Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29405
DC FieldValueLanguage
dc.contributor宋妤zh_TW
dc.contributorYu Sungen_US
dc.contributor.author黃敬凱zh_TW
dc.contributor.authorHuang, Jing-Kaien_US
dc.contributor.other園藝學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T07:32:38Z-
dc.date.available2014-06-06T07:32:38Z-
dc.identifierU0005-1406201310031400en_US
dc.identifier.citation農委會農糧署。2012。國產有機質肥料品牌推薦作業規範。http://www.afa.gov.tw/laws_index.asp?CatID=202 中華肥料協會。2005。作物施肥手冊。行政院農業委員會農糧署。154pp.。 朱科鈴、蔣洁、胡永光、李萍萍。2005。溫室蔬菜光合作用特性的試驗研究。農機化研究3:202-204。 宋宛霖。2007。不同施肥策略下有機和慣行農耕法對土壤品質之研究。國立中興大學土壤環境研究所碩士論文。120pp.。 吳川德、阮雲澤。2004。海南旱地蕹菜對尿素氮吸收利用的研究。熱帶農業科學24(5):18-21。 吳正宗。2001。鹽害土壤的診斷與改良。興大農業36:19-23。 吳正宗。2009。蔬菜園施肥要領。興大農業69:10-14。 吳正宗。2011。肥料學。國立中興大學土壤環境科學系。台中。226pp.。 林岱平。2006。在亞熱帶生產低硝酸鹽蔬菜-主婦聯盟生活消費合作社檢驗資料之分析。國立中興大學園藝研究所碩士論文。104pp.。 林紫慧、洪崑煌。1992。土壤酸性的認識。酸性土壤之特性及其改良研討會論文集。中華土壤肥料學會。p. 1-49。 林毓雯、王鍾和。2002。不同有機資材之分解與氮素礦化。作物有機栽培。臺灣省農業試驗所。p. 105-116。 林麗玉、劉政道、林照能、陳甘澍、周雪美。2004。蕹菜採種栽培。農業世界雜誌,255:72-75。 洪崑煌。1995。有機物對作物生產的功能。有機質肥料合理施用技術研討會專刊。臺灣省農業試驗所。p. 59-71。 張仲民譯、麻生末雄、麻生昇平、松崎敏英。1981。作物之營養與肥料。徐氏基金會。188pp.。 張明暉、簡宣裕、劉禎祺。2005。有機質肥料介紹。行政院農委會農業試驗所合理化施肥專刊。臺灣省農業試驗所。p. 255-266。 張振賢、周緒元。1997。主要蔬菜作物光合與蒸散特性研究。園藝學報24(2):155-160。 張庚鵬、張愛華。1997。蔬菜作物營養障礙診斷圖鑑。臺灣省農業試驗所。109pp.。 范淑貞。1996。蕹菜新品種「桃園一號」之選育。桃園區農業改良場研究報告。24:1-18。 柯勇。2002。植物生理學。藝軒圖書出版社。762pp.。 馬清華、楊瑞玉、林月惠、林美月。2012。低硝態氮安全葉菜氮肥監控技術之研究與對策。農田土壤之肥料承載量:氮肥施用與作物吸收研討會論文集。中華土壤肥料學會。p. 103-118。 曹兵、賀發雲、徐秋明、蔡貴信。2006。南京郊區番茄地中氮肥的效應與去向。應用生態學報17(10):1839-1844. 盛澄淵。1956。肥料學。國立編譯館。台北。p. 99-144。 陳仁炫、歐淑蒖。2005。不同有機質材之磷釋出特性及對土壤性質之影響。有機質肥料之施用對土壤與作物品質之影響研討會論文集。國立臺灣大學編印。p. 19-46。 陳珀若。1979。臺灣常見蔬菜、營養及生理之研究。國立中興大學園藝學系學士論文。 47pp.。 陸扣萍、謝寅峰、閔炬、施衛明。2011。不同施氮量對大棚萵苣根系形態及產量和品質的影響。土壤43(4):542-547。 鄒國元、劉保存、王美菊、吳靜、孫明德。2002。施肥對蕹菜生長及品質的影響。華北農學報17(2):97-101。 鄔家琪、張喜寧。2001。硝酸離子含量對蔬菜品質的影響。科學農業 49(1):1-6。 劉政道、陳甘澍、李碩朋。1999。種子大小對蕹菜種子萌芽及活力之影響。植物種苗1(1):7-18。 蔡宜峯、莊作權、黃裕銘。1995。堆肥有效養分潛能估測之研究。有機質肥料合理施用技術研討會專刊。臺灣省農業試驗所。p. 242-258。 韓鵬遠、焦曉燕、王立革、董二偉、王勁松。2010。太原城郊老菜區番茄氮肥利用率及氮去向研究。中國生態農業學報18(3):482-485。 鍾仁賜、翁弘明。1998。有機質肥料對蔬菜生長及氮成份與土壤肥力之影響。農業廢棄物在有機農業之應用研討會專刊。行政院農業委員會。p. 136-164。 譚鎮中、李振州、王銀波。2001。硝化抑制劑對小白菜植體中硝酸態氮含量之影響。土壤與環境 4(1):47-54。 Adams, W. W., C. R. Zarter, V.Ebbert, and B. and Demmig-Adams. 2004. Photoprotective strategies of overwintering evergreens. BioScience. 54:41-49. Agehara, S. and D. D. Warncke. 2005. Soil Moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil. Sci. Soc. Am. J. 69: 1844-1855. Amr, A. and N. Hadidi. 2001. Effect of cultivar and harvest date on nitrate andnitrite content of selected vegetables grown under open field and greenhouse conditions in Jordan. J. Food Comp. Analy. 14:59-67. Anjana, U. S., M. Iqbal, and Y. P. Abrol. 2006. Are nitrate concentrations in lefy vegetables within safe limits? Proceedings of the workshop on nitrogen in environment, industry and agriculture, New Delhi, India.p.81-84. Appenroth, K. J., R. Meco, V. Jourdan, and K. Lillo. 2000. Phytochrome and post-translational regulation of nitrate reductase in higher plants. Plant Sci. 159:51-56. Atkin, O. K. 1996. Reassessing the nitrogen relations of arctic plants. Plant Cell Environ. 112:1167-1175. Bai, K. D., D. B. Liao, D. B. Jiang, and K. F. Cao. 2008. Photosynthetic induction in leaves of co-occurring Fagus lucida and Castanopsis lamontii saplings grown in contrasting light environments. Trees22:449-462. Beevers, L. and R. H. Hageman. 1969. Nitrate reductase in higherplants. Ann. Rev. Plant Physiol. 20: 495-522. Beffa, T., M. Blanc, and M. Aragno. 1996. Obligately and facultatively autotrophic, sulfur- and hydrogen-oxidizing thermophilic bacteria isolated from hot composts. Arch. Microbiol. 165:34-40. Bingham, F. T. 1962. Chemical test for available phosphorus. Soil Sci. 94:87-95. Bitzer, C. C. and J. T. Sims. 1988. Estimating the availability of nitrogen in poultry manure through laboratory and field studies. J. Environ. Qual. 17:47-54. Björkman, O. and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 170:489-504. Bosatta, E. and G. Agren. 