Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29372
標題: GA3、BA與溫度對芭菲爾鞋蘭開花誘導的影響
Effect of GA3, BA and Temperature on Flowering of Paphiopedilum Hybrids
作者: 蕭元川
Hsiao, Yuan-Chuan
關鍵字: 芭菲爾鞋蘭
Paphiopedilum
gibberellin
BA
溫度
開花誘導
gibberellin
BA
Temperature
Flower induction
出版社: 園藝學系所
引用: 參考文獻(Reference) 小西國義、今西英雄、五井正憲. 1988. 花卉的開花調節. 養賢堂. 312p. 王明吉. 1991. 蝴蝶蘭幼年性、光度對成長與開花之影響及葉片酸度變化. 國立台灣大學園藝學研究所碩士論文. 王郁棻. 2006. 乙烯、溫度及光度對秋石斛蘭盆花產後品質的影響. 國立台灣大學園藝學研究所碩士論文. 李志仁. 1991. 報歲蘭與素心蘭之開花與種子無菌發芽之研究. 國立台灣大學園藝學研究所碩士論文. 李哖. 1991. 蝴蝶蘭之幼年性. 園藝作物產期調節研討會專輯II. P.77-86. 台中改良場. 李哖、王明吉. 1997. 白花蝴蝶蘭由幼年到成熟相之礦物成分和碳水化合物之變化. 中國園藝 43(4):295-305. 李哖.、林菁敏. 1984. 溫度對白花蝴蝶蘭生長與開花之影響. 中國園藝.40(3):233-231. 李哖、李嘉慧. 1996. 蝴蝶蘭花芽誘引和花序發育時之碳水化合物變化. 中國園藝 42(3):262-275. 李孟惠. 1998. 溫度、光度及肥料濃度對文心蘭花序發育之影響. 國立台灣大學園藝學研究所碩士論文. 李嘉慧. 1990. 蝴蝶蘭形態解剖及光度、花芽發育對碳水化合物含量之影響. 國立台灣大學園藝學研究所碩士論文. 邱怡芬. 2007. 文心蘭中調控開花時間相關基因之選殖與特性分析. 國立中興大學生物科技研究所碩士論文. 林育如、李哖. 1998. 蝴蝶蘭涼溫催花前後之光需求. 中國園藝. 44(4): 463-478. 林智良、朱德民. 1989. 光對作物光合產物分配的影響. 科學農業 37(5-6): 140-147. 柯勇. 2006. 植物生理學. 藝軒圖書出版社. 台北. 徐懷恩、林瑞松. 1997. 文心蘭生育習性之研究. 興大園藝 22(2):123-134. 高水恩. 2005. 台北國際仙履蘭及蝴蝶蘭研討會專輯. 47-57. 台南. 陳俊成. 2005. 蘭菌配合植物生長物質對拖鞋蘭生育之影響. 國立台灣大學園藝學研究所碩士論文. 張允瓊、李哖. 2000. 溫度對文心蘭(Oncidium Gower Ramsey)假球莖生長及花序發育之影響.中國園藝 46(2):221-230. 黃敏展. 2002. 亞熱帶花卉學總論. 國立中興大學園藝系 p305-340. 童季芬. 2012. 芭菲爾鞋蘭屬光合作用型態之研究. 國立嘉義大學農業科學博士學位學程博士論文. 廖曼利. 1995. 光度及肥料濃度對報歲蘭營養生長與生殖生長的影響. 國立台灣大學園藝學研究所碩士論文. 潘瑞熾. 1996. 墨蘭礦質營養研究. 華南師範大學學報. (1): 47-50. 蔡麗君. 2003. 蘭菌與植物生長素對拖鞋蘭生長發育之影響. 國立台灣大學園藝學研究所碩士論文. 蔡瑜卿. 2011. 2010年仙履蘭產業調查與分析. 2011仙履蘭產業發產座談會. 台中. 台灣仙履蘭協會. 蔡瑜卿. 2012. 拖鞋蘭出口管理電子化成果與出口現況. 2012仙履蘭產業發產座談會. 台中. 台灣仙履蘭協會. 鄭立明、龐基良. 春蘭×大花蕙蘭雜種試管苗開花現象. 植物生理與分子生物學學報. 32 (3): 320-324. 謝清祥. 2012. Maudiae型仙履蘭生產栽培與花期調節之研究. 2012台灣國際蘭展蘭花研討會海報張貼. 台灣. 台南. 蕭竹儀. 2000. 芭菲爾鞋蘭生育、形態解剖、光合作用特性與栽培技術之研究. 國立台灣大學園藝學研究所碩士論文. Albert, V. A. and M. W. Chase. 1992. Mexipedium: A New Genus of Slipper Orchid (Cypripedioideae: Orchidaceae). Lindleyana 7 (3): 172-176. Arditti, J. 1992. Fundamentals of orchid biology. John Wiley and Sons, Inc. Published, U.S.A. pp.691. Assmann, S. and E. Zeiger. 1985. Stomatal responses to CO2 in Paphiopedilum and Phragmipedium – role of the guard cell chloroplast. Plant Physiol. 77: 461-464. Atwood, J. T.1984. The relationships of the slipper orchids (subfamily Cypripedioideae), Orchidaceae. Selbyana 7: 129-147. Bernier G., J. M. Kinet, R. M. Sachs. 1981. The physiology of flowering, vol. II. Transition to reproductive growth. CRC Press, Boca Raton. Bernier, G., A. Havelange, C. Houssa, A. Petitjean and P. Lejeune. 1993. Physiological signals that induce flowering. Plant Cell 5(10):1147-1155. Bernier, G., and C. Perilleux. 2005. A Physiological overview of the genetics of flowering time control. Plant Biotec J. 3:3-16. Bhattacharjee, S. K. 1979. Regulation of growth and flowering in Catteya orchids by altered daylengths. Singapore J. Primary Ind. 17: 90-92. Birk, L. A. 2004. The Paphiopedilum Grower’s Manual. Pisang Press, California, USA. Blanchard, M. G. and E. S. Runkle. 2008a. Benzyladenine promotes flowering in Doritaenopsis and Phalaenopsis orchids. J. Plant Growth Regul. 27:141-150. Blanchard, M. G. and E. S. Runkle. 