請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/29371
標題: 1-MCP前處理、光源與半胱胺酸對仙履蘭花梗芽生長之影響
The Effect of 1-Methylcyclopropene, Light Source and Cysteine on Flower Bud of Paphiopedilum‘ Maudiae Type’ Growth in vitro.
作者: 黃琳方
Huang, Ling-Fang
關鍵字: 成熟度
Maturation
LED光源
半胱胺酸
1-MCP
試管培養
light-emitting diode (LED)
cysteine
1-MCP
in vitro culture
出版社: 園藝學系所
引用: 方煒、張祖亮、吳瑞宏. 1998. 即時監控系統應用於二氧化碳施肥對金線連組織培養苗生長之研究. 農業機械學刊. 7: 29-38. 王政琳. 1997. 仙履蘭微體繁殖技術之建立與改進. 碩士論文. 國立台灣大學農藝研究所. 64pp. 王郁棻、李哖、張耀乾. 2009. 乙烯及1-Methylcyclopropene對秋石斛蘭盆花產後品質之影響. 台灣園藝. 55:207-217. 吳宗順. 2000. 二氧化碳及乙烯濃度對文心蘭與彩色海芋瓶苗生長之影響. 國立中興大學園藝學研究所碩士論文. 111pp. 吳宣萱、陳福旗. 2008. 植物生長調節劑對蝴蝶蘭與朵麗蝶蘭花梗芽增殖之影響. 台灣園藝. 54:151-159. 李勇毅. 1997. 仙履蘭分類及栽培管理. 台灣花卉園藝 117: 40-43. 李勇毅. 1998. 原生仙履蘭發育與無菌發芽之研究. 碩士論文, 國立台灣大學園藝學研究所, 台北, 75pp. 林文華. 2003. 淺談拖鞋蘭分類及雜交育種方向. 台灣花卉園藝 187: 34-39. 林永浩. 1998. 芭菲爾鞋蘭與石斛蘭之組織培養. 碩士論文. 中國文化大學生物科技研究所. p.20-30. 林德承. 2010. 仙履蘭之器官培養. 國立中興大學園藝學研究所碩士論文. p.31-34. 洪寶瑩. 2004. 芭菲爾鞋蘭、文心蘭、軛瓣蘭及堇蜘蘭之微體繁殖. 碩士論文. 國立台灣大學園藝研究所. p.5-12. 范舒婷、葉德銘. 2010. 儲運期間之乙烯影響黛粉葉儲後品質及1-MCP之保護效果. 台灣園藝. 56:1-10. 高水恩. 2006. 國際仙履蘭產業現況與我國仙履蘭外銷前景. 農業世界. 280: 52-56. 張正. 2005. 仙履蘭(拖鞋蘭)產業生產技術盤點與發展分析. p.1-33. 曹進義、陳威臣、吳明哲、夏奇鈮. 2008. 花梗發育時期、花梗節位及6-benzyladenine濃度對蝴蝶蘭花梗芽微體繁殖芽體誘導之影響.54:199-209. 許伊琍. 2007. 仙履蘭巴菲爾鞋蘭屬賞花圖鑑. 日月文化. 台北. p.43-123. 陳美惠. 1996. 果莢成熟度、種子前處理及培養基成分對仙履蘭無菌播種與幼苗生長之影響. 碩士論文, 國立台灣大學園藝學研究所,台北, 80pp. 陳婷玉. 2000. 六種芭菲爾鞋蘭之組織培養. 台灣大學園藝學研究所碩士論文. 55pp. 馮家華. 2009. 芭菲爾鞋蘭及蝴蝶蘭之試管內形態發生. 碩士論文. 國立高雄大學生物科技研究所. 61pp. 黃禎宏. 2004. 蘭花淺介. 台灣蘭花產銷發展協會. p.86-112. 黃慧宜. 2009. 芭菲爾鞋蘭之微體繁殖. 碩士論文. 國立中興大學園藝研究所. 68pp. 劉黃碧圓. 1995. 芭菲爾鞋蘭無菌播種之研究. 碩士論文, 國立中興大學園藝學研究所, 台中, 118pp. 蔡瑜卿. 2006. 我國仙履蘭培植場登記制度及仙履蘭種苗出口現況. 農業世界. 280: 58-62. 蕭元川. 2012. 芭菲爾鞋蘭屬(Paphiopedilum)的分類沿革. 台灣蘭訊. p.16-21. Ahvenainen, R. 1996. New approaches in improving the shelf life of minimally processed fruit and vegetable. Trends in Food Science and Technology.7:179-187. Altunkaya, A. 2011. Effect of whey protein concentrate on phenolic profile and browning of fresh-cut lettuce (Lactuca Sativa). Food Chemistry. 2011. 754-760. Biddington, N. L. 1992.The influence of ethylene in plant tissue culture. Plant Growth Regul.11:173-187. Chen, T.Y., J.T. Chen, and W.C. Chang. 2002. Multiple shoot formation and plant regeneration from stem nodal explants of Paphiopedilum orchids. In Vitro Cell Dev. Biol. Plant. 38: 595-597. Chen, T.Y., J.T. Chen, and W.C. Chang. 2004. Plant regeneration through direct shoot bud formation from leaf cultures of Paphiopedilum orchids. Plant Cell. Tiss. Org. Cul. 79: 11-15. Dias, L. L. C., D. M. Ribeiro, C. S. Catarina, R. S. Barros, E. I. S. Floh and W. C. Otoni.2010. Ethylene and polyamine interactions in morphogenesis of Passiflora cincinnata: effects of ethylene biosynthesis and action modulators, as well as ethylene scavengers. Plant Growth Regul. 