Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2935
標題: 高抗反射矽晶太陽能電池之微奈米複合陣列結構製備
Fabrication of Highly Anti-Reflection Micro-Nano Multistructure Array for Silicon Solar Cell
作者: 劉錫謙
Liu, Hsi-Chien
關鍵字: 太陽能電池
Solar cells
兩階段金屬輔助蝕刻法
平面奈米線陣列結構
微奈米複合陣列結構
液體擴散源
抗反射層
反射率
Two-stage metal-assisted-etching method
Antireflective layer with a planar nanowire array
Antireflective layer of a micro-nano hybrid structure array
acid-diffusion source
anti-reflection layer
出版社: 機械工程學系所
引用: 參考文獻 [1] 羅運俊, 何梓年, and 王長貴, 太陽能發電技術與應用: 新文京開發出版股份有限公司, 2007. [2] A. E. Becquerel., "Memoire sur les effets electriques produits sous l''inuence des rayons solaires.," Comptes Rendus des Seances Hebdomadaires, vol. 9, pp. 561-567, 1839. [3] F. R. S. W.G.Adams, Mr.R.E.Day, "The Action of light on Selenium," Proc.R.Soc, vol. 25, pp. 113-117, 1876. [4] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, p. 676, 1954. [5] M. A. Green, "Crystalline and polycrystalline silicon tandem junction solar cells: Theoretical advantages," Solar Cells, vol. 18, pp. 31-40, 1986. [6] A. Luque and G. L. Araujo, Solar cells and optics for photovoltaic concentration: A. Hilger, 1989. [7] D. L. Morel, E. L. Stogryn, A. K. Ghosh, T. Feng, P. E. Purwin, R. F. Shaw, C. Fishman, G. R. Bird, and A. P. Piechowski, "Organic photovoltaic cells. Correlations between cell performance and molecular structure," The Journal of Physical Chemistry, vol. 88, pp. 923-933, 1984/03/01 1984. [8] S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, and M. Gratzel, "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode," Chemical Communications, vol. 0, pp. 4004-4006, 2006. [9] I. E. Agency. (2013). http://iea.org/topics/solarpvandcsp/. [10] 鐘允昇, 矽晶太陽能電池用抗反射層鍍膜技術與設備探討 vol. 290: 機械工業雜誌, 2007. [11] S. Winderbaum, O. Reinhold, and F. Yun, "Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 46, pp. 239-248, 1997. [12] P. Panek, M. Lipiński, and J. Dutkiewicz, "Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells," Journal of Materials Science, vol. 40, pp. 1459-1463, 2005/03/01 2005. [13] V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, "Cost-effective methods of texturing for silicon solar cells," Solar Energy Materials and Solar Cells, vol. 72, pp. 291-298, 2002. [14] K. Tsujino and M. Matsumura, "Formation of a low reflective surface on crystalline silicon solar cells by chemical treatment using Ag electrodes as the catalyst," Solar Energy Materials and Solar Cells, vol. 90, pp. 1527-1532, 2006. [15] J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, "Black silicon layer formation for application in solar cells," Solar Energy Materials and Solar Cells, vol. 90, pp. 3085-3093, 2006. [16] B. C. Chakravarty, J. Tripathi, A. K. Sharma, R. Kumar, K. N. Sood, S. B. Samanta, and S. N. Singh, "The growth kinetics and optical confinement studies of porous Si for application in terrestrial Si solar cells as antireflection coating," Solar Energy Materials and Solar Cells, vol. 91, pp. 701-706, 2007. [17] C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang, and B. Jiang, "Templated fabrication of large area subwavelength antireflection gratings on silicon," Applied Physics Letters, vol. 91, p. 231105, 2007. [18] C.-T. Wu, F.-H. Ko, and C.-H. Lin, "Self-organized tantalum oxide nanopyramidal arrays for antireflective structure," Applied Physics Letters, vol. 90, p. 171911, 2007. [19] C.