Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29378
標題: 不同介質與結構對綠屋頂隔熱效果影響之研究
The Study of Heat Insulation Performance of Green Roofs with Different Planting Mediums and Constructions
作者: 謝維芳
Hsieh, Wei-Fan
關鍵字: 屋頂綠化
Green roof
栽培介質
隔熱效果
介質水分含量
介質溫度
Planting Medium
Insulation performance
Water retention capacity of medium
Medium temperature
出版社: 園藝學系所
引用: 1. 方文村、簡傳彬,(2009),熱傳導係數之溫度相關性對土壤溫度的效應,農業工程學報,55(3),30-41。 2. 方智芳,(2011),薄層綠化屋頂介質及植栽之熱效益,科學農業,59(7,8,9),118-136。 3. 王錦堂,(1980),建築應用物理學,台北:臺隆書店。 4. 吳欣樺,(2011),改善居住熱環境之研究-以酚醛物質為隔熱建材為例,碩士論文,國立勤益科技大學景觀設計系,台中。 5. 宋苾璇,(2002),壁面綠化隔熱效能之研究,碩士論文,國立台灣科技大學建築研究所,台北。 6. 林憲德,(2003),熱濕氣候的綠色建築,台北:詹氏書局。 7. 林靜宜,(2004),荖濃溪流域之土壤微生物相調查,碩士論文,國立中山大學生物科學系研究所,高雄。 8. 林寶秀,(2010),植栽綠地降溫效果之研究,博士論文,國立臺灣大學園藝學研究所,台北。 9. 近藤三雄、其他,(1987),建築物の屋上‧壁面をすゐことによゐ夏季の室温の上升抑制效果について,芝草研究,16-2。 10. 邱再發,(1994),土壤肥料,台北:地景,p.19。 11. 原園芳信、池田英男,(1990),屋上での簡易養液栽培による室內熱環境への影響,農業氣象,46-1。 12. 高鈺豐,(2009),栽培介質、肥料種類及濃度對蝴蝶蘭生長與開花之影響,碩士論文,國立嘉義大學園藝學系,嘉義。 13. 張育森,(2010),綠屋頂的環境效益與相關技術探討,都市新田園,台北市瑠公農田水利會,台北。 14. 張耿衡、戴廷恩、黃勝忠、曹進義、蔡媦婷、王斐能、張愛華、侯鳳舞,(2006),人造纖維應用於蝴蝶蘭栽培介質之研究,臺灣園藝,52(1),71-80。 15. 張簡宏裕,(2002),屋頂覆土植栽之熱收支研究-以鵝掌藤植栽為例,碩士論文,國立台灣科技大學營建工程系,台北。 16. 梅干野、其他,(1985),日本建築學會計畫科論文集,351。 17. 莊作權,(2004),土壤肥料,台北:三民書局。 18. 莊嘉文,(1993),建築設備概論,台北:詹氏書局。 19. 許瑞銘,(2006),屋頂綠化熱效益之研究,碩士論文,朝陽科技大學建築及都市設計研究所,台中。 20. 都市綠化技術開發機構、特殊綠化共同研究會,(1996),Neo-green space design(2),日本東京:株式會社誠文堂新光社,。 21. 黃菘苗,(2003),牆面綠化遮陽效能之評估研究,碩士論文,國立台灣科技大學建築研究所,台北。 22. 楊淞富,2005,深耕翻轉與酸洗對污染農地中重金屬之去除效率及肥力之影響,碩士論文,國立成功大學環境工程學系,台南。 23. 葉德銘,(2007),硼、氯化鈉及儲運對擎天鳳梨葉片生長與產後品質之影響,行政院國家科學委員會專題研究計畫。 24. 劉思吟,(2011),薄層屋頂綠化適用植栽之研究,碩士論文,國立中興大學園藝學系碩士論文,台中。 25. 鄭政利,(2008),建築外遮陽暨屋頂隔熱設計參考手冊,台北:內政部建築研究所。 26. 羅秋雄、王斐能,(2001),盆菊栽培介質pH值適宜性評估,桃園區農業改良場研究報告,42,37-48。 27. 蘇榮宗,(2009),屋頂植草覆土層熱效應之研究,碩士論文,國立高雄大學都市發展與建築研究所,高雄。 28. Akbari, H., Kurn, D. M., Bretz, S.E., & Hanford, J. W. (1997). Peak power and cooling energy savings for shade trees. Energy and Buildings, 25, 139-148. 29. Amer, E. H. (2006). Passive options for solar cooling of buildings in arid areas. Energy, 31, 1332-1344. 30. Antrop, M. (2004). Landscape change and the urbanization process in Europe. Landscape and Urban Planning, 67, 9-26. 31. Barrio, E. P. D. (1998). Analysis of the green roofs cooling potential in buildings. Energy and Buildings, 27, 179-93. 32. Bass, B., Krayenhoff, S., & Martilli, A. (2002). Mitigating the Urban Heat Island with Green Roof Infrastructure. Urban Heat Island Summit, Toronto. 33. Baumann, N. (2006). Ground-Nesting Birds on Green Roofs in Switzerland: Preliminary Observations. Urban Habitats, 4(1), 37-50. 34. Blume, H. P. (1993). Boden. In: Stadtokologie. Sukopp H. & Wittig R. (eds.). Gustav Fischer Verlag, Stuttgart, 154-171. 35. Claus, S., Wernecke, P., Pigla, U., & Dubsky, G. (1995). A dynamic model describing leaf temperature and transpiration of wheat plants. Ecological Modelling, 81, 31-40. 36. Colla S. R., Willis, E., & Packer, L. (2009). Can green roofs provide habitat for urban bees (Hymenoptera: Apidae)? Cities and the Environment, 2(1), article 4, 12 pp. 37. Dunnett, N. & Kingsbury, N. (2004). Planting Green Roofs and Living Walls. Timber Press, Portland. 