1997. Theoretical analyses of soil texture effects on organic matter dynamics. Soil Biol. Biochem. 29(11): 1633-1638. Blom, Z. H. and E. M. Lampe. 1985. The role of nitrate in the osmoregulation of lettuce (Lactauca sativa L.) grown at different light intensities. J. Exp. Bot. 36:1043-1052. Blom-Zandstra, M. and A.H. Eenink. 1985. Nitrate concentration andreduction in different genotypes of lettuce. J. Amer. Soc. Hort. Sci.111:908-911. Blom-Zandstra, M., H. T. M. Koot, J. Hattum, and A. C. Borstlap. 1990. Interaction of uptake malate and nitrate into isolated vacuoles from lettuce leaves. Planta. 183: 10-16. Boardman, N. K. 1977. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant. Physiol. 28:355-377. Bremner, J. M. and C. S. Mulvaney. 1982. Salicylic acid-thiosulfate modification of Kjeldahl method to include nitrate and nitrite, p. 621-622. In: Method of Soil Analysis Part 2 Chemical and Microbiological Properties 2nd (ed.). A. L. Page. Academic Press, New York, USA. Buchanan, B. B., W. Gruissem, and R. L. Jones. 2000. Nitrogen and sulfur. In: Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rock-ville, Md. 789pp. Burns, I. 2000. Development of a decision support system for nitrogen fertilizer application in glasshouse lettuce (LINK). Final report on project PC88a (LINK project LK 0438) to the Horticultural Development Council, East Malling, Kent. Campbell, H. W. 1999. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Miol. 50:277-303. Campbell, W. H. 2002. Molecular control of nitrate reductase and other enzymes involvedin nitrate assimilation. In: Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, Foyer, C.H. &Noctor, G.(eds). Netherlands; Kluwer Academic. p. 35-48. Cantliffe, D. J. 1972. Nitrate accumulation in spinach grown under different light intensities. J. Amer. Soc. Hort. Sci. 97:152-154. Castellanos, J. Z. and P. F. Pratt. 1981. Mineralization of manure nitrogen-correlation with laboratory indexes. Soil Sci. Soc. Am. J. 45:354-357. Cataldo, D. A., M. Haroon, L. E. Schrader, and V. L. Youngs. 1975. Rapid colorimetric of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plan. 6:71-80. Chapman, H. D. 1966. Diagnostic criteria for plant and soils. In: Univ. Calif., Div. Agric. Sci., U.S. A. 793pp. Chen, B., Z. Wang, S. Li, and G.. Wang. 2004. Effect of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 167:635-643. Cheng, C. L., G. N. Acedo, M. Cristinsin, and M. A. Conkling. 1992. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc. Natl. Acad. Sci. USA. 89:1861-1864. Cook, B. D.and L. Allan. 1992. Dissolved organic carbon in old field soils: total amounts as a measure of available resources for mineralisation. Soil Biol. Biochem. 24:585-594. Constantinides, M. and J. H. Fownes. 1994. Nitrogen mineralization from leaves and litter of tropical plants: relationship to nitrogen, lignin and soluble polyphenol concentrations. Soil Biol. Biochem. 26:49-55. Demmig-Adams, B. and W. W. Adams. 1996. The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1:21-26. Demmig-Adams, B., W. W. Adams, D. H. Barker, B. A. Logan, D. R. Bowling, and A. S. Verhoeven. 1996. Using chlorophyⅡ fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Plant Physiol. 98:253-264. Demmig, B. and Winter, K. 1988. Relationship between thylakoid electron transport and photosynthetic CO2 uptake in leaves of three miaze(Zeamays L.) hybrids. Photosynth. Res. 58:245-257. Demšar, J., J. Osvald, and D. Vodnik. 2004. The effect of light-dependent application of nitrate on the growth of aeroponically grown lettuce (Lactuca sativa L.) J. Am. Soc. Hortic. Sci. 129(4):570-575. Douglas, B. F. and F. R. Magdoff. 1991. An evaluation of N mineralization indices for organic residues. J. Environ. Qual. 20:368-372. EC (European Commission). 2002. Commission Regulation (EC) No 563/2002 of 2 April 2002 amending Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffs. Official J Eur. Commun. L86:5-6. Farrar, J., Farrar, M. Hawes, D. Jones, and S. Lindow. 