62:9–19. Dolan, L. 1997. The role of ethylene in the development of plant form. J. Exp. Bot. 48:201-210. Evans, J. R., Loreto, F. 2000. Acquisition and diffusion of CO2 in higher plant leaves. Biomedical and Life Sci. 321-351. Guo, L., Y, Ma, J, Shi., and S, Xue.2009. The purification and characterisation of polyphenol oxidase from green bean (Phaseolus vulgaris L.). 117:143-151. Huang, L.C. 1988. Aprocedure for asexual multiplication of Paphiopedilums in vitro. Amer. Orchid Soc. Bull. 57: 274-278. Huang, L.C., C.J. Lin, C.I. Kuo, B.L. Huang, and T. Murashige. 2001. Paphiopedilum cloning in vitro. Scientia Hort. 91: 111-121. Jao, R. C., C. C. Lai, W. Fang, and S. F. Chang. 2005. Effects of Red light on the Growth of Zantedeschia Plantlets in vitro and Tuber Formation Using Light-emitting Diodes. Hort. Sci. 40:436-438. Jha, A. K., L. S. Dahleen and J. C. Suttle. 2007. Ethylene influences green plant regeneration from barley callus. Plant Cell Rep. 26:285-290. Kawase, K. 1990. Clonal propagation of Paphiopedilum by tissue culture. 3. Effect of flower age on PLB formation and vegetative growth of undeveloped buds. J. Jpn. Soc. Hort. Sci. 59(Suppl. 2): 666-667. Kawase, K. 1997. Inforescence culture in species of Paphiopedilum. J. Jpn. Soc. Hort. Sci. 66(Suppl. 1): 512-513. Kozai T, Hiroshi O , Fujiwara K. Photosynthetic characteristics of Cymbidium plantlet in vitro [J ] . Plant Cell , Tissue and Organ Culture , 1990 , 22 : 205O211. Kozai, T. 1989. Autotrophic (sugar-free) micropagation for a significant reduction of production costs. Chronica Hort. 29:19-20. Kozai, T., Iwabuchi, K.,Watanabe, K.,Watanabe, I., 1991. Photoautotrophic and photomixotrophic growth of strawberry plantlets in vitro and changes in nutrient composition of the medium. Biomedical and Life Sci. 25:107-115. Lee, Y. I. and Lee, N. 2003. Plant regeneration from protocrom-derived callus of Cypripedium formosanum. In Vitro Cell. Dev. Biol.Plant. 39:475-479. Lercari, B., Moscatelli, S., Ghirardi, E., Niceforo, R., Bertram, L. 1999. Photomorphogenic control of shoot regeneration from etiolated and light-grown hypocotyls of tomato. Plant Sci. 140:53-61. Liao, Y.J. , Tsai, Y.C. , Sun, Y.W. , Lin, R.S. and Wu, F.S. 2011. In vitro shoot induction and plant regeneration from flower buds in Paphiopedilum orchids. In Vitro Cell. Dev. Biol. Plant. 47: 702–709. Lin, Y. H. , C., Chang and W. C., Chang. 2000. Plant regeneration from callus culture of a Paphiopedilum hybrid. Plant Cell Tiss Organ Cult. 62: 21-25. Lin, Y., J. Li, T. He and Z. Chun. 2010. Effect of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tiss. Org. Clut. 102:145-151. Long, B., A. X., Niemiera, Z. Y., Cheng. 