38. Ernst, W. & Weigerding, I. (1985). Oberflachenentwasserung, Gewasserentlastung durch okologische/okonomische Planung. Bundesblatt, 34(11), 722-732. 39. Eumorfopoulou, E. & Aravantinos, D. (l998). The contribution of a planted roof to the thermal protection of buildings in Greece. Energy and Buildings, 27, 29-36. 40. Evans, M. R., Konduru, S. and Stamps, R. H. (1996). Source variation in physical and chemical properties of coconut coir dust. HortScience, 29, 1514-1517. 41. Fang, C. F. (2008). Evaluating the thermal reduction effect of plant layers on rooftops. Energy and Buildings, 40(6), 1048-1052. 42. Ferguson, B. K. (1998). Introduction to Stormwater: Concept, Purpose and Design. Wiley, New York. 43. Ferrante, A. & Mihalalalou, G. (2001). The influence of water, green and selected passive techniques on the rehabilitation of historical industrial buildings in urban areas. Solar Energy, 70(3), 245-253. 44. Granier, N. A. (1996). Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Annales des Sciences Forestieres, 53, 521-536. 45. Griffith, L. (2002). Tropical foliage disorders. Ball Publishing, Batavia, Illinois, U.S.A. 46. Herzele, V. A. & Wiedemann, T. (2003). A monitoring tool for the provision of accessible and attractive urban green spaces. Landscape and Urban Planning, 63, 109-126. 47. Herzog, T. R., Black, A. M., Fountaine, K. A. & Knotts, D. J. (1997). Reflection and attentional recovery as distinctive benefits of restorative environments. Journal of Environmental Psychology, 17, 165-170. 48. Iqbal, M. (1983). An introduction to solar radiation. Ontario. Canada, Academic Press. 49. Jain, D. (2006). Modeling of solar passive techniques for roof cooling in arid regions. Building and Environment, 41, 277-287. 50. Kaplan, R. & Kaplan, S. (1989). The Experience of Nature: A Psychological Perpective. Cambridge University Press. 51. Kim, K. G. (2004). The application of the biosphere reserve concept to urban areas: the case of green rooftops for habitat network in Seoul. In: Alfsen- Norodom, C., Lane, B. D., Corry, M. (Eds.), Urban Biosphere and Society: Partnership of Cities. Annals of the New York Academy of Sciences, 1023(1), 187-214. 52. Kolb, W. & Schwarz, T. (1999). Dachbegrunung, intensiv und extensiv. Ulmer, Stuttgart , Germany. 53. Kosareo, L. & Ries R. (2007). Comparative environmental life cycle assessment of green roofs. Building and Environment, 42(7), 2606-2613. 54. Krupka, B. (1992). Dachbegrunung: Pflanzen und Vegetations Anwendung an Bauwerken. Ulmer, Stuttgart. 55. Krusche, P., Krusche, M., Althaus, D. & Gabriel, I. (1982). Okologisches Bauen, Herausgegeben vom Umweltbundesamt. Wiesbaden and Berlin Bauverlag. 56. Kumar, R. & Kaushik, S. C. (2005). Performance evaluation of green roof and shading for thermal protection of buildings. Building and Environment, 40, 1505-1511. 57. Lin, B. S., & Lin, Y. J. (2010). Cooling effect of shade trees with different characteristics in a subtropical urban park. HortScience, 45, 83-86. 58. Mentens, J., Raes, D. & Hermy, M. (2006). Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and Urban Planning, 77, 217-226. 