Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29406
標題: 根溫處理對甜瓜與番茄生長之影響
Effect of Root Temperature on Growth of Melon (Cucumis melo L.) and Tomato (Solanum lycopersicum L.)
作者: 楊証閔
Yang, Jheng-Min
關鍵字: 甜瓜
melon
根溫
生長
root temperature
growth
出版社: 園藝學系所
引用: 方怡丹。1995。根溫處理對葉萵苣生理之影響。國立中興大學園藝學系碩士論文。台中。 行政院農業委員會農糧署。2009。國產優良品牌甜瓜生產管理技術作業標準。<http://www.afa.gov.tw/publish_detail.asp?catid=1008> 林世旻。2011。黃皮洋香瓜直立式栽培之結果生理及使用NaCl對果實品質之影響。國立中興大學園藝學系碩士論文。台中。 張師竹。 2012。 國際瓜果類蔬菜種苗市場概況。種苗科技暨產業發展研討會專輯。 台南區農業改良場印。 p.1-21。 曹幸之、羅筱鳳。2001。甜瓜。p.151-155。 蔬菜(II)。復文書局。台南。 莊乃穎。1997。根溫處理對水耕萵苣生理之影響。國立中興大學園藝學系碩士論文。台中。 莊國誌。2010。直立式栽培整枝方式及氯化鉀處理對東方型甜瓜植株生育、果實產量與品質之影響。國立中興大學園藝學系碩士論文。台中。 陳惠美、郭忠吉。1993。番茄之耐熱性與夏季增產之展望。亞洲蔬菜研究發展中心。蔬菜生產與發展研討會專刊. p.169-180。 黃賢良。 1995。 甜瓜。 p.377-382。 台灣農家要覽農作篇(二)。農委會。台北。 劉啟祥、林深林。1998。根溫處理對水耕小白菜地上部生理之影響。花蓮區農業彙報。16:47-57。 劉啟祥。1993。根溫處理對水耕小白菜生理之影響。國立中興大學碩士論文。台中。 戴振洋、李文汕。2009。高品質東方甜瓜栽培技術。台中區農業改良場。<http://tdares.coa.gov.tw/files/web_articles_files/tdares/7941/2723.pdf> 山崎肯哉。1982。養液栽培全篇。博友社。 Abbasal-Ani, M.K., and R.K. Hay. 1983. The influence of growing temperature on the growth and morphology of cereal seedling root systems. J. Exp. Bot. 34:1720-1730. Adebooye O.C., G. J. Noga, and C. Lankes. 2009. Root zone temperature affects emergence and growth traits of snake tomato (Trichosanthes cucumerina L.). J Cent Eur Agric. 10:239-244. Alonso, A. C.S. Queiroz, and A.C. Magalhaes. 1997. Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea Arabica L.) seedlings. Acta Biochim. Biophys. 1323:75–84. Amthor, J.S. 1984. The role of maintenance respiration in plant growth. Plant Cell Environ. 7:561-569. Asada, K, T. Endo, J. Mano, and C. Miyake. 1998. Molecular mechanism for relaxation of and protection from light stress. p. 37–52. In: K. Saton and N. Murata (eds.). Stress responses of photosynthetic organisms. Amsterdam Elsevier. Ashraf, M., M.M. Saeed, and M.J. Qureshi. 1994. Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environ. Exp. Bot. 34:275–283. Barber, D.A., and J.M. Lynch. 1977. Microbial growth in the rhizosphere. Soil Biol. Biochem. 9:305-308. Barr, W., and H. Pellett. 1972. Effect of soil temperature on growth and development of some woody plants. J. Amer. Soc. Hort. Sci. 97:632–635. Berry, J., and O. Bjorkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol. 31:491–543. Bilger, W., U. Schreiber, and O. L. Lange. 1987. Chlorophyll fluorescence as an indicator of heat induced limitation of photosynthesis in Arbutus unedo L., p. 391–399. In: J.D. Tenhunen, F.M. Catarino and O.L. Lange (eds.). Plant Response to Stress. Berlin: Springer. Blokhina, O. 2000. Anoxia and Oxidative Stress: Lipid Peroxidation, Antioxidant Status and Mitochondrial Functions in Plant. Academic dissertation. Helsinki. Bloom, A.J., M.A. Zwieniecki, J.B. Passioura, L.B. Randall, N.M. Holbrook, and D.A. St Clair. 2004. Water relations under root chilling in a sensitive and tolerant tomato species. Plant Cell Environ. 27:971-979. Blum, A., N. Klueva, and H.T. Nguyen. 2001. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117:117–123. Botia, P., J.M. Navarro, A. Cerda, and V. Martinez. 2005. Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. Europ. J. Agron. 23:243-253. Brouwer, R. 1977. Root functioning. p.299-245. In: J.J. Landsberg, and C.V. Cutting(eds.). Environmental effects on crop physiology. Academic Press Inc. London. Brouwer, R. 1981. Co-ordination of growth phenomena within a root system of intact maize plants. Plant Soil 63:65-72. Caers, M., P. Rudelsheim, H.V. Onckelen, and S. Horemans. 1985. Effect of heat stress on photosynthetic activity and chloroplast ultrastructure in correlation with endogenous cytokinin concentration in maize seedlings. Plant Cell Physiol. 26:47-52. Chen, T.H.H., Z.Y. Shen, and P.H. Lee. 1982. Adaptability of crop plants to high temperature stress. Crop Sci. 22:719–725. Clarkson, D.T., and A.J. Warner. 