2003. How roots control the flux of carbon to the rhizosphere. Ecology 84(4):827-837. Flores, P., M. A. Botella, A. Cerdá, and V. Martínez. 2004. Influence of nitrate level on nitrate assimilation in tomato (Lycopersicon esculentum) plants under saline stress. Can. J. Botany 82: 207-213. Frantz, J. M. and B. Bugbee. 2005. Acclimation of plant populations to shade: photosynthesis, respiration, and carbon use efficiency. J. Am. Soc. Hortic. Sci. 130(6):918–927. Fu, W., P. Li, and Y. Wu. 2012. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci. Hortic. 135:45-51. Gale, P. M. and J. T. Gilmour. 1986. Carbon and nitrogen mineralization kinetics for poultry litter. J.Environ. Qual. 15:423-426. Gilmore, A. M. and O. Björkman. 1994. Adenine nucleotides and the xanthophyll cycle in leaves. Planta 192:526-536. Givnish, T. J. 1988. Adaptation to sun and shade: a whole-plant perspective. Aust. J. plant physiol. 15:63-92. Glenn, E. P., P. Cardran, and T. L. Thompson. 1984. Seasonal effects of shading on growthof greenhouse lettuce and spinach. Sci. Hortic. 24: 231-239. Guerrero, M. G., J. M. Vega, and M. Losada. 1981. The assimilatory nitrate reducing system and its regulation. Annu. Rev. Plant Physio. 32:169-204. Han, Q., E. Yamaguchi, N. Odaka. and Y. Kakubari. 1999. Photosynthetic induction responses to variable light under field conditions in three species grown in the gap and understory of a Fagus crenata forest.Tree Physiol. 19:625-634. Havaux, M., K. P. Bonfils, C. Lutz, and K. K. Niyogi. 2000. Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophylls cycle enzyme violaxanthin de-epoxidase. Plant Physiol. 124:273-284. He, J., C. W. Chee, and C. J. Goh. 1996. Photoinhibition of Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature. Plant Cell Environ. 19:1238-1248. Hendrix, P. F., D. C. Coleman, and D. A. Crossley. 1992. Using knowledge of soil nutrient cycling processes to design sustainable agriculture. J. Sustain. Agr. 2:63-82. Henry, H. A. L.and R. L. Jefferies. 2003. Interactions in the uptake ofamino acids, ammonium and nitrate ions in the arctic salt-marshgrass, Puccinellia phryganodes. Plant Cell Environ. 26:419-428. Hesse, P. R. 1971. A textbook of soil chemical analysis. John Murray. London. 513pp. Hewitt, E. J. 1975. Assimilatory nitrate-nitrite reduction. Annu. Rev. Plant Physiol. 26: 73-100. Hill, M. J. 1991. Nitrate and Nitrites in food and water.Ellis Horwood. p.163-187. Hill, M. J. 1999. Nitrate toxicity: myth or reality? Br.J.Nutr. 81:343-344. Horwitz, W. 1970. Association of official analytical chemist. In: Official methods of analysis, 12th (ed). Sec. 2. p. 204. Huang, J., S. Wang, L. Yan, and Q. Zhong. 2010. Plant photosynthesis and its influence on removal efficiencies inconstructed wetlands. Ecol. Eng. 36:1037-1043. Huber, S. C. and W. M. Kaiser. 1996. 5-Aminoimidazole-4-carboxiamideriboside activates nitrate reductase in darkened spinach and pealeaves. Physiol. Plantarum 98: 833-837. Ikeda, H. 1991. Utilization of nitrogen by vegetable crops. Jarq. 25:117-124. Ivashikina, N. V. and O. A. Sokolov. 1997. Regulation of nitrate distribution in maize seedlings by nitrate, nitrite, ammonium and glutamate. Plant Sci. 123: 29-37. Jawoski, E. G. 1971. Nitrate reductase assay in intact plant tissues. Biochem. Biopphyd. Res. Commu. 43:1274-1279. JECFA (Joint FAO/WHO Expert Committee on Food Additives). 1996. Nitrate. Toxicological Evaluation of Certain Food Additives and Contaminants in Food. WHO Food Additives Series 35:325-360. Jones, D. L, J. R. Healey, V. B. Willett, J. F. Farrar, and A. Hodge. 2005. Dissolved organic nitrogen uptake by plants: an important Nuptake pathway? Soil Biol. Biochem. 37:413-423. Kaiser, W. M., H. Weiner, and S. C. Huber. 1999. Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity. Physiol. Plant. 105:385-390. Kaiser, W. M. and S. C. Huber. 