Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29380
標題: 人工光源對甘藍‘和風’、結球白菜‘瑞喜’穴盤苗及水耕小白菜‘台農一號’生長及品質之影響
The Effect of Artificial Light on the Growth and Quality of Cabbage ‘Tropical Delight’, Chinese Cabbage ‘Auspicious’ Seedlings and Pak-choi ‘Tainung No.1’ by Hydroponics
作者: 洪明谷
Hong, Ming-Gu
關鍵字: 甘藍
cabbage
結球白菜
小白菜
人工光源
光強度
光質
育苗
水耕栽培
Chinese cabbage
Pak-choi
artificial light
light intensity
light quality
seedling
hydroponic
出版社: 園藝學系所
引用: 1.王裕權、謝桑煙、陳博惠。2002。不同穴盤型式及格數對甘藍、結球白菜移植苗品質、產量之影響。台南區農業改良場研究彙報 39:23-31。 2.方煒、饒瑞佶。2004。高亮度發光二極體在生物產業的應用。中華農學會報 5(5):432-446。 3.司亞平、何偉明、陳殿奎。1993。番茄穴盤育苗營養面積選擇試驗初報。中國蔬菜(1):29-32。 4.全光華、劉鍇棟。2011。Rubisco的研究進展。安徽農業科學 (21)。 5.李芳蘭、包維楷。2005。植物葉片形態解剖結構對環境變化的響應與適應。植物學通报 22 (增刊):118-127。 6.李曙軒。1979。蔬菜育苗生理。蔬菜栽培生理 p.41~71。上海科學技術出版社 上海,中國。 7.孫文章、謝桑煙。1998。甘藍穴盤育苗技術。台南區農業改良場技術專刊 76:87-94。 8.郁宗雄。1988。瓜類育苗問題園藝種苗產銷技術研討會專集。p.176-178。種 苗改良繁殖場編印。 9.郭浩中、賴芳儀、郭守義。2009。LED原理與應用。五南出版社。台北市。 10.郭濰如。2009。小白菜穴盤苗移植栽培中穴格容積與苗齡對種苗品質和植株長 影響與栽培模式之建立。中興大學園藝學系研究所博士論文。 11.許玉妹、溫佳思、林金和。1991。斷根與限制根群在果樹生長與發育所扮演的角色。中國園藝 37(2):72-79。 12.陳友。1989。蔬菜育苗技術。中國農業出版社。p.7-8。 13.陳世銘、張金發。1996。台灣蔬菜育苗自動化之發展。 蔬菜自動化育苗技術研討會p.69-93。國立台灣大學農業機械工程學系編印。 14.陳書憲、蔡佳彬、劉瓊霦。2011。不同光度處理對台灣三種原生闊葉樹苗木碳水化合物累積和分配的影響。林業研究季刊 33(1):65-76。 15.黃涵。1966。農業要覽第八輯第二篇。初版。p.2233-2540。臺灣省政府農林廳。 16.黃泮宮、李美娟。1996。蔬菜穴盤育苗技術。蔬菜自動化育苗技術研討會 p.161-179。 17.馮丁樹。1998。溫室環境控制。工程種苗生產自動化。p.1-15。 18.華勁松、戴紅燕、夏明忠。2009。不同光照強度對芸豆光合特性及產量性狀的影響。西北農業學報 18(2):136-140。 19.楊棋明、吳雅婷、劉翠雅、黃文達、黃秀鳳、趙璧玉。2004。高等植物非葉綠色組織之葉綠素a/b比值。華岡農科學報。13:27-34。 20.葛曉光。1987。蔬菜的播種與育苗。中國蔬菜栽培學 p.131-137。農業出版社。北京,中國。 21.潘錫明。2009。認識發光二極體。科學發展 435:6-11。 22.潘慶民、韓興國、白永飛、楊景成。2002。植物非結構性貯藏碳水化合物的生理生態學研究進展。植物學通報 19(1):30-38。 23.謝廣文、陳世銘、陳乃菁。2001。育苗環境與甘藍苗品質關係之模糊理論模擬。農業機械學刊 10(2):31-42。 24.渡邊愼一。1999。果菜類の省力‧高品質生產技術。農耕と園藝 p.100-103。 25.Addiscott, T. M., A. P. Whitmore, and D. S. Powlson. 1991. Farming, fertilizers and the nitrate problem. P. 1-15. C.A.B. International Wallingford. UK. 26.Alokam, S., C. C. Chinnappa, D. M. Reid. 2002. Red/far-red light mediated stem elongation and anthocyanin accumulation in Stellaria longipes: differential response of alpine and prairie ecotypes. Can. J. Bot. 80:72–81. 27.Barta, D.J., T. W. Tibbits, R.J. Bula, and R.C. Morrow. 1992. Evaluation of light emitting diode characteristics for a space-based plant irradiation source. Adv. Space Res. 12:141-149. 28.Barreiro, R., J. J. Guiamet, J. Beltrano, and E. R. Montaldi. 1992. Regulation of the photosynthetic capacity of primary bean leaves by the red:farred ratio and photosynthetic photon flux density of incident light. Physiol. Plant. 85:97-101. 29.Beevers, L. and R. H. Hagemann. 1969. Nitrate reduction in higher plants. Annu. Rev. Plant Physiol. 20:495-522. 30.Bellemare, G., S. G. Barlett, and N. H Chua. 1982. Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorine f2 mutant of barley. J. Biol. Chem. 257:7762-7767. 31.Boardman, N. K.. 1977. Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. 28:355-377. 32.Briggs, W. R., C. F. Beck, A. R. Cashmore, J. M. Christie, and J. Hunghes. 2001. The phototropin family of photoreceptors. Plant Cell 13:993-997. 33.Briggs, W. R. and M. A. Olney. 2001. Photoreceptors in plant photomorphogenesis to date, five photochromes, two cryptochrome, one phototropin and one superchrome. Plant Physiol. 125:85-88. 34.Brown, C. S., A. C. Schuerger, and J. C. Sager. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Amer. Soc. Hort. Sci. 120:808-813. 35.Bruning-Fann, C. S., and J. B. Kaneene. 1993. The effects of nitrate, nitrite and N-nitroso compounds on human health: a review. Vet Hum Toxicol 35(6):521-38. 36.Bula R. J., R. C. Morrow, T. W. Tibbits, and D. J. Barta. 