1979. Relationships between root temperature and the transport of ammonium and nitrate ions by italian and perenal ryegrass (Lolium multiflorum and Lolium perenne). Plant Physiol. 64:557-561. Cooper, A. J. 1973. Root temperature and plant growth. Research Review No. 4 Commonwealth Bureau of Horticultural and Plantation Crops. East Malling Maidstone Kent. UK. D.L. and D.J. Wehner. 1987. Influence of prestress environment on annual bluegrass heat tolerance. Crop Sci. 27:579-585. De Las Rivas, J., and J. Barber. 1997. Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy. Biochemistry 36:897–8903. Delucia, E.H. 1986. Effect of low root temperature on net photosynthesis, stomata1 conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings. Tree Physiol. 2:143-154. Dodd, I.C., J. He, C.G.N. Turnbull, S.K. Lee, and C. Critchley. 2000. The influence of supra-optimal root-zone temperatures on growth and stomatal conductance in Capsicum annuum L. J. Exp. Bot. 51:239-248. Domisch, T., L. Finer, and T. Lehto. 2001. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiol. 21:465–472. Du, Y.C. and S. Tachibana. 1994a. Photosynthesis, photosynthate translocation and metabolism in cucumber (Cucumis sativus) roots held at supraoptimal temperature. J. Japan. Soc. Hort. Sci. 63:401-408. Equiza, M.A., J.P. Mirave and J.A. Tognetti. 2001. Morphological, anatomical and physiological responses related to differential shoot vs. root growth inhibition at low temperature in spring and winter wheat. Ann. Bot. 87:67-76. Feller, U., S.J. Crafts-Brandner, and M.E. Salvucci. 1998. Moderately high temperature inhibits ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol. 116:539–546. Fenwick, L. 1973. Studies on the rhizosphere microflora of onion plants in relation to temperature changes. Soil Biol. Biochem. 5:315-320. Fujimura, S., K. Suzukia, M. Nagaoa, and M. Okada. 2012. Acclimation to root chilling increases sugar concentrations in tomato (Solanum lycopersicum L.) fruits. Sci. Hortic. 147:34-41. Gasim, A.A., and RG. Hurd. 1984. The root activity of fruiting tomato plant. Acta Hort. 190:267-279. Gent, M.P.N., and Y.Z. Ma. 2000. Mineral nutrition of tomato under diurnal temperature variation of root and shoot. Crop Sci. 40:1629–1636. Graves, W.R., R.J. Joly, and M.N. Dana. 1991. Water use and growth of honey locust and tree-of-heaven at high root zone temperature. Hort. Sci. 26:1309–1312. Halliwel, B., and J. M. C. Gutteridge. 1989. Free radicals in biology and medicine. 2nd ed. Claredon Press, Oxford, UK. Havaux M, H. Greppin, and R. Strasser. 1991. Functioning of photosystem I and II in pea leaves exposed to heat stress in the presence or absence of light. Planta. 186:88–98. Havaux M. and F. Tardy. 1996. Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments. Planta. 198:324-333. Havaux, M., F. Tardy, J. Rayenel, D. Chanu, and P. Parot. 1996. Thylakoid membrane stability to heat stress by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: Influence of the xanthophyll content. Plant Cell Environ. 19:1359–1368. He, J., and S.K. Lee. 1988a. Growth and photosynthetic responses of three aeroponically grown lettuce cultivars (Lactuca sativa L.) to different root-zone temperatures and growth irradiances under tropical aerial conditions. Journal of J. Hortic. Sci. Biotechnol. 73:173-180. He, J., and S.K. Lee. 1988b. Growth and photosynthetic characteristics of lettuce (Lactuca sativa L.) under fluctuating hot ambient temperatures with the manipulation of cool root-zone temperature. J. Plant Physiol. 73:173-180. He, J., L.P. Tan, and S.K.Lee. 2009. Root-zone temperature effects on photosynthesis, 14C-photoassimilate partitioning and growth of temperature lettuce (Lactuca sativa cv. ‘Panama’) in the tropics. Photosynthetia. 47:95-103. He, J., S. K. Lee, and I. C. Dodd. 2001. Limitations to photosynthesis of lettuce grown under tropical conditions:alleviation by root-zone temperature. J. Exp. Bot. 52:1323-1330. Hoagland, D.R. and D.I. Arnon. 