2001. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J. Exp. Bot. 52:1981-1989. Kinoshita, T. and K. Shimazaki. 1999. Blue light activates the plasma membrane H+-ATPase by phosphorylation the C-terminus in stomatal guard cells. Embo J. 18:5548-5558. Kitao, M., T. T. Lei, T. Koike, T. Koike, H. Tobita, and Y. Maruyama. 2006. Tradeoff between shade adaptation and mitigation of photoinhibition in leaves of Quercus mongolica and Acermono acclimated to deep shade. Tree Physiol. 26:441-448. Knight, S. L. and C. A. Mitchell.1983a. Enhancement of lettuce yield by manipulation of light and nitrogen nutrition. Sci. Hortic. 108:750-754. Knight, S. L. and C. A. Mitchell. 1983b. Stimulation of lettuce productivity by manipulation of diurnal temperature and light. Sci. Hortic. 18:462-463. Kumar, K. and K. M. Goh. 2003. Nitrogen release from crop residues and organic amendments as affected by biochemical composition. Commun. Soil Sci. Plan. 34: 2441-2460. Krall, J. P. and G. E. Edwards. 1990. Quantum yields of photosystemII electron transport and carbon dioxide fixation in C4 plants. Aust. J. Plant Physiol. 17:579-588. Lambers, H., F. S. ChapinIII, and T. L Pons. 1998. Plant physiologicalecology. Springer -Verlag. New York, 540pp. Lennox, S. D., R. H. Foy, R. V. Smith, and C. Jordan. 1997. Estimating the contribution from agriculture to the phosphorus load in surface water. In: H. tunney O. T. Carton, P. C. Brookes and A. E. Johonson (eds.) Phosphorus Loss from Soil to Water. CAB Int., New York. p.55-75. Li, X. P., O. Björkman, C. Shih, A. R. Grossman, M. Rosenquist, S. Jansson, and K. K. Niyogi. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391-395. Li, Z. Z. and S. F. Gong. 2002. Vertical columa and system of columnar soilless culture(scsc) and its application to cultivation of lettuce. Chin. J. Appl. Environ. Biol. 8:142-147. Lin, C. F. 1967. A eeport on the soil tests for the cropland of Taiwan. Bull. Taiwan Agric. Res. Inst. No. 28. Taipei. 23pp. Lin, C. 2002. Blue light receptors and signal transduction. Plant Cell 14:S207-225. Liu, K. W. and Q. C. Yang. 2012. Effects of short-term treatment with various light intensities and hydroponic solutions on nitrate concentration of lettuce. Acta. Agr. Scand. B-S. P.62(2):109-113. Lu, Z., J. W. Radin, E. L. Turcotte, R. Percy. and E. Zeiger. 1994. High yields inadvanced lines of Pima cotton are associated with higher stomatal conductance, reduced leaf area and lower temperature. Plant Physiol. 92: 266-272. Manojlovic., M, R. Čabilovskia, and M. Bavec. 2010. Organic materials: sources of nitrogen in the organic production of lettuce. Turk. J. Agric. For. 34:163-172. Marschner, H. 1995. Mineral nutrition of higher plants. 2nd Ed. Academic, London. 889pp. Martin, J. P. and D. D. Focht. 1977. Biological properties of soil. In: Soils for management of organic wastes. Elliott, L. F.(ed). Madison, Wisconsin. USA. p.114-169. Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence-apractical guide. J. Exp. Bot. 51:659-668. McClure, P. R., L. V. Kochian, R. M. Spanswick, and J. E. Shaff. 1990. Evidence for cotransport of nitrate and protons in maize roots. Plant Physiol. 93:290-294. Mehlich, A. 1976. New buffer pH method for rapid determination of exchangeable acidity and lime requirement of soil. Commun. Soil Sci. Plan. 7(7):637-652. Mensinga, T. T., G. J. A. Speijers, and J. Meulenbelt. 2003. Health implications of exposure to environmental nitrogenous compounds. Toxicol. Rev. 22: 41-51. Miller, A. J., X. Fan, Q. Shen, and S. J. Smith. 2007. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J. Exp. Bot. 59(1):111-119. Moll, R. H., E. J. Kamprath, and W. A. Jackson. 1982. Analysis and interpretation of factors which contribute to efficiency to nitrogen utilization. Agron. J. 74:562-564. Niyogi, K. K. 2000. Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3:455-560. Norman, R. J, J. T. Gilmour, and B. R. Wells. 