Fernandez-Munoz. 1999. Tomato and salinity. Sci. Hort. 78: 83-125. Jones, R. W. 1989. Salinity influences cucumber growth and yield. J. Amer. Soc. Hort. Sci. 114(4): 547-551. Del Amor, F. M., V. Martinez, and A. Cerda. 1999. Salinity duration and concentration affect fruit yield and quality and growth and mineral composition of melon plants grown in perlite. HortScience. 34(7): 1234-1237. Dinar, M. and Stevens. 1981. The relationship between starch accumulation and soluble solids content of tomato fruit. J. Amer. Soc. Hort. Sci. 106(4): 415-418. Ehret, D. L. and L. C. Ho. 1986. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J. Hort. Sci. 61(3): 361-367. El-Keblawy, A. and J. Lovett-Doust. 1996. Resource re-allocation following fruit removal in cucurbits: patterns in cantaloupe melons. N. Phytol. 134: 413-422. Franco, J. A., C. Esteban, and C. Rodriguez. 1993. Effect of salinity on various growth stages of muskmelon cv. Revigal. J. Hort. Sci. 68: 899-904. Gao, Z., M. Sagi, and S. H. Lips. 1998. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Sci. 135: 149-159. Gough, C. and G. E. Hobson. 1990. A comparison of the productivity, quality, shelf-life characteristics and consumer reaction to the crop from cherry tomato plants grown at different levels of salinity. J. Hort. Sci. 65(4): 431-439. Higashi, K. and H. Ezura. 1999. Histological analysis of fruit development between two melon (Cucumis melo L. retriculatus) genotypes setting a different size of fruit. J. Expt. Bot. 50: 1593-1597. Ho, L. C. 1996. Tomato. In: E. Zamski and A. A. Schaffer (eds), Phototassimilate distribution in plant and crops. Marcel Dekker, Inc. p.709-728. Hubbard, N. L., D. M. Pharr, and S. C. Huber. 1990. Sucrose metabolism in ripening muskmelon fruit as affected by leaf area. J. Amer. Soc. Hort. Sci. 115: 798-802. Judd, K. 1982. Bagculture. Amer. Veg. Grower 30: 40-42. Janse, J. 1989. Effects of humidity, temperature and concentration of the nutrient solution on firmness, shelfife and flavor of sweet pepper fruits(Capsicum annuum L.). Acta hort. 224: 123-132. Kaya, C., A. L. Tuna, M. Ashraf, and H. Altunlu. 2007. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environ. Exp. Bot. 60: 397-403. Knight, S. L., R. B. Rogers, M. A. L. Smith, and L. A. Spomer. 1992. Effects of NaCl salinity on miniature dwarf tomato ''Micro-Tom'': I. Growth analysis and nutrient composition. J. Plant. Nutr. 12: 2315-2327 Lester, G. E. and J. R. Dunlap. 1985. Physiological changes during development and ripening of ‘Perlita’ muskmelon fruits. Scientia Hort. 26: 323-331. Lester, G. E., L. S. Arias, and M. Gomez-Lim. 2001. Muskmelon fruit soluble acid invertase and sucrose phosphate synthase activity and polypeptide profiles during growth and maturation. J. Amer. Soc. Hort. Sci. 126: 33-36. Long, R. L., K. B. Walsh, G. Rogers, and D. M. Midmore. 2004. Source-sink manipulation to increase melon (Cucumis melo L.) fruit biomass and soluble sugar content. Austral. J. Agr. Ees. 55: 1241-1251. Mavrogianopoulos, G. N., J. Spanakis, and P. Tsikalas. 1999. Effect of carbon dioxide enrichment and salinity on photosynthesis and yield in melon. Sci. Hort. 79: 51-63. McGlasson, W. B. and H. K. Pratt. 1963. Fruit set patterns and fruit growth in cantaloupe (Cucumis melo L., var. reticulatis Naud.). J. Amer. Soc. Hort. Sci. 83: 495-505. Meiri, A., G. J. Hoffman, M. C. Shannon, and J. A. Poss. 1982. Salt tolerance of two Muskmelon cultivars under two radiation levels. J. Amer. Soc. Hort. Sci. 107: 1168-1172. Mendlinger, S. 1994. Effect of increasing plant density and salinity on yield and fruit quality in muskmelon. Sci. Hort. 57: 41-49. Mendlinger, S. and M. Fossen. 1993. Flowering, vegetative growth, yield, and fruit quality in muskmelons under saline conditions. J. Amer. Soc. Hort. Sci. 118, 868-872. Miccolis, V. and M. E. J. Saltveit. 1991. Morphological and physiological changes during fruit growth and maturation of seven melon cultivars. J. Amer. Soc. Hort. Sci. 116: 1025-1029. Mitchell, J. P., C. Shennan, and S. R. Grattan. 1991. Developmental changes in tomato fruit composition in response to water deficit and salinity. Physiol. Plant. 