2008b. Temperature and pseudobulb size influence flowering of Odontioda orchids HortScience 43(5): 1404-1409. Blazquez, M., R. Green, O. Nilsson, M. r. Sussman and D. Weigel.1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell. 98(10):791-800 Boss P. K., R. M. Bastow, J. S. Mylne and C. Dean. 2004. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16: S18-S31. Bream, G. J. 1988. Paphiopedilum. Rucke-Verlag Kurt Schmersow, Postfach, W-Germany. Brieger, F. G.. 1973. Paphiopedilum, in Schlechter, R., Die Orchideen (ed. 3) 171-185. Paul Parey, Berlin. Cash, C. 1991. The slipper orchids. Timber Press, Portland, OR. 97225. Campos, K. O. and E. S. Kerbauy. 2004. Thermoperiodic effect on flowering and endogenous hormone status in Dendrobium (Orchidaceae). J. Plant Physiol. 161: 1385-1387. Chen, W. H., Y. C. Tseng, Y. C. Liu, C. M. Chou, P. T. Chen, K. M. Tseng, Y. C. Yeh, M. J. Ger and H. L. Wang. 2008. Cool-night temperature induces spike emergence and affects photosynthetic efficiency and metabolizable carbohydrate and organic acid pool in Phalaenopsis Aphrodite. Plant Cell Rep. 27:1667-1675. Chen W. S., H. Y. Liu, Z. H. Liu, L. Yang, and W. H. Chen. 1994. Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiol. Plant. 90:391-395. Corbesier, L., P. Lejeune and G. Bernier. 1998. The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206:131–137. Corbesier, L. and G. Coupland. 2005. Photoperiodic flowering of Arabidopsis: integrating genetic and physiological approaches to characterization of the floral stimulus. Plant Cell Environ. 28:54-66. Cox, A.V., A. M. Pridgeon, V. A. Albert and M. W. Chase. 1997. Phylogenetics of the slipper orchids (Cypripedioideae: Orchidaceae): nuclear rDNA ITS sequences. Plant Syst. Evol. 208:197-223. Cribb, P. 1998. The Genus Paphiopedilum. 2nd ed. Natural History Publication, Borneo. Donovan, R. D., J. Arditti, and I. P. Ting. 1984. Carbon fixation by Paphiopedilum insinne and P. parishii (Orchidaceae). Ann. Bot. 54:583-586. Dubios, M. 1956. Colorimeteric method for determination of sugar and related substances. Anal. Chem. 28: 350-356. Eshghi, S., E. Tafazoli, S. Dokhani, M. Rahemi and Y. Emam. 2007. Changes in carbohydrate contents in shoot tips, leaves and roots of strawberry (Fragaria x ananassa Duch.) during flower-bud differentiation. Sci. Hortic. 113 : 255-260. Funnell, K. A. and R. D. Heins. 1998. Plant growth regulators reduce postproduction leaf yellowing of potted Asiflorum lilies. HortScience 33 : 1036-1037. Gil, C. J. and L. B. P. Zaidan. 1996. Flowering of Oncidium flexuosum under controlled day length condition. Orchid Rev. 140:186-188. Goh, C. J. 1975. Flowering gradient along the stem axis in an orchid hybrid Aranda Deborah. Ann. Bot. 39 : 931-934. Goh, C. J. 1977. Regulation of floral initiation and development in an orchid hybrid Aranda Deborah. Ann. Bot. 41 : 763-769. Goh, C. J. and A. L. Yang. 1978. Effects of growth regulators and decapitation on flowering of Dendrobium orchid hybrids. Plant Sci. Lett. 12 : 287-292. Goh, C. J. and J. Arditti. 1985. Orchidaceae. P. 309-336. In: A. H. Halevy(ed). Handbook of flowering. Vol. 1. CRC Press Inc., Boca Roca Raton, Florida. Grichko, V. P. and B. R. Glick. 