1990. Mineralization of nitrogen from nitrogen-15 labeled crop residues and utilization by rice. Soil Sci. Soc. Am. J. 54:1351-1356. Nugroho, S. G. and S. Kuwatusuka. 1990. Concurrent observation of several processes of nitrogen metabolism in soil amended with organic materials. I. Effect of different organic materials on ammonification, nitrification, denitrication, and N fixation under aerobic and anaerobic conditions. Soil Sci. Plant Nutr. 36(2):215-224. Pannala, A. S., A. R. Mani, J. P. E. Spencer, V. Skinner, K. R. Bruckdorfer, K. P. Moore, and C. A. Rice-Evans. 2003. The effect of dietary nitrate on salivary, placma, and urinary nitrate metadolism in humans. Free Rad. Biol. Med. 34: 576-584. Parker, F. W., W. L. Nelson, E. Winters, and I. E. Niles.1951. The broad interpretation and application of soil test information. Agron. J.43:105-112. Pérez-Torres, E., L. A. Bravoa, L. J. Corcueraa, and G. N. Johnson. 2007. Is electron transport to oxygen an important mechanism in photoprotection? Contrasting responses from antarctic vascular plants. Physiol. Plant. 130:185-194. Raschke, K. 1975. Stomatal action. Annual Rev. Plant Phy. 26:309-340. Reddy, K. S. and R. C. Menary. 1990. Nitrate reductase and nitrate accumulation in relation to nitrate toxicity in Boronia megastigma. Physiol. Plant. 78: 430-434. Reinertsen, S. A., L. F. Elliott, V. L. Cochran, and G. S. Campbell. 1984. Role of available C and N in determining the rate of wheat straw decomposition. Soil Biol.Biochem.16 :459-464. Reining, E. 1994. Acclimation of C3 photosynthesis to elevated CO2: hypotheses and experimental evidence. Photosynthetica 30:519-525. Ribeiro, H. M., D. Fangueiro, F. Alves, R. Ventura, D. Coelho, E. Vasconcelos, C. Cunha-Queda, J. Coutinho, and F. Cabral. 2010. Nitrogen mineralization from an organically managed soil and nitrogen accumulation in lettuce. J. Plant Nutr. Soil Sci. 173: 260-267. Ripley, B. S, M. E. Gilbert, D. G. Ibrahim, and C. P. Osborne. 2007. Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J. Exp. Bot. 58:1351-1363. Roháček, K. and M. Barták. 1999. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339-363. Probert, M. E., R. J. Delve, S. K. Kimani, and J. P. Dimes. 2005. Modelling nitrogen mineralization from manures: representing quality aspects by varying C:N ratio of sub-pools. Soil. Biol. Biochem. 37(2): 279-287. Probert, M. E., R. J. Delve, S. K. Kimani, and J. P. Dimes. 2005. Modelling nitrogen mineralization from manures: representing quality aspects by varying C:N ratio of sub-pools. Soil Biol. Biochem. 37(2): 279-287. Rosen, H. 1957. A modified ninhydrin colorimetric analysis for amino acid. Arch. Biochem. Biophys. 67: 10-15. Santamaria, P., A. Elia, F. Sero, and E. Todaro. 1999. A survey of nitrate and oxalate content in fresh vegetables. J. Sci. Food Agric. 79:1882-1888. Santamaria, P., A. Elia, M. Gonnella, A. Parente, and F. Serio. 2001. Ways of reducing rocker salad nitrate content. Acta Hort. 548: 529-537. Santamaria, P. 2006. Nitrate in vegetables: toxicity, content, intake and EC regulation. J. Sci. Food Agric. 86: 10-17. Samuelson, M. E., W. H. Campbell, and C. M. Larsson. 1995. The influence of cytokinins in nitrate regulation of nitrate reductase activity and expression in barley. Physiol. Plant. 93:533-539. Schobert, C. and E. Komora.1987.Amino acid uptake by Ricinus communis roots: characterization and physiological significance. Plant Cell Environ. 10(6):493-500. Schroeder, J. I., G. J. Allen, V. Hugouvieux, J. M. Kwak, and D. Waner. 2001. Guard cell signal transduction. Annu. Rev. Plant Phys. 52:627-658. Sims, J. T. 1986. Nitrogen transformations in a poultry manure amended soil: Temperature and moisture effects. J. Enriron. Qual. 15:59-63. Sivasankar, S. and A. Oaks. 1995. Regulation of nitrate reductase during early seedling growth. Plant Physiol. 107: 1225-1231. Solomonson, L. P. and M. J. Barber. 