Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29374
標題: S-ABA 對番木瓜 (Carica papaya L.) 種子發芽 及實生苗生長之影響
Effects of S-ABA on Seed Germination and Seedling Growth of Papaya (Carica papaya L.)
作者: 尤婉琳
Unpaprom, Yuwalee
關鍵字: 植物生長調節劑
Plant growth regulator
離層
解剖
Abscisic acid
Anatomy
出版社: 園藝學系所
引用: Ackerson, R. C. 1984. Regulation of soybean embryogenesis by abscisic acid. J. Exp. Bot. 35(152): 403 – 413. Acevedo, E., T. C. Hsiao and D. W. Henderson. 1971. Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol. 48: 631–636. Andersen, C. P. 2003. Source–sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol. 157: 213 – 228. Andreoli, C. and A. A. Khan. 1993. Improving papaya seedling emergence by matriconditioning and gibberellin treatment. HortScience. 28(7): 708 – 709. Arbona, V., M. F. Lopez-Climent, J. Mahouachi, R. M. Perez-Clemente, S. R. Abrams, A. Gomez-Cadenas. 2006. Use of persistent analogues of abscisic acid as palliatives against salt-stress induced damage in citrus plants. J. Plant Growth Regul. 25: 1–9. Attree, S. M. and L. C. Fowke. 1993. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell, Tissue and Organ Culture 35: 1 – 35. Badillo, V. M. 1971. Monografia de la familie Caricaceae. Associacion de Profesores, Universidad Central de Venezuela, Maracay, Venezuela. Badillo, V. M. 2002. Carica L.vs.Vasconcella St. Hil. (Caricaceae)con la Rehabilitacion de este Ultimo. Ernstia 10: 74 – 79. Baki, A.A. and J.D. Anderson. 1972. Physiological and biological deterioration of seeds. In seed biology, Vol. II. Academic Press, New York. Balsevich, J., S. R. Abrams, N. Lamb, and W. Konig. 1994. Identification of unnatural phaseic acid as a metabolite derived from exogenously added (-)-abscisic acid in a maize cell suspension culture. Phytochemistry 36: 647 – 650. Benson, C. W. and Poffley, M. 1998. Growing pawpaws. Agnote 386 No.D8, Northern Territory Government Department of Primary Industry, Fisheries and Mines. Available online at https://transact.nt.gov.au/ebiz/TechPublications.nsf/37BFF3 DA6FCCFC7669256EFE004F5C0F/$file/386.pdf?OpenElement. Bhattacharya, J. and S. S. Khuspe. 2001. In vitro and in vivo germination of papaya (Carica papaya L.) seeds. Sci. Hortic. 91: 39 – 49. Boroomand, N. and M. S. Hosseini Grouh. 2012. Macroelements nutrition (NPK) of medicinal plants: A review. J. Med. Plants Res. 6(12): 2249 – 2255. Boyer, G. L. and J. A. D. Zeevaart. 1982. Isolation and quantitation of β-D-glucopyranosyl abscisate from leaves of Xanthium and spinach. Plant Physiol. 70: 227–23. Bray E. A. 2002. Abscisic acid regulation of gene expression during water deficit stress in the era of Arabidopsis genome. Plant Cell Environ. 25: 153–161 Buchanan, B. B. and Y. Balmer. 2005. Redox regulation: A broadening horizon. Ann. Rev. Plant Biol. 56: 187 – 220. Campostrini, E. and D. M. Glenn. 2007. Ecophysiology of papaya Carica papaya L.: a review. Braz. J. Plant Physio. 19:83 – 94. Cartes Riquelme, P., D. Ríos Leal, K. Sáez Carrillo, M. Uribe Moraga, S. Valenzuela Aguilar, S. Joseph Bolus, and M. Sánchez Olate. 2011. Endogenous quantification of abscisic acid and indole-3-acetic acid in somatic and zigotic embryos of Nothofagus alpina (Poepp. & Endl.) Oerst. Chilean J. Agric. Res. 71(4): 542 – 548. Chacko, E. K. and R. N. Singh. 1966. The effect of gibberellic acid on the germination of papaya seeds and subsequent seedling growth. Trop. Agric. (Trinidad) 43: 341 – 346. Chapin, F. S., D. T. Clarkson, J. R. Lenton and C. H. S. Walter. 