59. Minke, G. & Witter, G. (1982). Hauser mit grunen Pelz, Ein Handhuch zur Hausbegrunun. Fricke Verlag, Frankfurt. 60. Niachou, A., Papakonstantinou, K., Santamouris, M., Tsangrassoulis, A., & Mihalakakou, G. (2001). Analysis of the green roof thermal properties and investigation of its energy performance. Energy Build, 33, 719-729. 61. Ohlwein, K. (1984). Dachhegrunung: Okologisch und Funktiongerecht. Bauverlag, Wiesbaden und Berlin. 62. Onmura, S., Matsumoto, M. & Hokoi, S. (2001). Study on evaporative cooling effect of roof lawn gardens. Energy and Buildings, 33, 653-666. 63. Osmundson, T. (1999). Roof Gardens: History, Design, and Construction. W.W. Norton and Company Inc., New York. 64. Peck, S., & Kuhn, M. (2004). Design guidelines for green roofs. Ontario Association for Architects. 65. Sailor D.J., Hutchinson, D. & Bokovoy, L. (2008). Thermal property measurements for ecoroof soils common in the western U.S. Energy and Buildings, 40(7), 1246-1251. 66. Schradera, S. & Boningb, M. (2006). Soil formation on green roofs and its contribution to urban biodiversity with emphasis on Collembolans. Landscape and Urban Planning, 77, 217-226. 67. Sepaskhah, A.R., Boersma, L. (1979). Thermal Conductivity of Soils as a Function of Temperature and Water Content. Soil Science Society of America Journal, 43, 439-444. 68. Solomon N. B. (2003). Vegetation systems atop buildings yield multiple environmental benefits. Architectural Record, 191(3), 149-156. 69. Spala, A., Bagiorgas, H. S., Assimakopoulos, M.N., Kalavrouziotis, J., Matthopoulos, D., & Mihalakakou, G. (2008). On the green roof system. Selection, state of the art and energy potential investigation of a system installed in an office building in Athens, Greece. Renewable Energy, 33(1), 173-177. 70. Stone J. B. (2004). Paving over paradise: how land use regulations promote residential imperviousness. Landscape and Urban Planning, 69, 101-113. 71. Stulpnagel, V. A., Horbert, M. & Sukopp, H. (1990). The importance of vegetation for the urban climate. In: Sukopp, H., Hejny, S. (Eds.), Urban Ecology. Plants and Plant Communities in Urban Environments. SPB Academic Publication, The Hague, 175-193. 72. Takakura, T., Kitade, S. & Goto, E. (2000). Cooling effect of greenery cover over a building. Energy Build, 31, 1-6. 73. Takebayashi, H. & Moriyama, M. (2007). Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Building and Environment, 42(8), 2971-2979. 74. Tan, P.Y. & Sia, A. (2009). Understanding the performance of plants on non-irrigated green roofs in Signapore using a biomass yield appeoach. Nature in Sigarpore, 2, 149-153. 75. Tang, M. F. & Yang, Z. J. (2007). Thermal characteristics of green roof in natural climate. Journal of Central South University of Technology, 14, 39-42. 76. Theodosiou, T. G. (2003). Summer period analysis of the performance of a planted roof as a passive cooling technique. Energy and Buildings, 35, 909-917. 77. Ulrich, R. S. & Simons, R. F. (1986). Recovery from stress during exposure to everyday outdoor environments. In J. Wineman, R. Barnes, and C. Zimring (Eds.). Proceeding of the Seventeenth. Annual Conference of the Environmental Design Research Association. Washington, DC: EDRA. 115-122. 