2001. Ethylene and flooding stress in plants. Plant Physiol. Biochem. 39 : 1-9. Handique, A. and G. K. Handique. 1996. Stomatal frequency of some economically important and endangered species of lady’s slipper orchids. Indian J. Plant Physiol. 1 : 57-59. Hew, C. S., W. P. Soh and C. K. Y. Ng. 1998. Variation in photosyntic characteristic along the leaf blade of Oncidium Goldiana, a 3 tropical epiphytic orchid hybrid. Intl. J. Plant Sci. 159(1) : 116-120. Hisamatsu, T. and R. W. King. 2008. The nature of floral signals in Arabidopsis. II. role for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bo. 59(14) : 3821-3829. Hung, L. B., J. F. Parcher, J. C. Shores and E. H. Ward. (1988). Theoretical and experimental foundation for surface-coverage programming in gas-solid chromatography with an adsorbable carrier gas. Anal. Chem. 60 (11) : 1090-1096. Isaac, E.A. 1972. Atomic absorption and flame photometry:Techniques and uses in soil, plant and water analysis. Soil Sci. Soc. Amer. USA. p17-37 Johnson, S. R. 1992. Photosynthetic characteristics of Paphiopedilum malipoense and micranthum (Section Parvisepalum). Lindleyana 7 : 181-184. Karasawa, K. and K. Saito. 1982. A revision of the genus Paphiopedilum (Orchidaceae). Bull. Hiroshima Bot. Gard. 5 : 1-69. Kataoka, K., K. Sumitomo, T. Fudano and K. Kawase. 2004. Changes in sugar content of Phalaenopsis leaves before floral transition. Sci. Hortic. 102 : 121-132. King, R. W. and L. T. Evans. 1991. Shoot apex sugars in relation to long-day induction of flowering in Lolium temulentum L. Aust. J. Plant Physiol. 18(2) :121-135. King, R.W. and L. T. Evans. 1977. Inhibition of flowering in Lolium temulentum by water stress a role for abscisic acid. Aust. J. Plant. Physiol. 4 : 225-233. King, R. W., T. Moritz, L. T. Evans, O. Junttila and A. J. Herlt. 2001. Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol. 127 : 624-632. Komarova, E. N. and E. L. Milyaeva. 1991. Changes in content and distribution of starch in stem apices of bicolored coneflower during the period of flowering evocation. Sov. Plant Physiol. 38(1) : 46-51. Komeda, Y. 2004. Genetic regulation of time to flower in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55 : 521-35. Kostenyuk, I., B. J. Oh and I. S. So. 1999. Induction of early flowering in Cymbidium niveo-marginatum Mak in vitro. Plant Cell Rep. 19 : 1-5. Kotchoni, S. O., K. E. Larrimore, M. Mukherjeem, C. F. Kempinski and C. Barth, 2009. Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiol. 149 : 803-815.. Krizek, D.T. and R. H. Lawson. 1974. Acclerated growth of Cattleya and Phalaenopsis under controlled-environment condition. Amer. Orchid Soc. Bull. 43 : 503-510. Kubota, S., Y. Muramatsu, H. Sumiyoshi and M. Koshioka. 2011. Flowering stimulation of Odontioda orchid by gibberellin application. Jap. Hortic. Res.. 10(3) : 389-393. Kumar, S. V., D. Lucyshyn, K. E. Jaeger, E. Alo’s, E. Alvey, N. P. Harberd and P. A.Wigge. 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 4 8 4(12) : 242-246. Lee, N. 1993. Growth and flowering of Cymbidium ensifolium var. misericors as influenced by temperature. Acta Hort. 337 : 123-130. Liang, S., Q. S. Ye, R. H. Li, J. Y. Leng, M. R. Li, X. J. Wang and H.Q.Li. 2012. Transcriptional regulations on the low-temperature-induced floral transition in an orchidaceae species, Dendrobium nobile : An expressed sequence tags analysis. Comp. Funct. Genomics. 