1990. Assimilatory nitratereductase: functional properties and regulation. Annu. Rev. Plant Phys. 41: 225-253. Steingröver, E., P. Ratering, and J. Siesling. 1986. Daily changes inuptake, reduction and storage of nitrate in spinach grown at low light intensity. Physiol. Plant. 66:550-556. Suphachai, A., M. Takagaki, and S. chaireag. 2006. Effect of amount of nitrogen fertilizer on early growth of leafy vegetables in Thailand. Jap. J. Trop. Agr. 50(3): 127-132. Taiz, L. and E. Zeiger. 2002. Plant Physiology. The Benjamin/Cummings Publishing Company, Inc. p. 302-307. Taiz, L. and E. Zeiger. 2010. Plant Physiology. 5th ed. Sinauer Associates, Inc, Sunderland, Massachusetts, USA. 782pp. Tei, F., P. Benincasa, and M. Guiducci. 1999. Nitrogen fertilization of lettuce, processing tomato and sweet pepper: yield, nitrogen uptake and the risk of nitrate leaching. Acta. Hort. 506:61-67. Tei, F., P. Benincasa, and M. Guiducci. 2000. Effect of nitrogen availability on growth and nitrogen uptake in lettuce. Acta Hort. 533:385-392. Tischner, R. 2000. Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ. 23:1005-1024. Tisdale, S. L., W. L. Nelson, J. D. Beaton, and J. L. Havlin. 1993. Micronutrients and other beneficial elements in soils and fertilizer. In: P.F.Corey(ed.). Soil fertility and fertilizers. Macmillan, New York. p.305-363. Tissue, D. T., R. B. Thomas, and B. R. Strain. 1993. Long-term effect of elevated CO2 and nutrients on photosynthesis and rubisco in loblolly pine seedings. Plant Cell Environ. 16:859-865. Van Iersel, M. W. 2003. Carbon use efficiency depends on growth respiration, maintenance respiration, and relative growth rate. A case study with lettuce. Plant Cell Environ. 26:1441-1449. Vavasseur, A. and A. S. Raghavendra. 2005. Guard cell metabolism and CO2 sensing. New Phytol. 165:665-682. Vincentz, M., T. Moureaux,M. T. Leydecker, H. Vaucheret, and M. Caboche. 1993. Regulation ofnitrate and nitrite reductase expression in Nicotianaplumbaginifolia leaves by nitrogen andcarbon metabolites. Plant J. 3: 315-324. Weatherburn. M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39: 971-974. Weightman, R., C. Dyer, J. Buxton, and D. Farrington. 2006. Effects of light level, time of harvest and position within field on variability of tissue nitrate concentration in commercial crops of lettuce (Lactuca sativa) and endive (Cichorium endiva). Food Addit. Contam. 23(5):462-469. Williams, L. E. and A. J. Miller. 2001. Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 52:659-688. Xu, X., H. Ouyang, Y. Kuzyakov, A. Richter, and W. Wanek. 2006. Significance of organic nitrogen acquisition for dominant plant species in an alpine meadow on the Tibet plateau, China. Plant Soil 285: 221-231. Yaacob, O. and G.J. Blair. 1980. Mineralization of15N-labeled legume residues in soil with differentnitrogen contents and its uptake by rhodes grass. Plant Soil. 57: 237-248. Yoshida, S., F. Dpuglosa, C. Janosh, and G. Gwaachai. 1976. Laboratory manualfor physiological studies of rice. In: International Rice Research Institute, LosBanos, Phillippines.p.46-49. Zelitch, I. 1975. Improving the efficiency of photosynthesis. Science 188:626-633. Zhou, Y., Y. Zhang, X. Zhao, H. Yu, K. Shi, and J. Yu. 2009. Impact of light variation on development of photoprotection, antioxidants, and nutritional value in Lactuca sativa L.J. Agric. Food Chem. 59:5494-5500. Zhou, Z. Y., M. J. Wang, and J. S. Wang. 2000. Nitrate and nitrite contamination in vegetables in China. Food Rev. Int. 16: 61-76.en_US
dc.identifier.urihttp://hdl.handle.net/11455/29405-