1991. Light emitting diodes as a radiation source for plants. HortScience 26(2):203-205. 37.Campbell, W. H. 1999. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. 50:277-303. 38.Chabot, B. F., and J. F. Chabot. 1977. Effects of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca. Oecologia 26:363-377. 39.Chang, F. H, and J. H. Troughton. 1972. Chlorophyll a/b ratios in C3-C4-plants.Photosynthetica 6:57-65. 40.Cheng, C. L., G. N. Acedo, M. Cristinsin, and M. A. Conkling. 1992. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc. Natl. Acad. Sci. USA 89:1861-1864. 41.Clouse, S. D.. 2001. Integration of light and brassinosteroid signals in etiolated seedling growth. Trends Plant Sci. 6:443-445. 42.Crawford, N. M.. 1995. Nitrate: Nutrient and signal for plant growth. Plant Cell 7:859-868. 43.Demsar, J., J. Osvald, and D. Vodnik. 2004. The effect of light-dependent application of nitrate on the growth of aeroponically grown lettuce (Lactuca sativa L.). J. Amer. Soc. Hort. Sci. 129:570-575. 44.Deutch, B. and O. Rasmussen. 1974. Growth chamber illumination and photomorphogenetic efficacy I. Physiological action of infrared radiation beyond 750 mm. Physiol. Plant. 30:64-71. 45.Ebisawa, M., K. Shoji, M. Kato, K. Shimomura, F. Goto, and T. Yoshihara. 2008. Supplementary ultraviolet radiation B together with blue light at night increased quercetin content and flavonol synthase gene expression in leaf lettuce (Lactuca sativa L.). Env. Control Biol. 46:1-11. 46.Erdei, N., C. Barta, E. Hideg, and B. Boddi. 2005. Light-induced wilting and its molecular mechanism in epicotyls of dark-germinated pea (Pisum sativum L.) seedlings. Plant Cell Physiol. 46:185-191. 47.Folta, K. M. and S. A. Maruhnich. 2007. Green light: a signal to slow down or stop. J. Exp. Bot. 58:3099-3111. 48.Frechilla, S., L. D. Talbott, R. A. Bogomolni, and E. Zeiger. 2000. Reversal of blue light-stimulated stomatal opening by green light. Plant and Cell Physiol. 41:171–176. 49.Geniatakis, E., M. Fousaki, and N. A. Chaniotakis. 2003. Direct potentiometric measurement of nitrate in seeds and produce. Commun. Soil Sci. Plant Anal. 34:571-579. 50.Giliberto, L., G. Perrotta, P. Pallara, J. L. Weller, P. D. Fraser, P. M. Bramley, A. Fiore, M. Tavazza, and G. Giuliano. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137:199-08. 51.Goedheer, J. C. 1972. Fluorescence action spectra of algae and bean leaves at room and at liquid nitrogen temperatures. Biochim. Biophys. Acta 102:73-89. 52.Goins, G. D., N. C. Yorio, and M. M. Sanwo. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under light emitting diodes (LEDs) with or without supplemental blue lighting. J. Exp. Bot. 48:1407-1413. 53.Heo, J., C. Lee, D. Chakrabarty, and K. Paek. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a Light-Emitting Diode (LED). Plant Growth Regul. 38:225-230. 54.Hoenecke, M. E., R. J. Bula, and T. W. Tibbits. 1992. Importance of “Blue” photon levels for lettuce seedlings grown under red- light-emitting diodes. HortScience 27(5):427-430. 55.Hoff, T., H. N. Truong, and M. Caboche. 1994. The use of mutants and transgenic plants to study nitrate assimilation. Plant Cell Env. 17:489-506. 56.Hogewoning, S. W., G. Trouwborst, H. Maljaars, H. Poorter, W. van-Ieperen, and J. Harbinson. 2010. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Expt. Bot. 6:3107-3117. 57.Hsu, H. M. 2002. Effects of different application rates of organic fertilizer on the growth and nutrient uptake of vegetables in greenhouse. Taipei, Taiwan:National Taiwan University. p.4-8. 58.Kasperbauer, M. J., and D. E. Peaslee. 