1988. Effect of nitrogen stress and abscisic acid on nitrate absorption and transport in barley and tomato. Planta 173:b340-351. Chay-Prove, P., P. Ross, P. O’Hare, N. Macleod, I. Kernot, D. Evans, K. Grice, L. Vawdrey, N. Richards, A. Blair, and D. Astridge. 2000. Agrilink Series: Your growing guide to better farming. Papaw Information Kit. Queensland Horticulture Institute and Department of Primary Industries, Qld, Nambour, Qld. Chen, J. G. 2007. Sweet sensor, surprising partners. Sci STKE 373: 1 – 5. Crouch, M. L. and I. M. Sussex. 1981. Development and storage–protein synthesis in Brassica napus L. embryos in vivo and in vitro. Planta 153: 64-74. Du Puy, D. J. and I. R. H. Telford. 1993. Caricaceae. Chapter 30. In: Flora of Australia. Australian Government Publishing Service. Australia. Elder, R. J., W. N. B. Macleod, K. L. Bell, J. A. Tyas, and R. L. Gillespie. 2000. Growth, yield and phenology of 2 hybrid papayas (Carica papaya L.) as influence by method of water application. Aust. J. Exp. Agric. 40: 739 – 746. Facciiola, S. 1990. Cornucopia: A source book of edible plants. Kampong Publ. Vista. California. 677 p. Finkelstein, R. R. and C. D. Rock. 2002. Abscisic acid biosynthesis and response. In: Somerville CR, Meyerowitz EM, eds. The Arabidopsis book. Rockville, MD: American Society for Plant Biologists, 1 – 48. Finkelstein, R. and C. Somerville, 1990. Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiol. 94: 1172 – 1179. Franks, P. J. and G. D. Farquhar. 2001. The Effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physio. 125: 935 – 942. Furutani, S. C. and M. A. Nagao. 1987. Influence of temperature, KNO3, GA3, seed drying on emergence of papaya seedlings. Sci. Hort. 32: 67 – 72. Furutani, S. C. and M. A. Nagao. 1989. Influence of preconditioning temperatures on papaya seed germination. J. Haw. Pac. Agri. 2: 22 – 23. Gallardo, K., C. Job, S. P. C. Groot, M. Puype, H. Demol, J. Vandekerckhove, and D. Job. 2002. Proteomics of Arabidopsis seed germination: A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol. 129, 823 – 837. Garciarrubio, A., J. P. Legaria, and A. A. Covarrubias. 1997. Abscisic acid inhibits germination of mature Arabidopsis seeds by limiting the availability of energy and nutrients. Planta 203: 182 – 187. Garrett, A. 1995. The pollination biology of pawpaw (Carica papaya. L.) In Central Queensland. PhD. Thesis. Central Queensland. University. Rockhamptom. Gillard, O. F. and D. C. Walton. 1976. Abscisic acid metabolism by a cell-free preparation from Echinocystis lobata liquid endosperm. Plant Physiol. 58, 790-795. Grantz, D. A., T. H. David Ho, S. J. Uknes, J. M. Cheeseman, and J. S. Boyer. 1985. Metabolism of abscisic acid in guard cells of Vicia faba L. and Commelina communis L. Plant Physiol. 78: 51 – 56. Haque, A. H. M.., M.A.H. Akon, M. A. Islam, K. M. Khalequzzaman, and M. A. Ali. 2007. Study of seed health, germination and seedling vigor of farmers produced rice seeds. Int. J. Sustain. Crop Prod. 2(4): 34 – 39. Hoekstra, F. A, E. A. Golovina, and J. Buitink. 2001. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6: 431 – 438. Hopkins, W. G. 1995. Introduction to plant physiology. John Wiley & Sons, Inc. Canada. 464 p. Jones, H. G. and W. J. Davies. 