2010. In vitro propagation of four threatened Paphiopedilum species (Orchidaceae). Plant Cell Tiss Organ Cult. 101:151–162. Ng, C. Y. and N. M., Saleh. 2011. In vitro propagation of Paphiopedilum orchid through formation of protocorm-like bodies. Plant Cell Tiss Organ Cult. 105:193–202 Nhut, D. T., T. Takamura, H. Watanabe, K. Okamoto and M. Tanaka.2003. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tiss. Organ Cult.73:43-52. Pierik, R. L. M. 1987. Germination of orchid seeds. In Vitro Culture of Higher Plants. p.149-158. Pierik, R. L. M., P. A. Sprenkels, H. B. Van Der, and M. Q. G. Van Der. 1988. Seed germination and further development of plantlets of Paphiopedilum ciliolare Pfitz. In vitro. Scientia Hort. 34: 139-153. Poudel, P. R., I. Kataoka, and R. Mochioka.2008. Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tiss. Organ Cult.92:147–153. Ptak, A.,A. E. Tahchy, G. Wyzgolik, M. Henry and D. L. Mattar. 2010. Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures. Plant Cell Tiss Organ Cult. 102:61-67. Ravindra B. M. and J. V. Staden.2005. Role of antioxidants and amino acids on somatic embryogenesis of Pinus patula. In Vitro Cell. Dev. Biol. Plant.41:181-186. Seabrook J.E.A. 1987 Changing the growth and morphology of potato plantlets in vitro by varying the illumination source. Acta Hortic. 212, 401-410. Serek, M., Reid, M.S., 2000. Ethylene and the postharvest performance of potted Kalanchoe‥. Postharvest Biol. Technol.18, 43–48. Shin, K. S., H. N. Murthy, J. W. Heo, E. J. Hahn and K. Y. Paek. 2008. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta. Physiol. Plant. 30:339-343. Sisler, E. C., and M. Serek. 1999. Compounds controlling the ethylene receptor. Bot. Bull. Acad. Sin.40:1-7. Son, S.M., K.D, Moon, and C.Y, Lee. 2001. Inhibitory effects of various antibrowning agents on apple slices. Food Chemistry 73:23-30. Stewart, J. and J. Button. 1975. Tissue culture studies in Paphiopedilums. Amer. Orchid Soc. Bull. 44: 591-599. Vandenbussche, F., W. H., Vriezen, J., Smalle, L. J.J., Laarhoven, F. J. M., Harren, and D. V. D., Straeten.2003. Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol.133:517-527. Xue, J., Y., Li, H.,Tan, F., Yang, N., Ma and J., Gao. 2008. Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening. J. Exp. Bot. 59:2161-2169. Yasugi, S. and N. Yagi. 1995. Mericlonal plantlet formation in Paphiopedilum by shoot tip culture. 1. Some effecting factors on shoot and root formation. J. Jpn. Soc. Hort. Sci. 64(Suppl. 1): 516-517. Yeo-Joong Yoon, Mohammad Mobin, Eun-Joo Hahn, Kee-Yoeup Paek. Impact of in vitro CO2 enrichment and sugar deprivation on acclamatory responses of Phalaenopsis plantlets to ex vitro conditions. Environmental and Experimental Botany 65 (2009) 183–188.