1973. Morphology and photosynthetic efficiency of tobacco leaves that received end-of-day red or far red light during development. Plant Physiol. 52:440-442. 59.Keller, M. and G. Hrazdina. 1998. Interaction of nitrogen availability during bloom and light intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening. Amer. J. Enol. Vitic. 49:341-349. 60.Kevin, W. 2000. ‘Photo-Manipulation-Boxes’; An instrument for the study of plant photobiology. Plant Photobiol. 26:3-15. 61.Khare, M., and K. N. Guruprasad. 1993. UV-B induced anthocyanin synthesis in maize regulated by FMN and inhibitors of FMN photoreactions. Plant Sci. 91:1-5. 62.Kim, H. H., G. D. Goins, R. M. Wheeler, and J. C. Sager. 2004. Stomatal conductance of lettuce grown under or exposed to different light qualities. Ann. Bot. 94:691-697. 63.Kojima, M., Y. Nakano, and H. Fujii. 2010. Light stimulation triggered expression of genes coding for vacuolar proton-pump enzymes V-ATPase and V-PPase in buckwheat. Biosci. Biotechnol. Biochem. 74:1507-1511. 64.Korner, C.. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems 2nd edn. Springer, Berlin. 65.Kozlowski, T. T., P. J. Kramer, and S. G. Pallardy. 1991. The Physiological Ecology of Woody Plants. Academic Press, New York. 66.Lee, C. G. and B. Palsson. 1994. High-density algal photobioreactors using light-emitting diodes. Biotechnol. Bioeng. 44:1161-1167. 67.Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Envi. Exp. Bot. 67:59-64. 68.Lillo, C.. 2004. Light regulation of nitrate uptake, assimilation and metabolism, p.149–184. In: Amancio, S. and I. Stulen (eds.). Plant ecophysiology. Vol. 3. Nitrogen acquisition and assimilation in higher plants. Kluwer Academic Publisher, Dordrecht, The Netherlands. 69.Lillo, C. and K. J. Appenroth. 2001. Light regulation of nitrite reductase in higher plants: Which photoreceptors are involved? Plant Biol. 3:455-465. 70.Louwerse, W., and W. V. D. Zweerde. 1977. Photosynthesis, transpiration and leaf morphology of Phaseolus vulgaris and Zea mays grown at different temperatures in artificial and sunlight. Photosynthetica 11:11-21. 71.Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, and K. Kurata. 2008. Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Plant Cell Physiol. 49:664-670. 72.Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, and K. Kurata. 2007. Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci. Plant Nutr. 53:459-465. 73.Markwell, J. P., J. P. Thornber, and R. T. Boggs. 1979. Higher plant chloroplasts:evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc. Natl. Acad. Sci. USA 76:1233-1235. 74.McCall, D. 1992. Effect of supplementary light on tomato transplant growth, and the after-effects on yield. Sci. Hortic. 51:65-70. 75.McNellis, T. W. and X. W. Deng. 1995. Light control of seedling morphogenetic pattern. Plant Cell 7:1749-1761. 76.Meng, X. C., T. Xing, and X. J. Wang. 2004. The role of light in the regulation of anthocyanin accumulation in Gerbera hybrida. J. Plant Growth Regul. 44:243-250. 77.Moon, H. K., S. Y. Park, and Y. W. Kim. 2006. Growth of Tsuru-rindo(Tripterospermum japonicum) cultured in vitro under various sources of light-emitting diode (LED) irradiation. J. Plant Biology 49(2):174-179. 78.Michel, H. P., D. F. Hunt, J. Shabanowitz, and J. Bennet. 1983. A chlorophyll b-less mutant of Chlamydomonas reihardtii lacking in the light-harvesting chlorophyll a/b-protein complex but not in its apoproteins. Biochim. Biophys. Acta 725:417-424. 79.Miyashita, Y., Y. Kitaya, and T. Kozai. 