1991. in Abscisic Acid: Physiology and biochemistry, eds. Davies, W. J., and H.G. Jones. (BIOS Scientific, Oxford, U.K.). 1 – 4. Kamuro, Y. 1994. The present situation and problems in the R&D for practical uses of abscisic acid. Chem. Reg. Plants 29: 155 – 165. Kamuro, Y., 2005. MIYOBI: A new fertilizer containing abscisic acid. Combined Proceedings International Plant Propagator’ Society 55: 216 – 218. Kamuro, Y., S. Matsui, and M. Shirai. 1992. Practical uses of (S)-(+)-abscisic acid: Inhibiiting, delaying, or increasing effects on flower bud formation. Proceedings of 19th Plant Growth Regulator Society of America. 405-408. Karssen, C. M., D. L. C. Brinkhorst-van der Swan, A.E. Breekland, and M. Koornneef. 1983. Induction of dormancy during seed development by endogenous abscisic acid: studies of abscisic acid deficient genotypes of Arabidopsis thaliana L. Heynh. Planta 157: 158 – 165. Kermode, A. R. 2005. Role of abscisic acid in seed dormancy. J. Plant Growth Regul. 24:319 – 344. Kim, M. J., R. Shin and D. P. Schachtman. 2009. A nuclear factor regulates abscisic acid responses in Arabidopsis. Plant Physiol. 151: 1433–1445. Kong, L. and P. von Aderkas. 2007. Genotype effects on ABA consumption and somatic embryo maturation in interior spruce (Picea glauca x engelmanni). J. Exp. Bot. 58:1525 – 1531. Kriedemann, P. E., B. R. Loveys, and W. J. S. Downton. 1975. Intemal control of stomatal physiology and photosynthesis. II. Photosynthetic responses to phaseic acid. Aust. J. Plant Physiol. 2: 553-567. Lehmann, H. and K. Glund. 1986. Abscisic acid metabolism –vacuolar/extravacuolar distribution of metabolites. Planta 68: 559 – 562. Leide, J., U. Hildebrandt, W. Hartung, M. Riederer, and G. Vogg. 2012. Abscisic acid mediates the formation of a suberized stem scar tissue in tomato fruits. New Phytol. 194(2): 402 – 15. Lin, B. L., H. J. Wang, J.S. Wang, I. Zaharia, and S.R. Abrams. 2005. Abscisic acid regulation of heterophyll in Marsilea quadrifolia L.: effects of R-(2) and S-(1) isomers. J. Exp. Bot. 56: 2935 – 2948. Liu, B., Y.S. Li, X.B. Liu, C. Wang, J. Jin, and S.J. Herbert. 2011. Lower total soluble sugars in vegetative parts of soybean plants are responsible for reduced pod number under shading conditions. AJCS. 5(13):1852 – 1857. Mahouachi, J., V. Arbona and A. Gomez-Cadenas. 2007. Hormonal changes in papaya seedlings subjected to progressive water stress and re-watering. Plant Growth Regul. 53: 43–51. Mahouachi, J., R. Argamasilla and A. Gomez-Cadenas. 2012. Influence of exogenous glycine betaine and abscisic acid on papaya in responses to water-deficit stress. J. Plant Growth Regul. 31: 1–10. Marler, T. E. and R. dela Cruz. 2001. Chemical factors enhancing papaya root growth in a tropical volcanic acid subsoil. HortScience. 36(6):1037 – 1038. McWha, J. A. and D. L. Jacson. 1976. Some growth promotive effects of abscisic acid. J. Exp. Bot. 27(100): 1004 – 1008. Milborrow, B. V. 1974. The chemistry and physiology of abscisic acid. Ann. Rev. Plant Physio. 25: 259 – 307. Morales-Payan, J. P. and W. M. Stall. 2003. Papaya (Carica papaya L.) response to foliar treatments with organic complexes of peptides and amino acids. Proc. Fla. State. Hort. Soc. 116: 30 – 32. Morcillo, F., F. Aberlenc-Bertossi, M. Noirot, S. Hamon, and Y. Duval. 