dc.description.abstract本試驗目的為建立蕹菜及葉萵苣簡易溫網室栽培中,光強度及有機質肥料對植株生長、產量及硝酸鹽含量之影響,選擇蕹菜‘白骨’、‘桃園一號’、‘竹葉’及葉萵苣‘三號萵苣’、‘尖葉種’分別於夏季及秋冬季進行試驗, 試驗一調查蕹菜及葉萵苣之光合作用特性,在採收前進行不遮蔭、25%、50%及75%遮蔭處理,採收前平均光強度為900、675、450及225 μmol‧m-2‧s-1。蕹菜以‘白骨’較為耐蔭,‘桃園一號’、‘竹葉’光合作用特性則較為相似,光飽和點分別為700及1000 μmol‧m-2‧s-1,葉萵苣‘三號萵苣’、‘尖葉種’之光飽和點約為1000 μmol‧m-2‧s-1。蕹菜及葉萵苣硝酸還原酶活性隨著光強度減少而下降,其光合作用能力分別在光強度225 (‘白骨’)、450 (‘桃園一號’、‘竹葉’)及450 μmol‧m-2‧s-1以下開始減少,進而導致及碳水化合物的減少,處理3天即造成硝酸根離子的累積及產量的減少,75%遮蔭處理第5天時蕹菜及葉萵苣硝酸鹽含量分別可達2800~3800及2500~3200 mg/kg,產量分別減少了24~31%及25~33%,蕹菜‘白骨’及葉萵苣‘尖葉種’的光補償點較低,遮蔭處理的影響較小。 試驗二選擇植物渣粕肥料及禽畜糞堆肥,進行4個月的室內培育試驗,植物渣粕肥料的大豆粕,擁有較快速的氮素釋放率,於培育7~14天可達65~70%左右;禽畜糞堆肥的田樂一號原料為牛糞及香菇太空包所組成,於培育前14天有一波氮素釋放,氮素釋放率達到35%,其後隨著時間增加而緩慢上升,最後於培育第112天時達到約51.5%。土壤基本性質方面,田樂一號含有較高的陽離子含量,施用後在提升土壤EC值、交換性P、K、Ca、Mg及有機質含量方面較佳,EC值(1:2, w/v)可提升0.7 ds/m,並可提升土壤pH值,大豆粕施用後則會降低pH值,其大豆粕、田樂一號及對照組之pH值分別為6.73、7.26及7.13。 試驗三於簡易溫網室內土耕栽培蕹菜及葉萵苣,以試驗二所使用的肥料,依施用作物施肥手冊化學氮素推薦量的1、2、4及8倍肥料施用量,並在葉萵苣試驗中連續種植兩作。單期作時,蕹菜及葉萵苣於1倍施用量時擁有最佳的氮素利用效率,可顯著提升產量及維持低硝酸根離子含量,其硝酸鹽含量分別為1800~2200及2600~3000 mg/kg,於4、8倍施用量下會造成土壤交換性磷、無機態氮含量的累積,植體硝酸根離子達到3000 mg/kg以上。第2作葉萵苣方面,1倍施用量不足以供應物所需的養分,以2倍施用量的效果較佳。兩作的肥效表現以大豆粕優於田樂一號,兩作總產量分別較對照組增加了45~49%及68~72%。 綜合上述,蕹菜及葉萵苣分別於光強度225 (‘白骨’)、450 (‘桃園一號’、‘竹葉’)及450 μmol‧m-2‧s-1以上擁有較好的氮素代謝能力,施肥量以100及120 kg/ha N時擁有最好的經濟效應,超過480及400 kg/ha N造成植體硝酸根離子的累積。生育期一個月之葉菜栽培可施用大豆粕,並使用石灰依據情況施用調整土壤pH值,田樂一號則可能適用其他長期栽培之作物,如果菜類、花菜類或果樹等,若栽培葉菜類一次施用不宜超過400 kg/ha N,以免造成土壤磷肥大量累積。zh_TW
dc.description.abstractThe production and nitrate content of three cultivars of water convolvulus (''White Stem'',''Taoyuan No. 1'' and ''Large leaf'') and two cultivars of leaf lettuce (''Ming-Feng No.3'' and ''Pointed Leaf'') in the various application rates of organic fertilizer or shading levels and duration under simple facility in summer and winter, respectively, were studied. In experiment 1, the effects of shading (full sunlight, 25%, 50% and 75% attenuated light; with an average photosynthetic photon flux (PPF) of 900, 675, 450 and 225 μmol‧m-2‧s-1, respectively) on the photosynthetic characteristics of water convolvulus and leaf lettuce were investigated. In water convolvulus, ''White Stem'' showed the best shade tolerance, while ''Taoyuan No. 1'' and ''Large leaf'' had similar photosynthetic characteristics. The light saturation point were 700 (''White Stem'') and 1000 (''Taoyuan No. 1'' and ''Large leaf'') μmol‧m-2‧s-1 respectively. In leaf lettuce, both ''Ming-Feng No.3'' and ''Pointed leaf'' showed a similar light saturation point of 1000 μmol‧m-2‧s-1. In addition, the result showed that nitrate reductase activity of water convolvulus and leaf lettuce reduced as the decrease of light intensity, and the photosynthetic rate were reduced when the PPF were in the range of 225 (''White Stem''), 450 (''Taoyuan No. 1'' and ''Large leaf''), and 450 μmol‧m-2‧s-1, respectively, leading to decreases in the nitrate reductase activity and carbohydrate content. Three days after treatment at 50-75% attenuated light, the nitrate content in the plants was enhanced and the yield was curtailed. Five days after treatment at 50% attenuated light, the nitrate content of water convolvulus and leaf lettuce reached 2800~3800 and 2500~3200 mg/kg, respectively. Shading had a minor influence on shade-tolerant cultivars such as water convolvulus ''White Stem'' and leaf lettuce ''Pointed leaf''. In experiment 2, a 4-months laboratory incubation was conducted to determine the nitrogen release rate when using two different categories of organic fertilizers, plant residues (soybean meal, S) and composed animal manures (tatara No.1, C). S, which has a faster nitrogen release rate, showed 65~70% release after 7~14 days of laboratory incubation. C, which is a two-stage releasing fertilizer that has a fast nitrogen release stage of up to 35% during the first 14 days of incubation followed by a slow release stage, exhibited a nitrogen release of about 51.5% at day 112 of incubation. In terms of their effects on soil properties, C had more souble salt and recalcitrant substratethan S, which elevated the soil EC value (1:2, w/v) by 0.7 ds/m; it also had better exchangeable P, K, Ca, Mg and organic matter content. The use of C increased the pH value of the soil, while S reduced the pH value. The pH value of S, C and control treatment were 6.73, 7.26 and 7.13, respectively. In experiment 3, water convolvulus and leaf lettuce grown in soil in a greenhouse, and were