78. Ulrich, R. S. (1981). Natural versus urban scenes some psychophysiological effects. Environment and Behavior, 13, 523-556. 79. Ulrich, R. S., Dimberg, U. & Driver, B.L. (1991). Psychophysiological Indicators of Leisure, Venture Publishing Inc, State Colloge, Pennsylvania, 73-89. 80. United Nations. (2002).World Urbanization Prospects: The 2001 Revision. United Nations, New York. 81. Wark, C. G. & Wark, W. W. (2003). Green Roof Specifications and Standards - Establishing an emerging technology. The Construction Specifier, 56(8), 1-12. 82. White, R. (2002). Building the Ecological City. Woodhead Publication, Cambridge. 83. Wong, N. H., Chen, Y., Ong, C. L. & Sia, A. (2003). Investigation of thermal benefits of rooftop garden in the tropical environment. Building and Environment, 38, 261-270. 84. Wong, N. H., Cheong, D. K. W., Yan, H., Soh, J.,Ong, C. L. & Sia, A. (2003).The effects of roof garden on energy consumption of acommercial Building in Singapore. Building and Environment, 35, 353-364. 85. Wong, N.H., Tan, P.Y. & Chen, Y. (2007) Study of thermal performance of extensive rooftop greenery systems in the tropical climate. Building and Environment, 42(1), 25-54. 86. Hurstwic,取自http://www.hurstwic.org/index.html。 87. International Green Roof Association (IGRA),取自http://www.igra-world.com/home/index.html。 88. Roofscapes,取自http://www.roofmeadow.com/index.shtml。 89. 內政部101.6.27台內營字第1010805787號令修正,建築基地保水設計技術規範,取自http://greenbuilding.cpami.gov.tw/law/skill/002_01_921225.pdf。 90. 內政部100.6.21台內營字第1000804507號令修正,建築技術規則建築構造編,取自法務部全國法規資料庫http://law.moj.gov.tw/LawClass/LawHistory.aspx?PCode=D0070116。 91. 行政院環保署檢驗所(2009)火焰式原子吸收光譜法,公告字號:84435,取自http://www.niea.gov.tw/analysis/method/m_n_1.asp?m_niea=M111.00C。 92. 經濟部能源局,99年能源供需概況,取自http://web3.moeaboe.gov.tw/ECW/business/content/ContentLink.aspx?menu_id=378。
摘要: 全世界各國政府無不提倡綠色革命,以因應全球都市化快速發展、全球暖化、能源耗竭…等環境問題,其中屋頂綠化為綠色解決方案之一,不僅減少建築物能源的使用量,達到節能減碳的目的,更在水泥都市環境中,增加了綠意及生態性,改善居住者的生活品質。本研究基於探討屋頂綠化之隔熱效果,以屋頂綠化栽培介質的角度為觀點,調查其物理及化學性狀,並從栽培介質與綠化結構進行隔熱效果之探討,進一步探究綠屋頂對室內溫度之影響。 栽培介質之理化性狀研究結果顯示,部分介質最大保水量遠高於其乾重,於屋頂綠化規劃設計時應納入考量,以維屋頂結構之安全性;研究所試之環保介質,可視植栽特性及基地條件,代替自然資材製成之介質搭配使用,以減少地球資源的消耗。 栽培介質與綠化結構之隔熱影響效果之研究結果顯示,夏季期間排/蓄水板之設置對介質水分含量並無顯著影響,但不同植栽種類綠化基盤之介質水分含量與溫度則有顯著差異,顯示植栽特性有其影響力;且植栽覆蓋率與介質水分含量愈高,介質溫度愈低,其中植栽覆蓋率影響力大於介質水分含量。冬季期間蓄/排水型綠化基盤雖對介質水分含量之控制有顯著的效果,但對於介質溫度並無影響。此外,植栽類型對介質溫度之影響亦無明顯差異,而是介質本身所提供的隔熱效果較大,介質水分含量愈高,介質溫度愈高。 在屋頂綠化隔熱效果之研究成果顯示,透過屋頂綠化建築物在夏季時能降低室內溫度,在冬季時維持室內溫度,使其溫差變動小,達到夏季降溫、冬季恆溫的效果,而對於室內溫度的影響,則是空間內各區域溫度不相同,尤其以室內人體活動範圍之溫度維持不致過高或過低,可提供舒適之生活環境。 本研究證實屋頂綠化之隔熱效果除受植栽影響外,亦受到介質所影響,且在兩者的加成作用下,屋頂綠化不僅高溫時能降低建築物室內溫度,進而減少空調負荷及每月耗電量,在低溫時更可維持建築物室內溫度穩定,提升環境舒適度,成功節能減碳,營造綠色生活方式。