1999. Differential effects of glutamine and arginine on 7S globulin accumulation during the maturation of Oil palm somatic embryos. Plant Cell. Rep. 18: 868–872. Morton, J. F., 1987. Pawpaw. In: Fruits of warm climates. Miami, Florida. Creative Resource Systems, Inc. 336–346. Nakasone, H. Y. and R. E. Paull. 1998. Tropical fruits. CAB International, Wallingford. Nakayama, S. and T. Hashimoto. 1973. Effects of abscisic acid on flowering in Pharbitis nil. Plant Cell Physiol. 14: 419 – 422. Nambara, E. and A. Marion-Poll. 2003. ABA action and interactions in seeds. Trends Plant Sci. 8(5): 213 – 217. Nambara, E. and A. Marion-Poll. 2005. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56: 165 – 85. O’Hare, P. 1993. Growing papayas in Sount Queensland. Queensland Government Department of Primary Industries, Brisbane, Queensland. OECD. 2003. Draft consensus document on the biology of Carica papaya L. (Papaya). Report No. 5. OECD, France. Oeriu, S., H. Benesh, V. Cojocaru, M. Cracea, V. Dinu, M. Dumitrescu, L. Criotorescu, A. Iordachescu, L. Moga, S. Morganus. M. Popescu, D. Serba, R. Stomato, C. Teodorescu, and T. Vilsanescu. 1969. Influence of P folcysteine on some biochemical process in plants. Rev. Romaine Bioch. 6: 249 – 262. OGTR (2008). The biology of Carica papaya L. (papaya, papaw, paw paw), Version 2. Document prepared by the Office of the Gene Technology Regulator, Canberra, Australia, available online at http://www.ogtr.gov.au/pubform/riskassessments. htm, Paterson, A. H., P. Felker, S. P. Hubbell, and R. Ming. 2008. The Fruits of tropical plant genomics. Tropical Plant Biol. 1: 3–19. Pattanagul, W. 2011. Exogenous abscisic acid enhances sugar accumulation in rice (Oryza sativa L.) under drought stress. Asian Journal of Plant Sci. 10: 212-219. Paz, L. and C. Vásquez-Yanes. 1998. Comparative seed ecophysiology of wild and cultivated Carica papaya trees from a tropical rain forest region in Mexico. Tree Physiology 18: 277 – 280. Peuke, A. D., W. D. Jeschke and W. Hartung. 2002 Flow of elements, ions and abscisic acid in Ricinus communis and site of nitrate reduction under potassium limitation. J. of exp. Bot. 53(367): 241-250. Popko, J., R. Hansch, R.R. Mendel, A. Polle, and T. Teichmann. 2009. The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol. 12: 242 – 258. Preeti, S., S. Pandey, A. Bhattacharya, P.K. Nagar, and P.S.Ahuja. 2004. ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) Kuntze. Plant Physiol. 161, 1269 – 1276. Rock, C. 2000. Pathways to abscisic acid-regulated gene expression. New Phytol. 148: 357 – 396. Rolland, F, E. Baena-Gonzalez, J. Sheen. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann. Rev. Plant Biol. 57: 675 – 709. Salomao, A. N. and R. C. Mundim. 2000. Germination of papaya seed in response to desiccation, exposure to subzero temperatures, and gibberellic acid. HortScience. 35(5): 904 – 906. Saratha K, D.J. Hume, and C. Godfrey. 2001. Genetic improvement in short season soybeans: matter accumulation, partitioning, and leaf area duration. Crop Sci. 41: 391 – 398. SAS Institute., 2008. SAS version 9.2.SAS Institute, Cary, North Carolina, USA. Sghaier, B., W. Kriaa, M. Bahloul, J.V. Jorrın Novo, and N. Drira. 2009. Effect of ABA, arginine and sucrose on protein content of date palm somatic embryos. Sci. Hort. 120: 379 – 385. Sharp, R. E., Y. Wu, G. S. Voetberg, I. N. Saab, and M. E. Lenoble. 1994. Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. J. Exp. Bot. 45: 1743 – 1751. Sharp, R. E., M. E. Lenoble, M. A. Else, E.T. Thorne, and F. Gherardi. 