1995. Effects of red and farred light on the growth and morphology plantlets in vitro : using light emitting diode as a light source for micropropagation. Acta Horticulturae 393:189-194. 80.Mohr, H., A. Neininger, and B. Seith. 1992. Control of nitrate reductase gene expression by light, nitrate and a plastic factor. Bot. Acta 105:81-89. 81.Morrow, R. C. 2008. LED lighting in horticulture. HortScience 43:1947-1950. 82.Myers, J. A. and K. Kiyajima. 2007. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecology 95:383-395. 83.Ni, L. F. and R. S. Cnung. 2003. Effect of organic materials on the growth and nitrate concentration of Chinese cabbage (Brassica chinese L.). Bull Hualien District Argric Improve Station 21:61-9. 84.Oda, M. 2007. Raising of vigorous and valuable seedlings. Regul. Plant Grow. Develop. 42:176-182. 85.Ohashi-Kaneko, K., M. Takase, N. Kon, K. Fujiwara, and K. Kurata. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Env. Control Biol. 45:189-198. 86.Okamoto, K., T. Yanagi, and S. Kondo. 1997. Growth and morphogenesis of lettuce seedlings raised under different combinations of red and blue light. Acta Horticulturae 435:149-157. 87.Pizzi, A. and F. A. Cameron. 1986. Flavonoid tannins-Structural wood components for drought-resistant mechanisms of plants. Wood Sci. Technol. 20:119-124. 88.Poorter, L.. 2001. Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Funct. Ecol 15:113-123. 89.Poorter, L. and K. Kitajima. 2007. Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 88(4):1000-1011. 90.Pushnik, J. C., G. W. Miller, V. D. Jolley, J. C. Brown, T. D. Davis, and A. M. Barnes. 1987. Influences of ultra-violet (UV)-blue light radiation on the growth of cotton. II. Photosynthesis, leaf anatomy, and iron reduction. J. Plant Nutrition 10:2283-2297. 91.Rajasekhar, V. K., G. Gowri, and W. H. Campbell. 1988. Phytochrome-mediated light regulation of nitrate reductase expression in squash cotyledons. Plant Physiol. 88:242-244. 92.Ramalho, J. C., N. C. Marques, J. N. Semedo, M. C. Matos, and V. L. Quartin, 2002. Photosynthetic performance and pigment composition of leaves fromtwo tropical species is determined by light quality. Plant Biol. 4:112-120. 93.Raschke, K. 1975. Stomatal action. Annual Rev. Plant Phy. 26:309–340. 94.Roscas, G. and F. R. Scarano. 2001. Leaf anatomical variation in Alchornea triplinervia (Spreng) Mull. Arg. (Euphorbiaceae) under distinct light and soil water regimes. Bot. J. the Linnean Society 136:231-238 95.Ryan, K. G., E. E. Swinny, K. R. Markham, and C. Winefield. 2002. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59:23-32. 96.Samuoliene, G., A. Urbonaviciute, P. Duchovskis, Z. Bliznikas, P. Vitta, and A. Zukauskas. 2009. Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. HortScience 44:1857-1860. 97.Schaffer, B. and G. O. Gaye. 1989. Gas change, chlorophyll and nitrogen of mango leaves as influenced by light environment. HortScience 24(3):507-509. 98.Schuerger, A. C. and C. S. Brown. 1997. Spectral quality affects disease development of three pathogens on hydroponically grown plants. HortScience 32(1):96-100. 99.Schuerger, A. C., C. S. Brown, and E. C. Stryjewski. 1997. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light emitting diodes supplemented with blue or far-red light. Ann. J. Bot. 79:273-282. 100.Schagerl, M. and B. Muller. 2006. Acclimation of chlorophyll a and carotenoid levels to different irradiance in four freshwater cyanobacteria. J. Plant Physiol. 163:709-716. 101.Seiler, J. R. and J. D. Johnson. 1988. Physiological and morphological responses of three half-sib families of loblolly pine to water-stress conditioning. Forest Sci. 34:487-495. 