-H. Sun, P. Jiang, and B. Jiang, "Broadband moth-eye antireflection coatings on silicon," Applied Physics Letters, vol. 92, p. 061112, 2008. [20] K. Nishioka, S. Horita, K. Ohdaira, and H. Matsumura, "Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle," Solar Energy Materials and Solar Cells, vol. 92, pp. 919-922, 2008. [21] P. Gorostiza, R. Diaz, J. Servat, F. Sanz, and J. R. Morante, "Atomic Force Microscopy Study of the Silicon Doping Influence on the First Stages of Platinum Electroless Deposition," Journal of The Electrochemical Society, vol. 144, pp. 909-914, March 1, 1997 1997. [22] P. Gorostiza, M. A. Kulandainathan, R. Diaz, F. Sanz, P. Allongue, and J. R. Morante, "Charge Exchange Processes during the Open‐Circuit Deposition of Nickel on Silicon from Fluoride Solutions," Journal of The Electrochemical Society, vol. 147, pp. 1026-1030, March 1, 2000 2000. [23] S. Ye, T. Ichihara, and K. Uosaki, "Spectroscopic Studies on Electroless Deposition of Copper on a Hydrogen-Terminated Si(111) Surface in Fluoride Solutions," Journal of The Electrochemical Society, vol. 148, p. C421, 2001. [24] G. J. Norga, M. Platero, K. A. Black, A. J. Reddy, J. Michel, and L. C. Kimerling, "Mechanism of Copper Deposition on Silicon from Dilute Hydrofluoric Acid Solution," Journal of The Electrochemical Society, vol. 144, pp. 2801-2810, August 1, 1997 1997. [25] D. Aurbach and Y. Cohen, "The Application of Atomic Force Microscopy for the Study of Li Deposition Processes," Journal of The Electrochemical Society, vol. 143, pp. 3525-3532, November 1, 1996 1996. [26] L. A. Porter, H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, and J. M. Buriak, "Electroless Nanoparticle Film Deposition Compatible with Photolithography, Microcontact Printing, and Dip-Pen Nanolithography Patterning Technologies," Nano Letters, vol. 2, pp. 1369-1372, 2002/12/01 2002. [27] C. Carraro, L. Magagnin, and R. Maboudian, "Selective metallization of silicon micromechanical devices," Electrochimica Acta, vol. 47, pp. 2583-2588, 2002. [28] F. C. Grozema, P. T. van Duijnen, Y. A. Berlin, M. A. Ratner, and L. D. A. Siebbeles, "Intramolecular Charge Transport along Isolated Chains of Conjugated Polymers:  Effect of Torsional Disorder and Polymerization Defects," The Journal of Physical Chemistry B, vol. 106, pp. 7791-7795, 2002/08/01 2002. [29] K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, and J. Zhu, "Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays," Angew Chem Int Ed Engl, vol. 44, pp. 2737-42, Apr 29 2005. [30] K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, "Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles," Advanced Functional Materials, vol. 16, pp. 387-394, 2006. [31] C.-Y. Chen, C.-S. Wu, C.-J. Chou, and T.-J. Yen, "Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature," Advanced Materials, vol. 20, pp. 3811-3815, 2008. [32] B. Ozdemir, M. Kulakci, R. Turan, and H. E. Unalan, "Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires," Nanotechnology, vol. 22, p. 155606, 2011. [33] R. G. Mertens and K. B. Sundaram, "Characterization of silicon nanowires grown by electroless etching," in Southeastcon, 2012 Proceedings of IEEE, 2012, pp. 1-5. [34] A. Nassiopoulou, V. Gianneta, and C. Katsogridakis, "Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: formation kinetics," Nanoscale Research Letters, vol. 6, p. 597, 2011. [35] G. Yuan, R. Mitdank, A. Mogilatenko, and S. F. Fischer, "Porous Nanostructures and Thermoelectric Power Measurement of Electro-Less Etched Black Silicon," The Journal of Physical Chemistry C, vol. 116, pp. 13767-13773, 2012. [36] E. C. Garnett and P. Yang, "Silicon Nanowire Radial p−n Junction Solar Cells," Journal of the American Chemical Society, vol. 130, pp. 9224-9225, 2008/07/01 2008. [37] Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, "Vertically Aligned p-Type Single-Crystalline GaN Nanorod Arrays on n-Type Si for Heterojunction Photovoltaic Cells," Nano Letters, vol. 8, pp. 4191-4195, 2008/12/10 2008. [38] H.