2000. Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J. Exp. Bot. 51(350): 1575 – 1584. Sharpley, A. N., T. C. Daniel, J. T. Sims, and D. H. Pote. 1996. Determining environmentally sound phosphorus levels. J. Soil Water Conserv. 51(2): 160 – 166. Sreedhar, L. and J. D Bewley. 1998. Nitrogen and sulphure containing compounds enhance the synthesis of storage reserves in developing somatic embryos of alfalfa (Medicago sativa L.). Plant Sci. 134: 31 – 44. Stasolla, C., L. Kong, E. C. Yeung, and T. A. Thorpe. 2002. Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology. In vitro Cellular and Developmental Biology – Plant 38: 93 – 105. Steadman, K. J., H. W Pritchard, and P. M. Dey. 1996. Tissue-specific soluble sugars in seeds as indicators of storage category. Ann. Bot. 77: 667 – 674. Taiz, L. and E. Eduardo. 2002. Plant physiology. Sinauer Associates, Inc. Texas. 690 p. Teixeira da Silva, J.A., Z. Rashid, D. Tan Nhut, D. Sivakumar, A. Gera, M. Manoel Teixeira- Souza- Jr, and P.F. Tennant. 2007. Papaya (Carica papaya L.) biology and biotechnology. Tree and Forestry Science and Biotechnology, 1(1): 47 – 73. Travaglia, C., H. Reinoso, A. Cohen, C. Luna, E. Tommasino, C. Castillo, and R. Bottini. 2010. Exogenous ABA increases yield in field-grown wheat with moderate water restriction. J. of Plant Growth Regul. 29: 366–374. Vaughan, G. T. and B.V. Milborrow. 1984. The resolution by IWLC of RS- [2-"C]hle 1'',4''-cis-diol of abscisic acid and the metabolism of (-)- R- and i(+)-S-abscisic acid. J. Exp. Bot. 35: 110 – 120. Villegas, V. N., 1997. Edible fruits and nuts - Carica papayaL. In EWM Verheij, RE Coronel, eds. Wageningen University, Netherlands. Walton, D. C . 1980. Biochemistry and physiology of abscisic acid. Annu. Rev. Plant Physio. 31: 453 – 489. Wang, J., C. Chen, J. K. Na, Q. Yu, S. H., R. E. Paull, P.H. Moore, M. Alam, and R. Ming. 2008. Genome-wide comparative analyses of microsatellites in papaya. Tropical Plant Biol. 1: 278–292. Wang, Z., J. Yang, Q. Zhu, Z. Zhang, Y. Lang and X. Wang. 1998. Reasons for poor grain filling in intersubspecific hybrid rice. Acta Agron. Sin. 24: 782–787. Wiedenhoeft, A. C. 2006. Plant nutrition. In: Hopkins, W.G. (eds) the green world, Chelsea House Publisher, New York. Windsor, M. L., B. V. Milborrow, and I.J. McFarlane. 1992. The uptake of (+)-S- and (−)-R-abscisic acid by suspension culture cells of hopbush (Dodonaea viscosa). Plant Physiol. 100: 54 – 62. Wood, C.B., H. W. Pritchard, and D. Amritphale. Desiccation-induced dormancy in papaya (Carica papaya L.) seeds is alleviated by heat shock. Seed Sci. Res. 2000. 10: 135 – 145. Woodstock, L. W. 1976. Progress report on the seed vigor testing handbook. Association of Official Seed Analysts Newsletter. 50(2): 1 – 78. Xiong, L., J. K. Zhu. 2003. Regulation of abscisic acid biosynthesis. Plant Physiol. 133: 29–36. Yang, J. J. Zhang, Z. Wang and Q. Zhu. 2003. Hormones in the grains in relation to sink strength and post anthesis development of spikelets in rice. Plant Growth Regul. 41: 185-195. Yang, J. J. Zhang, Z. Wang, Q. Zhu. and L. Liu. 2004. Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell and Envi. 27: 1055-1064. Zhang, J., X. Sui, B. Li, B. Su, J. Li and D. Zhou. 1998. An improved water-use efficiency for winter wheat grown under reduced irrigation. Field Crops Research 59: 91-98.