102.Senger, H.. 1982. The effect of blue light on plants and microorganisms. Photochem. Photobiol. 35:911-920. 103.Sharat, D., P. Gangollia, and A. Brandtb. 1994. Nitrate, nitrite and Nnitroso compounds. Eur. J. Pharmacol. 292:1-38. 104.Sims, D. A., and R. W. Pearcy. 1992. Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light. Am. J. Bot. 79:449-455. 105.Smith, H.. 1982. Light quality, photoperception, and plant strategy. Annu. Rev. Plant Physiol. 33:481-518. 106.Syvertsen, J. P. and M. L. Smith. 1984. Light acclimation in citrus leaves. I. Changes in physical characteristics chlorophyll and nitrogen content. J. Amer. Soc. Hort. Sci. 109(6):807-812. 107.Taiz, L. and E. Zeiger. 2006. Photosynthesis: Physiology and ecological considerations. Plant Physiology 4nd. p. 220. 108.Tattini, M., C. Galardi, P. Pinelli, R. Massai, D. Remorini, and G. Agati. 2004. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 163:547-561. 109.Talbott, L. D., G. Nikolova, A. Ortiz, I. Shmayevich, and E. Zeiger. 2002. Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. Amer. J. Bot. 89:366-368. 110.Tennessen, D. J., R. J. Bula, and T. D. Sharkey. 1995. Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynthesis Res. 44:261-269. 111.Tennessen, D. J., E. L. Singsaas, and T. D. Sharkey. 1994. Light-emitting diodes as a light source for photosynthesis research. Photosynthesis Res. 39:85-92. 112.Tripathy, B. C. and C. S. Brown. 1995. Root-shoot interaction in the greening of wheat seedlings grown under red light. Plant Physiol. 107:407-411. 113.Tsormpatsidis, E., R. G. C. Henbest, F. J. Davis, N. H. Battey, P. Hadley, and A. Wagstaffe. 2008. UVirradiance as amajor influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’ grown under polyethylene films. Env. Exp. Bot. 63:232-239. 114.Urbas, P.. 2000. Adaptive and inevitable morphological of three herbaceous species in a multi-species community: field experiment with manipulated nutrients and light. Acta Oecologic 21:139-147 115.Valladares, F. and U. Niinements. 2008. Shade tolerance, a key plant feature of complex nature and consequence. Annual Review of Ecology, Evolution, and Systematics 39:237-251. 116.Vergeer, L. H. T., T. L. Aarts, and J. D. Degroot. 1995. The wasting disease and the effect of abiotic factors (light-intensity, temperature, salinity) and infection with labyrinthula-zosterae on the phenolics content of zostera-marina shoots. Aquat. Bot. 52:35-44. 117.Wang, M., W. Jiang, and H. Yu. 2010. Effects of exogenous epibrassinolide on photosynthetic characteristics in tomato (Lycopersicon esculentum Mill) seedlings under weak light stress. J. Agric. Food Chem. 58:3642-364. 118.Whitelam G. and K. Halliday. 2007. Light and plant development. Blackwell Publishing, Oxford. 119.Wu, M. C., C. Y. Hou, C. M. Jiang, and Y. T. Wang. 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 101:1753-1758. 120.Yang, Q. Z.. 2004. Soil and fertilizer. Taichung, Taiwan:Nong Shi Co. 60:78. 121.Yanagi T., K. Okamoto, and S. Takita. 1996. Effects of blue and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. Acta Horticulturae 440:117-122. 122.Yanovsky, M. J., T. M. Alconada-Magliano, M. A. Mazzella, C. Gatz, B. Thomas, and J. J. Casal. 1998. A affects stem growth, anthocyanin synthesis, sucrose phosphate synthase activity and neighbour detection in sunlight-grown potato. Planta. 205:235-241. 123.Yeh, N. and J. P. Chung. 2009. High-brightness LEDs-Energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews 10:2175-2180. 124.Yorio, N. C., G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36:380-383.