-C. Yuan, V. E. Yost, M. R. Page, L. Roybal, B. To, P. Stradins, D. L. Meier, and H. M. Branz, "Efficient black silicon solar cells with nanoporous anti-reflection made in a single-step liquid etch," in Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, 2009, pp. 000141-000145. [39] F. Toor, M. R. Page, H. M. Branz, and H. C. Yuan, 17.1%-Efficient Multi-Scale-Textured Black Silicon Solar Cells without Dielectric Antireflection Coating: Preprint, 2011. [40] J. Oh, H.-C. Yuan, and H. M. Branz, "An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures," Nature Nano, vol. 7, pp. 743-748, 2012. [41] 施敏, 半導體元件物理與製作技術: 國立交通大學出版社, 2010. [42] 林明獻, 太陽電池技術入門: 全華圖書股份有限公司, 2008. [43] 馮垛生, 太陽能發電原理與應用: 五南圖書出版股份有限公司, 2009. [44] 莊嘉琛, 太陽能工程 (太陽電池篇): 全華科技圖書股份有限公司, 2008. [45] 葉玉堂, 饒建珍, and 肖峻, 幾何光學: 五南圖書出版股份有限公司, 2008. [46] H. Morinaga, M. Suyama, and T. Ohmi, "Mechanism of Metallic Particle Growth and Metal‐Induced Pitting on Si Wafer Surface in Wet Chemical Processing," Journal of The Electrochemical Society, vol. 141, pp. 2834-2841, October 1, 1994 1994. [47] J. S. Kim, H. Morita, J. D. Joo, and T. Ohmi, "The Role of Metal Induced Oxidation for Copper Deposition on Silicon Surface," Journal of The Electrochemical Society, vol. 144, pp. 3275-3283, September 1, 1997 1997. [48] K. Peng and J. Zhu, "Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution," Electrochimica Acta, vol. 49, pp. 2563-2568, 2004. [49] T. Nakamura, N. Hosoya, B. P. Tiwari, and S. Adachi, "Properties of silver/porous-silicon nanocomposite powders prepared by metal assisted electroless chemical etching," Journal of Applied Physics, vol. 108, p. 104315, 2010. [50] Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, "Nanostructure formation and passivation of large-area black silicon for solar cell applications," Small, vol. 8, pp. 1392-1397, 2012. [51] M. Otto, M. Kroll, T. Kasebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, "Conformal transparent conducting oxides on black silicon," Advanced Materials, vol. 22, pp. 5035-5038, 2010. [52] S. K. Srivastava, D. Kumar, Vandana, M. Sharma, R. Kumar, and P. K. Singh, "Silver catalyzed nano-texturing of silicon surfaces for solar cell applications," Solar Energy Materials and Solar Cells, vol. 100, pp. 33-38, 2012. [53] F. Toor, H. M. Branz, M. R. Page, K. M. Jones, and H.-C. Yuan, "Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells," Applied Physics Letters, vol. 99, 2011. [54] Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, "A novel method to produce black silicon for solar cells," Solar Energy, vol. 85, pp. 1574-1578, 2011. [55] H. S. Chang and H.-C. Jung, "Nearly Zero Reflectance of Nano-Pyramids and Dual-Antireflection Coating Structure for Monocrystalline Silicon Solar Cells," Journal of Nanoscience and Nanotechnology, vol. 11, pp. 3680-3683, 2011. [56] F. Granek, M. Hermle, D. M. Huljic, O. Schultz-Wittmann, and S. W. Glunz, "Enhanced lateral current transport via the front N+ diffused layer of N-type high-efficiency back-junction back-contact silicon solar cells," Progress in Photovoltaics: Research and Applications, vol. 17, pp. 47-56, 2009. [57] D. S. Kim, M. M. Hilali, A. Rohatgi, K. Nakano, A. Hariharan, and K. Matthei, "Development of a phosphorus spray diffusion system for low-cost silicon solar cells," Journal of The Electrochemical Society, vol. 153, pp. A1391-A1396, 2006. [58] B. Paviet-Salomon, S. Gall, R. Monna, S. Manuel, and A. Slaoui, "Experimental and analytical study of saturation current density of laser-doped phosphorus emitters for silicon solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. 2536-2539, 2011. [59] N. E. Grant and K. R. McIntosh, "Passivation of a (100) Silicon Surface by Silicon Dioxide Grown in Nitric Acid," Electron Device Letters, IEEE, vol. 30, pp. 922-924, 2009. [60] A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, "Porous silicon biosensors on the advance," Trends in Biotechnology, vol. 27, pp. 230-239, 2009.