2012(1) : 1-14. Lindley, J. 1821. Cypripedilum insigne. Bot. t. 32. London, U.K. Liao, Y. J., Y. C. Tsai, Y. W. Sun, R. S. Lin and F. S. Wu. 2011. In vitro shoot induction and plant regeneration from flower buds in Paphiopedilum orchids. In Vitro Cell. Dev. Biol. —Plant (2011) 47 : 702-709. Lopez, R.G., E. S. Runkle, R. D. Heins, and C. M. Whitman. 2003. Temperature and photoperiodic effects on growth and flowering of Zygopetalum Redvale ‘Fire Kiss’. Orchids. Acta Hort. 624 : 155-162. Lopez, R. G. and E. S. Runkle, 2005. Environmental physiology of growth and flowering of Orchids. HortScience 40 (7) : 1969–1973. Lopez, R.G., E. S. Runkle, and R. D. Heins. 2005. Flowering of the orchid Miltoniopsis Augres ‘Trinity’is influenced by photoperiod and temperature. Acta Hort. 683 : 175-179. Lopez, R. G. and E. S. Runkle, 2008. Effect of temperature and pseudobulb maturity on flowering of the orchid Miltoniapsis Augres ‘Trinity’ Acta Hort. 766 : 273-278. Lu, Z. X., M. Wu, C. S. Loh, C. Y. Yeong, and C. J.Goh. 1993. Nucleotide sequence of a flower-specific MADS box cDNA clone from orchid. Plant Mol. Biol. 23 : 901-904. Maeda, T., T. Asami, S. Yoshida and K. Takeno. 2000. The processes inhibited and promoted by abscisic acid in photoperiodic flowering of Pharbitis nil. J. Plant. Physiol. 157 : 421-427. Matsumoto, T. K. 2006. Gibberellic acid and benzyladenine promote early flowering and vegetative growth of Miltoniopsis orchid hybrids. HortScience 41(1) : 131-135. Madhusudanan, K. N. and S. Nandakumar. 1983. Carbohydrate changes in shoot tip and subtending leaves during ontogenetic development of pineapple. Z. Pflanzenphysiol. 110(5):429- 438. Mc Williams, E. L. 1970. Comparative rates of dark CO2 uptake and acidification in the Bromeliaceae, Orchidaceae, and Euphorbiaceae. Bot. Gaz. 131(4).:.285-290. McDaniel, C. N. 1996. Developmental physiologo of floral initiation in Nicotiana tabacum. L. J. Exp. Bot. 47:465-475. Michaels S. D. and R. M. Amasino. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11 : 949–956. Michniewicz, M. and A. Lang. 1962. Effect of nine different gibberellins on stem elongation and flower formation in cold-requiring and photoperiodic plants grown under non-inductive conditions. Planta 58 : 549-563. Miguel, T.P. and W.S. Sakai. 2008. Gibberellic acid induced flowering of Paphiopedilum ( Macabre x glanduliferum). ISHS Acta Hort. 766 : 279-281. Nambiar, N., T. C. Siang and M. Mahmood. 2012. Effect of 6-Benzylaminopurine on flowering of a Dendrobium orchid. Aust. J. Crop Sci. 6(2) : 225-231. Nelson, S.D. and J.M. Mayo. 1975. The occurrence of functional non-chlorophyllous guard cells in Paphiopedilum spp.. Can. J. Bot. 53(1): 1-7. Ohno, H. and S. Kako. 1991. Roles of floral organs and phytohormones in flower stalk elongation of Cymbidium(Orchidaceae). J. Jap. Soc. Hort. Sci. 60: 159-165. Peng, S. A. and S. Iwahori. 