摘要: 設施提供穩定的生產環境,蔬菜生產上可於設施內育苗或栽培,但在設施內栽培作物常因光照不足進而使用人工光源來補光,在光電技術日益精進的今天,高效能之新興人工光源Light emitting diode (LED)的發明,逐漸取代傳統人工光源於農業上的使用。光環境包括光質及光強度,皆會影響蔬菜生長,在植物工廠及立體栽培模式下,為了能更有效率的使用LED,本研究調查人工光源對甘藍、結球白菜穴盤苗株及水耕小白菜植株生長之影響,分析並建議較適合之光源條件。   ‘和風’甘藍及‘瑞喜’結球白菜苗株出土後,立即於生長室內分別以180±10、210±10、240±10、270±10 μmol m-2 s-1四種不同光強度育苗,以網室內自然光照作為對照組。結果顯示‘和風’甘藍在210±10μmol m-2 s-1光照下的苗株生長情形較佳,其下胚軸無明顯抽長且莖徑較粗,苗株鮮、乾重也較其他處理佳,五種壯苗指數的分析結果均顯示在210±10μmol m-2 s-1光照下可得到較好的苗株品質,碳水化合物含量以270±10 μmol m-2 s-1及對照組顯著較高,由此可知光強度高低與碳水化合物多寡呈正相關,葉綠素含量則無顯著差異。‘瑞喜’結球白菜雖然在270±10 μmol m-2 s-1光強度下徒長最少,但其他性狀表現較不顯著,難以分辨最適合之光強度,因此主要根據壯苗指數來判定,分析結果顯示在270±10、240±10 μmol m-2 s-1光強度下的表現較佳且彼此差異不大,在成本的考量下選擇240±10 μmol m-2 s-1光強度作為結球白菜育苗時最適當之光強度。   根據光強度試驗結果,‘和風’甘藍及‘瑞喜’結球白菜苗株分別選用210±10、240±10 μmol m-2 s-1進一步研究較適合之光質組成。結果顯示‘和風’甘藍苗株在紅藍光比為7:1和9:1兩種複合光質下的整體性狀表現較佳,其中在紅藍光比為9:1的複合光質照射下有最大的壯苗指數及G值,且光合作用能力及產物含量也最高。‘瑞喜’結球白菜苗株以不同光質處理雖在下胚軸長、莖長、莖徑、株高等性狀無顯著差異,葉片大小及苗株整體生物量則以紅藍光比為9:1的複合光質處理表現最佳,與對照組無差異,且有最大的壯苗指數及G值,光合速率也較高,而不同光質處理在光合產物和光合色素方面則無顯著差異。以上結果顯示適合‘和風’甘藍及‘瑞喜’結球白菜育苗之光強度分別為210±10 μmol m-2 s-1、240±10 μmol m-2 s-1,最適之光質則同樣是紅藍光比例為9:1之複合光質。將人工光源所育出的苗定植後發現,紅藍光比例為9:1之複合光質所育出的‘和風’甘藍及‘瑞喜’結球白菜苗株定植初期的表現最佳,但在後期及採收時則各光質處理組無顯著差異。   不同光強度、光質組成之LED對水耕栽培小白菜的生長發育及品質之影響,結果均顯示當光強度在300±50 μmol m-2 s-1以上時,光質對小白菜的影響才會顯現,其中在含有較多藍光比例的R:G:B=42:36:22及R:B=7:2兩複合光質處理下有較高的光合作用能力、光合色素及生物量,且抗壞血酸含量也較高;而在紅藍光比例為9:1之複合光質下,產量可能較高,但植體卻可能有較柔弱現象。本研究提供適合甘藍及結球白菜育苗及水耕小白菜生長之光環境,以供光電生產者參考。
The light environment, including the light intensity and light quality, affects the growth of vegetables. In order to more efficiently employ light emitting diodes (LEDs) as the light source in a plant factory using a three-dimensional cultivation system, this study investigated the influence of artificial light on the plug seedling growth of the cabbage and Chinese cabbage, and on the growth of hydroponic non-heading Chinese cabbage. After seedling emergence, the cabbage ‘Tropical Delight’ and Chinese cabbage ‘Auspicious’ were grown indoors under light intensities of 180 ± 10, 210 ± 10, 240 ± 10, and 270 ± 10 μmol m-2 s-1. Control plants were grown in a net house under natural light. The results indicated that the cabbage ‘Tropical Delight’ has the best seedling growth under a light intensity of 210 ± 10μmol m-2 s-1, during which the seedlings show no significant hypocotyl elongation, have a wider stem diameter, and tend to be shiny bright green in color. In addition, the dry weight of the seedlings was also higher than that under other treatments. Comparison of the strong seedling index among the five different treatments demonstrated that treatment with a light intensity of 210 ± 10 μmol m-2 s-1 led to the best seedling quality, and plants treated with a light intensity of 210 ± 10 μmol m-2 s-1 or the control group have a higher carbohydrate content in the seedlings, suggesting that light intensity is positively correlated with carbohydrate content but independent of chlorophyll content. The Chinese cabbage ‘Auspicious’ showed minimum stem