83: 177-185. Mizrahi, Y., E. Taleisnik, and V. Kagan-Zur. 1988. A saline irrigation regime for improving tomato fruit quality without reducing yield. J. Amer. Soc. Hort. Sci. 113(2): 202-205. Navarro, J. M., M. A. Botella, and V. Martinez. 1999. Yield and fruit quality of melon plants grown under saline conditions in relation to phosphate and calcium nutrition. J. Hort. Sci. Biotechnol. 74: 573-578. Navarro, J. M., C. Garrido, M. Carvajal, and V. Martinze. 2002. Yield and fruit quality of pepper plants under sulphate and chloride salinity. J. Hort. Sci. Bio. 77(1): 52-57. Pardossi, A., G. Bagnoli, F. Malorgio, C. A. Campiotti, and F. Tognoni. 1999. NaCl effects on celery(Apium graveolens L.) grown in NFT. Sci. Hort. 81: 229-242. Petersen, K. K., J. Willumsen, and K. Kaack. 1998. Composition and taste of tomatoes as affected by increased salinity and different salinity sources. J. Hort. Sci. Biotechnol. 73(2): 205-215. Perez-Alfocea, F., E. M. T. Caro, and G. Guerrier. 1993. Osmotic adjustment in Lycopersicon esculentum L. and pennellii under NaCl and polyethylene glycerol 6000 iso-osmotic stresses. Plysiol. Plant. 87: 493-498. Perez-Alfocea, F., M. E. Balibera, A. S. Cruz, and M. T. Estan. 1996. Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil. 180: 251-257. Pessarkli, M., T. C. Tucker. 1988. Dry matter yield and nitrogen-15 uptake by tomatoes under sodium chloride stress. Soil Sci. Amer. J. 52: 698-700. Savvas, D. and F. Lenz. 1996. Influence of NaCl concentration in the nutrient solution on mineral composition of eggplants grown in sand culture. Angew. Bot. 70: 124-127. Sonneveld, C. and A. M. M. M. Vanderburg. 1991. Sodium chloride salinity in fruit vegetable crops in soilless culture. Netherlands. J. Agri. Sci. 39: 115-122. Sonneveld, C., J. Van den Ende and S. S. de Bes. 1990. Estimating the chemical compositions of soil solutions by obtaining saturation extracts or specific 1:2 by volume extracts. Plant Soil. 122: 169-175. Valantin, M., C. Gary, B. E.Vaissiere, M. Tchamitchian, and B. Bruneli. 1998. Changing sink demand affects the area but not the specific activity of assimilate sources in cantaloupe (Cucumis melo L.). Ann. Bot. 82: 711-719. Valantin-Morison M., B. E. Vaissiere, C. Gary, and P. Robin. 2006. Source–sink balance affects reproductive development and fruit quality in cantaloupe melon (Cucumis melo L.). J. Hort. Sci. Biotechnol. 81 : 105-117. Wilson, G. C. 1985. New perlite system for tomatoes and cucumber. Acta Hort. 172 : 151-156.
摘要: 東方型甜瓜(Cucumis melo L. var. makuwa Makino),除以露天匍匐式栽培,現有於溫網室以直立式栽培,以提升果實品質與產值。本論文對於東方型甜瓜直立式栽培之整枝方式進行研究以建立基本資料,另外為提高溫室栽培之甜瓜品質,研究以EC處理以增加甜瓜糖度之可能性。‘嘉玉’、‘銀輝’甜瓜分別於著果節位上留6、9、12、15片葉及未摘心,隨著留葉數增加,地上部生長情形隨葉數增加而增加,果實重皆以著果上留12及15片葉表現最佳,分別達556~609 g及552~584 g。‘嘉玉’ 果實果肉在著果節位上留12片葉處理者最厚達25.3 mm,‘銀輝’者在著果節位上留12或15片葉者最厚分別達23.5及23.7 mm。兩品種果實糖度最高為著果節位上留12或15片葉者,達13.1~13.5 °Brix。‘嘉玉’、‘銀輝’甜瓜於母蔓第9~10、11~12、13~14、15~16、17~18節位之子蔓留果摘心,兩品種著果部位下植株高度隨著留果節位上升顯著增加,留果節位不顯著影響葉片生長及果實性狀。果實以著果後10天發育速率最快,占總生長量約80~85%,10~18天生長速率開始減緩,占總生長量約12~15%,18天到採收期間則沒有顯著增加。‘嘉玉’甜瓜雙幹整枝,於子蔓5~6、7~8、9~10及11~12節位選留一果並於著果上方各留12及15片葉,果實性狀受到留果節位與著果上留葉數之交感影響,在果重部分以子蔓9~10節位留果,著果節位上留15片葉之631.5 g為最高,其次為11~12節位留果,著果節位上分別留12及15片葉之572.7 g及577 g。‘嘉玉’甜瓜葉片生長隨天數增加而增加,約於第22~29天達最高峰,之後開始老化下降,第15天後第十四片葉之全可溶性糖與澱粉含量大幅減少,第二十一片葉則持續增加顯著高於第十四片葉,15天之後第十四片葉全可溶性糖含量回升至第29天後減少,澱粉含量則無顯著變化。第二十一片葉之全可溶性糖與澱粉含量於調查第29天時並無顯著減少。‘嘉玉’果實著果後第15天果實糖度為5.9~6.2 °Brix,第22天為10.4~10.7 °Brix,第31天成熟採收時增加到13°Brix以上,顯示糖度於果實成熟前十多天才開始大量增加。‘嘉玉’及‘銀杏’於著果後十天澆灌鹽分養液(EC= 6 dS m-1),處理不顯著影響兩品種營養生長,但在著果上位全葉的含水率則顯著低於對照組。施用鹽分處理之‘嘉玉’果重達818 g 與對照組之770 g無顯著差異,鹽分處理果實糖度達14.1 °Brix顯著高於對照組之13.1 °Brix。鹽分處理‘銀杏’果重達691.7 g 與對照組之750.7 g無顯著差異,鹽分處理果實糖度達14.1 °Brix顯著高於對照組之13.1,鹽分處理使二品種果肉含水率顯著下降約1,45%~1.65%。