1994. Morphological and cytological changes in apical meristem during flower bud differentiation of Japanese pear, Pyrus pyrifolia. J. Jap. Soc. Hort. Sci. 63 : 313-321. Poole, H. A., and J. G. Seeley. 1978. Nitrogen, potassium and magnesium nutrition of three orchid genera. J. Amer. Soc. Hort. Sci. 103 : 485-488. Pfitzer, E. H. 1886. Morphologische Studien ueber die Orchideenbliithe. C. Winter. Heidelberg, W. Germany. Pfitzer, E. H. 1894, Beitrage zur Systematil der Orchideen. Bot. Jahrb. Syst. 19 : 1-132. Pi, Q. X., N. Yan, H. Hu and S. Y. Li. 2009. Flower Development and Cultivation of Paphiopedilum armeniacum(Orchidaceae). Acta Botanica Yunnanic 2009 (04) : 296-302 Powell, C. L., K. I. Caldwell, R. A. Littler and I. Warrington. 1988. Effect of temperature regime and nitrogen fertilizer level on vegetative and reproductive bud development in Cymbidium orchids. J. Amer. Soc. Hort. Sci. 113 : 552-556. Roldan, M., C. Gomez-Mena, L. Ruiz-Garcia, J. Salinas and J. Martinez- Zapater. 1999. Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J. 20 : 581-590. Rotor, G. B. 1952. Daylength and temperature in relation to growth and flowering of orchids. Cornell Univ. Agr. Expt. Sta. Bull. 885 : 1-47. Rotor, G. B. 1959. The photoperiodic and temperature reponeses of orchids. In. Wither, C. L. (ed). The Orchids Scienticfic Survey. New York. Ronald Press. p. 397-417. Sakai, W. S. and C. Adams. 2000. Pseudobulb injected growth regulators as aids for year around production of Hawaiian Dendrobium orchid cutflower. Acta Hort. 541 : 215-220. Sharp, R.G., M. A. Else, R. W. Cameron and W. J. Davie. 2009. Water deficits promote flowering in Rhododendron via regulation of pre and post initiation development. Sci. Hort. 120 : 511-517. Sheehan, T. J. 1983. Recent advances in botany, propagation, and physiology of orchids. Horti. Rev. 5 : 279-315. Sheldon, C. C., D. T. Rouse, E. J. Finnegan, W. J. Peacock and E. S. Dennis. 2000. The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proc . Natl. Acad. Sci. USA 97(7):3753–3758. Shen,C. H., R. Krishnamurthy, and K. W. Yeh. 2009. Decreased L-ascorbate content mediating bolting is mainly regulated by the galacturonate pathway in Oncidium. plant cell physiol. 50(5) : 935-946. Sims, J. 1820. Cypripedium venustum. Comely Lady''s Slipper. Curtis''s Botanical Magazine 1820(47): Tab. 2129. Srikanth, A. and M. Schmid. 2011. Regulation of flowering time:all roads lead to Rome. Cell. Mol. Life. Sci. 68 : 2013-2037. Stancato, G. C., P. Mazzafera and M. S. Buckeridge. 2001. Effect of a drought period on the mobilisation of non-structural carbohydrates, photosynthetic efficiency and water status in an epiphytic orchid. Plant Physiol. Biochem. 39 : 1009-1016. Su, W. R., W. S. Chen, M. Koshioka, L. N. Mander, L. S. Hung, W. H. Chen, Y. M. Fu and K. L. Huang. 2001. Changes in gibberellin levels in the flowering shoot of Phalaenopsis hybrida under high temperature conditions when flower development is blocked. Plant Physiol. Biochem. 39 : 45-50. Taiz, L. and E. Zeiger. 2006. Plant Physiology(4th ed). Sinauer Associates. Sanderland. U.S.A. Talbott, L. D., J. Zhu, S. W. Han and E. Zeiger. 2002. Phytochrome and blue light-mediated stomatal opening in the orchid, Paphiopedilum. Plant Cell Physiol. 