elongation under a light intensity of 270 ± 10 μmol m-2 s-1; however, no significant advantage was seen in the other growth characteristics and it was difficult to determine the optimal light intensity for seedling growth. Therefore, the strong seedling index was used to analyze the optimal light intensity. The analysis showed that light intensities of 270 ± 10 and 240 ± 10 μmol m-2 s-1 gave the best results and led to similar outcomes. Therefore, an optimal light intensity of 240 ± 10 μmol m-2 s-1 is recommended for the growth of Chinese cabbage seedlings. When these two cabbages were grown at a light intensity of 210 ± 10 or 240 ± 10 μmol m-2 s-1 to investigate the effect of light quality on seedling growth, the results showed that a combination of red and blue light at a ratio of 7:1 or 9:1 led to the best overall seedling growth. A light quality of a red:blue ratio of 9:1 led to the best strong seedling index and G value, as well as the greatest photosynthetic capacity and product content. No differences in hypocotyl length, stem length, stem diameter, plant height and photosynthesis were seen for the Chinese cabbage ‘Auspicious’ grown under different light quality treatments, while a light quality of a red:blue ratio of 9:1 led to the best leaf size and seedling biomass, which were similar to that of the control group. The treatment also resulted in the highest strong seedling index and G value, and a higher photosynthetic rate. The optimal light quality for these two cabbages was a combination of red and blue light at a ratio of 9:1. When seedlings grown under artificial light were transplanted, plants under a light quality of a red:blue ratio of 9:1 had the best growth performance in the earlier stage after transplantation, while no difference was seen between treatments at the late and harvest stages. For the hydroponic growth of Pak-choi, among different LED light intensities and light quality combinations, it was found that at a light intensity above 300 ± 50 μmol m-2 s-1 and under a light quality with a higher blue light ratio, at combinations of R:G:B = 42:36:22 and R:B = 7:2, the plants had a higher photosynthetic capacity, more photosynthetic pigments and biomass, and a higher ascorbic acid content. On the other hand, plants grown under a light quality with a combination of red and blue light at a ratio of 9:1 had a high yield, but this treatment induced stem elongation, and the plants were weak. This study provides the optimal light environment conditions for the growth of the cabbage and Chinese cabbage, as well as hydroponic non-heading Chinese cabbage. The results can be a very useful reference for the photoelectric industry for the development of suitable LED light sources for the growth of these vegetables.
URI: http://hdl.handle.net/11455/29380
其他識別: U0005-1408201201040900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408201201040900
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.