摘要: 本論文之目的乃是以單一階段金屬輔助蝕刻法與兩階段金屬輔助蝕刻法,發展高抗反射之矽晶太陽能電池。主要研究主題為:(1)平面奈米線陣列結構之抗反射層製作(2)微奈米複合陣列結構之抗反射層製作(3)以低成本液體擴散源於微奈米複合陣列結構表面製作P-N junction,並封裝為高抗反射之矽晶太陽能電池。 (1) 平面奈米線陣列結構製作:以兩階段輔助蝕刻於六吋矽基板表面成功製作高抗反射之平面矽奈米線陣列結構,製程時間僅為15分鐘,矽奈米線陣列於光波長200 – 1000 nm 之平均反射率可降至1.89%,於紫外光與可見光之平均反射率分別為1.49%與1.89%,且於紅外光波長範圍可達2.32%之平均反射率。 (2) 微奈米複合陣列結構製作:以兩階段輔助蝕刻於六吋矽基板之金字塔結構表面成功製作高抗反射之微奈米複合陣列結構,並且大幅縮短兩階段蝕刻製程時間至5分鐘以內,微奈米陣列於光波長200 – 1000 nm 之平均反射率可降至1.21%,於紫外光與可見光之平均反射率分別為0.74%與1.12%,且於紅外光波長範圍亦可達1.97%之平均反射率。 (3) 高抗反射之矽晶太陽能電池製作:以低成本之液體擴散源於微奈米複合陣列結構製作P-N junction,並成功整合抗反射結構開發高抗反射之矽晶太陽能電池,微奈米複合結構矽晶片可吸收較多光子,使得光電轉換效率可達9.019 %,較金字塔結構矽晶片提升59 % 之短路電流,入射光子轉換效率量測結果顯示微奈米結構電池於紅外光波長範圍具有極佳之外部量子效率。 兩階段蝕刻法主要優勢為可迅速製作高抗反射率之矽晶太陽能電池,並可於六吋矽基板生長高均勻性與高垂直性之矽奈米線陣列結構,在紫外光、可見光以及紅外光波長範圍皆有良好之光吸收效能,並且成功突破平面奈米結構與目前矽晶太陽能電池之抗反射率,未來將可規劃大面積生產製程,應用於矽晶太陽能產業。
The object of this paper to develop a high- antireflection silicon solar cell using the single-stage and two-stage metal assisted etching methods, respectively. The major research topics are : (1) Fabrication of an antireflective layer with a planar nanowire array (2) Fabrication of an antireflective layer of a micro-nano hybrid structure array (3) Fabrication of a high antireflection silicon solar cell combining a P-N junction formed using a cost-effective liquid diffusion source with the micro-nano hybrid structure array. (1) Fabrication of an antireflective layer with a planar nanowire array : A novel two-stage metal-assisted etching (MAE) method is proposed for the fabrication of a high anti-reflection silicon nanowire array. In the first stage of etching, a high-concentration etchant is implemented in a short etching time to enable the uniform and complete deposition of coniferous-like silver on the wafer surface. Following the first stage, a low-concentration etchant for producing a vertical and uniform silicon nanowire array is processed in a relatively long etching time. Experimental results demonstrate that the proposed two-stage MAE method can produce high anti-reflection silicon nanowire array on a 6" silicon wafer requiring only a relatively simple and low-cost process. The P-type high-resistance (PH) silicon wafer that is etched under the two-stage MAE with the first-stage and second-stage processing time of 30 s and 15 min, respectively, can achieve an average reflectivity of 1.89% for the light spectrum from 200 nm to 1000 nm. In the UV and visible-light regions, the average reflectivity are 1.49% and 1.89%, respectively. (2) Fabrication of an antireflective layer of a micro-nano hybrid structure array: The developed two-stage MAE method is further used for the fabrication of an antireflective layer of a micro-nano hybrid structure array. The processing time for the etching on a N-type high-resistance (NH) silicon wafer can be reduced to less than 5 min. The resulting micro-nano hybrid structure array can achieve an average reflectivity of 1.21% for the light spectrum from 200 nm to 1000 nm. In the UV and visible-light regions, the average reflectivity are 0.74% and 1.12%, respectively. The average reflectivity in the IR region can be reduced to 1.97 %. (3) Fabrication of a high antireflection silicon solar cell : A P-N junction on a fabricated micro-nano hybrid structure array is formed using a low-cost liquid diffusion source. A high antireflection silicon solar cell with an average efficiency of 13% can be achieved attributed to the high light-absorbing capability of the micro-nano hybrid structure. When compared to a pyramid structure solar cell, the shorted circuit current of the proposed solar cell is increased by 73%. The measured Incident light conversion efficiency indicates that the proposed solar cell has an excellent external quantum efficiency in the IR region. The major advantage of the proposed two-stages MAE method is that a high anti-reflective silicon solar cell can be fabricated in a relatively short time and cost-effective manner when compared with the conventional fabrication approach. The fabricated silicon solar cells possess very good light-absorbing capability in the UV, visible-light, as well as the IR regions. It is feasible that the proposed method can be applied to the mass production process of low-cost solar cells.
URI: http://hdl.handle.net/11455/2935
其他識別: U0005-1908201319575900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201319575900
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.