43 : 639-646. Thorpe, N. 1980. Accumulation of carbon compounds in the epidermis of five species with either different photosynthetic systems of stomatal structure. Plant Cell and Environ. 3 : 451-460. Tsai, W. T., Y. T. Wang, and H. L. Lin. 2008. Alternating temperature affect spiking of a hybrid Phalaenopsis. Acta Hort. 766 : 307-313. Wang, H. L., J. D. Chung and K. W. Yeh. 2003. Changes in carbohydrate and free amino acid pools in current pseudobulb of Oncidium Gower Ramsey during inflorescence development. J. Agri.c Assoc. China 4 : 476-488. Wang, H. L., K. W. Yeh, P. R. Chen, C. H. Chang, J. M. Chen and K. H. Khoo. 2006. Isolation and characterization of a pure mannan from Oncidium cv. Gower Ramsey. current pseudobulb during initial inflorescence development. Biosci. Biotechnol. Biochem. 70 : 551-553. Wang , C. Yu., C. Y. Chiou., H. L. Wang,. R. Krishnamurthy., S. Venkatagiri., J. Tan and K. W. Yeh. 2008. Carbohydrate mobilization and gene regulatory profle in the pseudobulb of Oncidium orchid during the fowering process. Planta 227 : 1063-1077. Wang, Y. T. 2008. High NO3-N to NH4-N ratios promote growth and flowering of a hybrid Phalaenopsis grown in two root substrates. HortScience 43 : 350-353. Williams, W. E., C. Grivet and E. Zeiger. 1983. Gas exchange in Paphiopedilum – lack of chloroplasts in guard cells correlates with low stomatal conductance. Plant Physiol. 72 : 906-908. Willmer, C. and M. Fricker. 1996. Stomata 2nd edn. London: Chapman and Hall Xiang, L., X. B. Li, D. H. Qin, F. Q. Guo, C. Wu, L. X. Miao and C. B. Sun. 2012. Functional analysis of FLOWERING LOCUS T orthologs from spring orchid (Cymbidium goeringii Rchb. f.) that regulates the vegetative to reproductive transition. Plant Physiol. Biochem. 58 : 98-105. Yang, Y., J. Klejnot, X. Yu,, X. Liu and C. Lin. 2007. Florigen (II) is amobile protein. J. Integrative Plant Biol. 4 : 1665-1669. Yap, Y. M., C. S. Loh and B. L. Ong. 2008. Regulation of flower development in Dendrobium crumenatum by changes in carbohydrate contents, water status and cell wall metabolism. Sci. Hortic. 119 : 59-66. Yong, J. W., and C. S. Hew. 1995. The importance of photoassimilate contribution from the current shoot and connected back shoots to inflorescence size in the thin-leaved sympodial orchid Oncidium Goldiana. Intl. J. Plant Sci. 156 : 450-459. Yu, H., and C. J. Goh. 2000. Identification andcharacterization of three orchid MADS-boxgenes of the API/AGL9 subfamily during floraltransition. Plant Physiol. 123 : 1325-1336. Zeiger, E., S. Assmann and H. Meidner. 1983. The photobiology of Paphiopedilum stomata: opening under blue but not red light. Photochem. Photobiol. 38.: 627-630. Zeiger, E., C. Grivet, S. Assmann, G. F. Dettzer And M. W. Hannegan. 1985. Stomatal limitation to carbon gain in Paphiopedilum sp. (Orchidaceae) and its reversal by blue light. Plant Physiol. 77(2) : 456-460. Zhang, S.B., Z. J. Guanb, W. Chang, H. Hu, Q. Yin and K. F. Cao. 2011. Slow photosynthetic induction and low photosynthesisin Paphiopedilum armeniacum are related to its lackof guard cell chloroplast and peculiar stomatal anatomy. Physiol. Plant. 142 : 118-127.