摘要: 本研究為探討天然型的S-abscisic acid (S-ABA)對番木瓜(Carica papaya L.)‘台農2號’種子發芽及實生苗生長之影響。 在種子發芽方面,種子浸漬於不同濃度S-ABA 24小時後置於濾紙上或播於介質發現,0.01及0.1 ppm的S-ABA會促進發芽率、發芽速率及芽體生長勢。濾紙培養及介質播種之發芽率分別為88 %及91 %,明顯較未處理S-ABA者之70及76 %為高。0.01及0.1 ppm S-ABA處理之種子亦呈現較高的發芽速率指數(GVI)及芽體生長勢指數(VI)。至於高濃度的1ppm S-ABA處理並未影響種子發芽,10 ppmS-ABA的處理不僅減低發芽,而且造成異常的發芽。 在幼苗生長期,以葉片噴施及介質施用兩種方式分別以0.01、0.1及1ppm的S-ABA處理後發現,兩種施用方式之0.01及0.1ppm處理均促使葉數、根數及枝葉鮮重增加,介質施用者之根鮮重亦會增加。另由植株之組織解剖發現,葉片柵狀細胞數及莖、根皮層細胞層數會因S-ABA之處理而增加,且排列較緊密。 S-ABA處理對幼苗營養影響之試驗結果可知,葉面噴施與介質施用均促使植物氮及鉀含量明顯增加,磷與全糖含量未降低而呈增加之趨勢。另由乾物量蓄積之分析發現,兩種施用方式均明顯地促使氮、磷、鉀與全糖之乾物重,介質施用S-ABA後6週時的增加量較葉面施用者多。 綜合以上試驗結果,可瞭解天然型的S-ABA對熱帶果樹番木瓜是屬於生長促進物質,其濃度0.1 ppm 對幼苗生長及營養蓄積具有較大的影響。葉面噴施會先促進葉的生長再間接地促進莖及根生長,而介質施用則直接促進根的生長。
Studies on effects of natural type S-ABA on seed germination and seedling growth of papaya (Carica papaya L. cv. Tainung No. 2) were evaluated for clarify function of S-ABA. Seed germination was investigated by soaking seeds into distilled water and various concentrations of S-ABA. Percentage of seed germination in filter paper and growth medium experiments were increased by S-ABA treatments. These treatments significantly increased germination percentages (88 and 91 %, respectively) compared to control (70 and 76 %, respectively). Enhancement of germination velocity index (GVI) and seedling vigor index (VI) were obtained from treatment of S-ABA 0.01 and 0.1 ppm. While, high concentration of S-ABA (10 ppm) reduced seed germination, and resulted in abnormal germinants. However, S-ABA 1 ppm had no effect on seed germination. Young seedling stage, seedlings were treated by 2 methods of S-ABA application, foliar spray and medium supply. Results showed that S-ABA treatments increased seedling growth, especially number of leaves and roots, and fresh weight of shoot in both two application methods. Fresh weight of roots was increased by S-ABA only in foliar spray method while medium supply of S-ABA resulted in roots were small and fine. The investigation of anatomical characteristics in leaf, stem and root was supported this study. Number of palisade cell in leaf of treated seedlings was significantly increased compared to control ones. In addition, length of these cells in treated seedlings was increased but width of cell was reduced, led to leaves were dark green compared to untreated seedlings. S-ABA treatments could improve number of cell in stem and root and also increase vascular system in stem and root. Moreover, increasing in layer number of pith in stem was found from S-ABA treatments as well. Further, arrangement of cell in all three parts was more compact compared to untreated seedlings. Effects of S-ABA on nutrient and total sugar content were evaluated. S-ABA could significantly improve N and K content in all parts of seedlings, P and total soluble sugar content was increased trendily in some part of seedling. For dry weight of nutrients in whole plant, S-ABA could improve N, P, K and total soluble sugar in both two treatments of foliar spray and medium supply. Further, in 6 weeks after treatment, medium supply of S-ABA became to be more positive effect than foliar spray plants. It was found in this study that S-ABA belongs to growth promoter in tropical fruit tree, papaya. The concentration in 0.1 ppm was more effect on seedling growth and nutrient accumulation. The foliar spray of S-ABA had positive effect on leaf growth, thereafter indirectly improved stem and root growth. Moreover, the introducing of medium supply method directly enhanced root growth.
URI: http://hdl.handle.net/11455/29374
其他識別: U0005-1112201211485500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1112201211485500
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.