摘要: 本試驗利用芭菲爾鞋蘭斑葉單花(maudiae type)‘In-Charm2880’與‘In-Charm2885’子房基芽誘導芽體形成。觀察不同花朵成熟度、不同濃度抗氧化劑-半胱胺酸的添加、1-Methylcyclopropene (1-MCP)前處理及不同發光二極體(Light-emitting diode , LED)光源對芽體誘導率及褐化率之影響。另外也觀察不同LED光源對瓶苗葉綠素含量及根部活性之影響。 在子房基芽誘導芽體試驗中,以子房基芽成熟度愈低者誘導率較佳且褐化率較低。以不同LED光源處理培養,以紅光配合藍光處理(P)有較高76%誘導率,紅光(R)處理誘導率45%且褐化率55%,藍光及白光處理則介於之間。在不同LED光源培養七個月後,葉綠素含量以紅光處理組顯著較低。仙履蘭瓶苗在不同LED光源培養一個月葉綠素含量無顯著差異,培養六個月以藍光(B)處理顯著較低。根部活性培養一個月及六個月皆顯示紅光處理組顯著較低。 添加抗氧化劑25mg‧l-1半胱胺酸有54%芽體誘導率,與對照組處理比較有最佳的效果(37%)。以900 μg‧l-1 1-MCP前處理24小時再進行培養,在花苞尚未完全展開的S1時期有33%誘導率,在花苞已稍微展開且上萼片與下萼片角度於45°以內的S2時期有50%誘導率,高於對照組處理S1時期0%與S2時期33%。 本試驗結果顯示子房基芽誘導芽體時,若花朵成熟度愈低效果較佳;在LED燈源以紅光搭配藍光效果較佳;添加25mg‧l-1半胱胺酸效果較佳;前處理1-MCP對花苞尚未完全展開S1時期及花苞已稍微展開,上萼片與下萼片角度於45°以內S2時期提升誘導率較佳。
This study took ovary base bud of Paphiopedilum maudiae type to induce shoot formation. The effect of difference flower maturation, cysteine level, (1-Methylcyclopropene) 1-MCP pretreatment and difference light-emitting diode (LED) with the shoot induction rate and browning rate would be observed. The chlorophyll content and root activity of difference light-emitting diode (LED) with grown seeding shoot in vitro would be investigated. In the research of induce shoot formation from ovary base bud, the young flower maturation had better shoot induction rate and low brown rate. The experiment of cultured in difference light-emitting diode (LED), red light combination with blue light spectrum (6R3B) treatment had the batter induction rate 76%, red light spectrum had 45% induction rate and 55% brown rate, blue and white light spectrum induction rate between P(6R3B) and red light spectrum treatment. After culture in difference light spectrum for seven month, the chlorophyll content presented significantly lower under red light spectrum treatment. Paphiopedilum grown seeding shoot culture in difference light spectrum, chlorophyll content had no significantly after one month. After cultured six month, chlorophyll content different presented had a significantly less in blue light spectrum treatment. The root activity of red light spectrum showed a significantly lower than other treatment after one and six month. In cysteine experiment, ovary base bud cultured in the media with 25 mg‧l-1 cysteine had better shoot induction rate at 54%, compare with control treatment at 37%. Incubation of 900 nl‧l-1 1-MCP pretreatment 24 hour before culture in the media, presented 33% bud induction rate at S1 stage of flower bud and angle of sepals less than 45° at S2 stage presented 50% induction rate, higher than control treatment S1 stage 33% and S2 stage 50%, respectively. In this study, use ovary base bud to induce shoot formation, the bisirable condition is : young maturation flower base bud, red light combination blue light (6R3B), add 25mg‧l-1 cysteine in the media, pretreatment of 900 nl/l 1-MCP 24hour on flower bud S1stage and angle of sepals less than 45° at S2 stage ovary base bud.
URI: http://hdl.handle.net/11455/29371
其他識別: U0005-1408201217281500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408201217281500
顯示於類別:園藝學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。