摘要: 本研究以芭菲爾鞋蘭屬(Genus Paphiopedilum)的多花與單花雜交品種Paphiopedilum philippinense x P. Somers Isles與P. Gloria Naugle實生苗為材料,探討GA3、BA及溫度對芭菲爾鞋蘭開花的影響,並檢測開花過程中植體碳水化合物的變化。實驗結果顯示,GA3 確實能有效促進芭菲爾鞋蘭的開花誘導,所有處理GA3的試驗均可使P. philippinense x P. Somers Isles來花率提高4-6倍,在125ppm的濃度即有明顯的效果,而同樣的GA3處理則對P. Gloria Naugle品種的促進效果不明顯,顯示GA3對芭菲爾鞋蘭開花的影響有品種差異的問題;GA3的使用在劑量上有其適量性,高濃度的GA3會造成花梗的過度伸長柔軟而失去商品價值,而此種不良的影響可因延遲施加BA處理而改善;溫度亦是影響芭菲爾鞋蘭開花的因子,適當的高溫變溫,使處理GA3 500 ppm後的植株可以有更高的來花率,並且來花時間提早2至4週;植體內蔗糖、葡萄糖、果糖及澱粉等碳水化合物的含量與來花率之間並未呈現相關性;比較高來花率的處理組與低來花率的對照組,其葉基部或中段在蔗糖、葡萄糖、果糖及澱粉的含量差異不明顯,但在葉基部全可溶性糖的含量與碳氮比,則處理組有明顯較高的差異;綜合而言,碳水化合物的累積與代謝,是引起芭菲爾鞋蘭開花的主要原因,GA3可能透過改變植體碳水化合物的代謝與分配而促進開花機制的啟動,適當的高溫有利於GA3效應的提高,也影響開花創始後的花器官後續發育,BA在花序發育則與GA3具有協同的效果。再者,開花過程中,葉基部的蔗糖含量不及葉中段一半,且可溶性糖與葡萄糖的含量明顯高於葉中段,顯然,芭菲爾鞋蘭開花過程的能量代謝是偏好蔗糖的利用,且以葉基部為主要的供源部位,而所利用的蔗糖碳源,主要是直接來自於當下光合作用的產物。
Paphiopedilum philippinense x P. Somers Isles and P. Gloria Naugle, two kinds of hybrids between multiflora and single flower, were used in this study to investigate the effect of GA3, BA, and temperature on flowering of Paphiopedilum, and to detect the changes of carbohydrates during the flowering process. The results showed that GA3 could indeed effectively promote flowering of P. philippinense x P. Somers Isles, with 125 ppm having significant effect. All treatments with GA3 showed 4 to 6 times of bolting rate than the control. But there was no significant effection for the same treatment of GA3 on the species of P. Gloria Naugle. Showedthat there is varietal difference for GA3 on the flowering of Paphiopedilum. There was also a dose-appropriate trend for GA3 treatment. Too high concentrations of GA3 caused an excessive elongation of the flower stem, making it slim and lose the value for marketing. Such adverse effects can be ameliorated by delay in BA treatment. Temperature is also a factor that affecting the flowering of Paphiopedilum. Shifted to an adequate higher temperature making plants had a higher flowering rate and earlier bolting after GA3 500ppm treatment. Carbohydrates content of the plant showed in sucrose, glucose, fructose and starch no correlation with the flowering rate. There are no obvious difference for the content of sucrose, glucose, fructose and starch in the base or the middle of leaf between treated group and the control. But the total soluble sugar content and C/N ratio in the base of leaf of the treated groups is obviously higher than the control. Overall, the accumulation and metabolism of carbohydrates is the main factor of flower induction of Paphipedilum. GA possibly promoted to trig on flower initiation throught changing distribution and metabolism of carbohydrates. Adequate higher temperature is conducive to the effection of GA3, and, also effected the flower organ development after flower initiation. In addition, the total soluble sugar content and C/N ratio in the base of leaf of the treated groups is obviously higher than the control. And, the content of sucrose of the leaf base was less than half of the middle, but the content of total soluble sugar and glucose were higher than the middle. It suggested that, paphiopedilum prefered to utilize sugar which is produced directly from photosysthesis as an energe metabolite during flowering process, and the base of leaf is the main portion of the source.
URI: http://hdl.handle.net/11455/29372
其他識別: U0005-0602201316180800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0602201316180800
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.