The green revolution has been advocated in the whole world to solve environmental issues, such as rapid urbanization, global warming, and energy depletion. Indisputably, the green roof is regarded as one of efficient methods to solve those problems. It not only decreases the usage amount of energy in the buildings for meeting the purpose of energy saving and carbon reduction but also increases the green coverage and ecological diversity. Consequently, for residents the quality of life is also improved. The purpose of this dissertation is to discuss heat insulation performance of green roofs. Therefore, this research investigated the physical and chemical properties of planting mediums and also evaluated heat insulation performance of planting mediums and constructions. Then, the relationship between green roofs and indoor temperature was also clarified. According to the analysis of the physical and chemical properties of planting mediums, the maximum water retention capacity of some planting mediums is much higher than its dry weight. This finding has to be considered in the planning of green roofs in order to ensure the safety of structure. Moreover, in order to reduce the consuming of earth resources, the renewal planting mediums can be used for partial planting mediums on the base of botanical characteristics and conditions of the site. The findings of evaluating heat insulation performance of planting mediums and constructions present that in summer there is no significant difference in water retention capacity of planting mediums no matter when setting drainage and water storages or not. However, there are significant differences in water retention capacity and medium temperature between green infrastructures with various plant species so it shows botanical characteristics has influence. Meanwhile, the higher the plant coverage and the water retention capacity of planting mediums, the lower the medium temperature is. Moreover, the plant coverage has more influence than the water retention capacity. The findings also present that in winter drainage and water storages have influence on water retention capacity but do not have influence on medium temperature. Besides, there is no significant difference in medium temperature between green infrastructures with plant species. The heat effect from planting medium has more influence, and the higher the water retention capacity, the higher the medium temperature is. The results of insulation performance of green roofs indicate that the buildings with green roofs can get lower indoor temperature in summer and maintain indoor temperature and make temperature difference small in winter. In addition, green roofs have different influence on temperature in varied indoor space. Because of this, green roofs can make living environment more comfortable. This research proves that not only plants but also planting mediums have influence on heat insulation performance of green roofs. Moreover, the additive effect of these two factors makes green roofs decrease indoor temperature in high-temperature condition and stabilize indoor temperature in low-temperature condition. Therefore, the load of air-conditioners and the amount of electricity consumption is less, and also environmental amenity is improved. Then, energy saving and carbon reduction can be made, and green lifestyle can be built.
URI: http://hdl.handle.net/11455/29378
其他識別: U0005-0402201315063200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0402201315063200
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.