treated with different numbers of applications (1, 2, 4 and 8 applications of chemical nitrogen the recommended amount) of S and C or no fertilizer treatment (control). The plants were continually cultivated twice during experimental period.. In the first crop season, the highest nitrogen use efficiency (NUE) of water convolvulus and leaf lettuce was when 1 application of S and C was used, following which the yields were significantly enhanced and the nitrate content of plant were low. The nitrate levels of water convolvulus and leaf lettuce were 1800~2200 and 2600~3000 mg/kg, respectively. With 4 and 8 applications, the treatment resulted in accumulation of P and inorganic N, and nitrate content of plant was over 3000 mg/kg. In the second crop season, treatment with 1 application was not able to provide enough nutrient for the planys, and treatment with 2 applications had a better outcome. In the two categories of organic fertilizer, the faster decomposition of S led to a better yield than C during the two crop seasons being elevated 45~49% and 68~72%, respectively. As compared with the control. In conclusion, water convolvulus and leaf lettuce have a good N metabolic rate at a PPF bove 225 (''White Stem''), 450 (''Taoyuan No. 1'' and ''Large leaf''), and 450 μmol‧m-2‧s-1, respectively. From the point of view of environmental ecology and economics, the nitrogen efficiency at the application rate (100 and 120 kg/ha N) should be appropriate. The faster decomposition of S means that it is the best fertilizer for application in a one-month culture, and applying lime depends on pH value of soil. C is suitable for applization in long-term culture, such as fruit vegetable, flower vegetable and fuit tree, but it should not be applied at more than 400 kg/ha N at a time for leaf vegetable, as this resluts in soil accumulation of P in the soil.en_US
dc.description.tableofcontents摘要...........................................i 目錄...........................................v 表目錄.........................................vi 圖目錄.........................................viii 壹、前言.......................................1 貳、前人研究 一、蕹菜及葉萵苣生長特性及養分需求.............2 二、有機質肥料之特性...........................3 三、影響植物光合作用之因子.....................5 四、氮代謝對植物體硝酸鹽累積之關係.............8 參、材料方法 試驗一、不同光強度處理天數對蕹菜及葉萵苣植株生育及硝酸根離子含量之影響.....................................13 試驗二、不同有機質肥料施用於土壤中氮肥釋出特性.18 試驗三、不同有機質肥料施用量對蕹菜及葉萵苣植株生育、硝酸根離子含量及養分吸收之影響.........................22 肆、結果 試驗一、不同光強度處理天數對蕹菜及葉萵苣植株生育及硝酸根離子含量之影響.....................................28 試驗二、不同有機質肥料施用於土壤中氮肥釋出特性..60 試驗三、不同有機質肥料施用量對蕹菜及葉萵苣植株生育、硝酸鹽含量及養分吸收之影響..............................66 伍、討論 一、不同光強度處理天數對蕹菜及葉萵苣植株生育及硝酸根離子含量之影響..........................................108 二、不同有機質肥料施用於土壤中氮肥釋出特性......111 三、不同有機質肥料施用量對蕹菜及葉萵苣植株生育、硝酸鹽含量及養分吸收之影響...................................113 陸、結論..........................................118 柒、參考文獻.......................................120 捌、附錄............................................131zh_TW
dc.language.isozh_TWen_US
dc.publisher園藝學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1406201310031400en_US
dc.subject硝酸鹽zh_TW
dc.subjectnitrateen_US
dc.subject蕹菜zh_TW
dc.subject葉萵苣zh_TW
dc.subject光合作用特性zh_TW
dc.subject葉綠素螢光zh_TW
dc.subject遮蔭zh_TW
dc.subject有機質肥料zh_TW
dc.subject豆粕zh_TW
dc.subject牛糞zh_TW
dc.subject氮素利用效率zh_TW
dc.subjectwater convolvulusen_US
dc.subjectleaf lettuceen_US
dc.subjectphotosynthetic characteristicsen_US
dc.subjectchlorophyll fluorescenceen_US
dc.subjectshadingen_US
dc.subjectorganic ferterlizeren_US
dc.subjectsoybean mealen_US
dc.subjectcattle dung composten_US
dc.subjectnitrogen use efficiency,en_US
dc.title有機質肥料及遮蔭對蕹菜及葉萵苣生長及硝酸鹽含量之影響zh_TW
dc.titleInfluence of Organic Fertilizers and Shading on the Growth and Nitrate Contents in Water Convolvulus (Ipomoea aquatic Forsk.) and Lettuce (Lactuca sativa L.)en_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:園藝學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.