The oriental melon (Cucumis melo L. var. makuwa Makino) is an important species of melon in Taiwan. Rather than culturing the plant outdoors according to its natural creeping growth habit, a cultivation method using a vertical trellis support in a ventilated net/plastic greenhouse resulted in significant improvement in fruit quality and value. This study compared the differences between several trimming techniques when growing oriental melon plants using a vertical trellis support system, and investigated the possibility of using electrical conductivity (EC) treatment to increase the total sugar content in the melon fruit. Two cultivars of oriental melon, ‘Silver Light' and ‘Jill', were used in this study. The plants were either untrimmed, or trimmed to leave 6, 9, 12 or 15 leaves remaining on each shoot. The results showed that as the number of remaining leaves increased, aboveground plant growth improved. In the two cultivars, the plants with 12 and 15 leaves remaining above each fruiting node had the highest fruit weights, at 556.7-609 g and 552.5-584 g, respectively. The flesh thickness of the ‘Jill' cultivar with 12 leaves on each node reached 25.3mm, and that of ‘Silver Light' with 12 and 15 leaves on each node reached 23.5 and 23.7mm, respectively. The sugar content of ‘Jill' and ‘Silver Light' with 12 and 15 leaves on each shoot reached 13.1~13.3°Brix. In both cultivars, the fruit setting node was designated as node 9-10, 11-12, 13-14, 15-16 or 17-18 of the primary branch. The height of the lower part of the plant increased as the fruit setting node position increased, while the node position of the fruit setting did not significantly affect the leaf growth and fruit characteristics. The fruit growth rate was highest during the first 10 days of fruit setting, and accounted for 80-85% of the total growth, while the fruit growth rate during days 10-18 after fruit setting accounted for 12-15% of the total growth, and no further significant increase in growth was observed from day 18 until harvest. When two primary branches were kept, saving one fruit at node 5-6, 7-8, 9-10 or 11-12, and retaining 12 or 15 leaves above the fruiting node of each secondary branches, the fruit setting node position and number of remaining leaves had a combined influence on the characteristics of the fruit. In the ‘Jill', the plants with a fruit setting at node 9-10 of the primary branch and 15 leaves remaining above the fruiting node had the highest fruit weight of 631.5 g, followed by those with a fruit setting at node 11-12 with 12 and 15 leaves above the fruiting node, which had fruit weights of 572.7 g and 577 g, respectively. The bring greatest leaf size of ‘Jill' was days 21-28 after growth, and began to decline thereafter. At day 14, the total soluble sugar and starch contents of the 14th leaf of ‘Jill' was significantly decreased, while those of the 21st leaf continued to increase and were significantly higher than those of the 14th leaf. After day 14, the total soluble sugar content of the 14th leaf rebounded, and kept increasing until day 28; however, no significant change in the starch content was observed. On the other hand, no significant reduction in the total soluble sugar and starch contents of the 21st leaf was seen until day 28. The fruit sugar content of ‘Jill' was 5.9-6.2°Brix on day 15 after fruit setting, 10.4-10.7°Brix on day 22, and 13°Brix on day 31 when the fruits were harvested, which indicated that the fruit sugar content significantly increased approximately >10 days before fruit ripening. Ten days after fruit setting in both cultivars, the plants were treated with liquid salt fertilizer (EC = 6 dS m-1). Liquid salt EC treatment did not significantly affect the plant growth of either cultivar, while the water content of the leaves above the fruit setting node was significantly lower in the treatment group than there in the control. Furthermore, salt-treated ‘Jill' plants had a fruit weight of 818 g, which was not significantly different from that of the control (770 g); however, the treatment fruit had a significantly higher sugar content than that of the control, at 14.1 vs. 13.1°Brix, respectively. Salt-treated ‘Silver light' plants had a fruit weight of 691.7 g, which was not significantly different to that of the control (750.7 g), and the treatment fruit had a significantly higher sugar content than the control group, at 14.1 vs. 13.1°Brix. EC treatment significantly decreased the water content of the fruit flesh by about 1.45-1.65% in both cultivars of melon.
URI: http://hdl.handle.net/11455/29201
其他識別: U0005-2308201014554600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201015435300
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.