1950. The water culture method for growing plants without soil. California Agr. Expt. Sta. Circ. 347. Huang, B. and H. Gao. 2000. Growth and carbohydrate metabolism of creeping bentgrass cultivars in response to increasing temperatures. Crop Sci. 40:1115-1120. Huang, B., H.M. Taylor, and B.L. McMichael. 1991. Effects of temperature on the development of metaxylem in primary wheat roots and its hydraulic consequences. Ann. Bot. 67:63–166. Iglesias-Acostaa, M., M.C. Martinez-Ballestaa, J.A. Teruelb, and M. Carvajala. 2010. The response of broccoli plants to high temperature and possible role of root aquaporins. Environ. Exp. Bot. 68:83-90. Ismail, A.M., and A.E. Hall. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 39:1762–1768. Ismail, M.R., and S.W. Burrage. 1992. Effects of salinity, vapour pressure deficit and root temperature on growth and yield of NFT-grown tomatoes. Acta Hort. 292:143–148. Johnson, C.M., P.R. Stout, T.C. Broyer, and A.B. Carlton. 1957. Comparative chlorine requirements of different plant species. Plant Soil 8: 337-353. Kabu, K. L., and E. W. Toop. 1970. Influence of soil temperature and potassium fertilization on magnesium content of tomato plants. Can. J. Plant Sci. 50:740-742. Klock, K.A., H.G. Taber, and W.R. Graves. 1997. Root respiration and phosphorus nutrition of tomato plants grown at a 36℃ root-zone temperature. J. Amer. Soc. Kobza, J., and G.E. Edwards. 1987. Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiol. 83:69–74. Kuroyanagi, T., and G.M. Paulsen. 1988. Mediation of high temperature injury by roots and shoots during reproductive growth of wheat. Plant Cell Environ. 11:517–523. Lamber, H. 1987. Growth, respiration, exudation and symbiotic association: The fate of carbon translocated to the roots, p.125-144. In: P.J. Gregory, J.V. Lake, and D.A. Rose. (eds.). Root development and function. Cambridege Univ. Press, Cambridege, England. Larkindale J., and B. Huang. 2004. Thermo-tolerance and antioxidant systems in Agrostis stoloifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J.Plant Physiol. 161:405–413. Li, Z., K. Nada, and S. Tachibana. 2003. ABA-induced increase in thermostability of photosynthetic electron transport of thylakoids in leaves of cucumber (Cucumis sativus L.). J. Japan. Hort. Sci. 72:29-36. Liu X., and B. Huang. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40:503–510. Liu, X.Z., and B. Huang. 2001. Seasonal changes and cultivar differences in turf quality, photosynthesis, and respiration of creeping bentgrass. HortScience 36:1131–1135. Liu, X.Z., and B. Huang. 2005. Root physiological factors involved in cool-season grass response to high soil temperature. Environ. Exp. Bot. 53:233-245. Lyons, E.M., J. Pote, M. DaCosta, and B. Huang. 2007. Whole-plant carbon relations and root respiration associated with root tolerance to high soil temperature for Agrostis grasses. Environ. Exp. Bot. 59:307-313. Malcolm P., P. Holford, B. McGlasson, and I. Barchia. 2008. Leaf development, net assimilation and leaf nitrogen concentrations of five rootstocks in response to root temperature. Sci. Hortic. 115:285-291. Malenčić Dj., D. Vasić, M. Popović, and D. Dević. 2004. Antioxidant systems in sunflower as affected by oxalic acid. Bio. Plant. 48:243–247. Marcum, K.B. 1998. Cell membrane thermostability and whole plant heat tolerance of Kentucky bluegrass. Crop Sci. 38:1214–1218. Markham, R. 1942. A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem. J. 36:10-12. Martineau, J.R., J.E. Specht, J.H. Williams, and C.Y. Sullivan. 1979. Temperature tolerance in soybean. I. Evaluation of technique for assessing cellular membrane thermostability. Crop Sci. 19:75–78. Martinez F., Lazo, Y. O., Fernandez-Galiano, J.M., and J. Merino. 2002. Root respiration and associated costs in deciduous and evergreen species of Quercus. Plant. Cell. Environ. 25:1271-1278. McMichael, B.L. and J.J. Burke. 1996. Temperature effects on root growth. In Plant Roots: The Hidden Half, 2nd Ed. McMichael, B.L., and J.J. Burke. 1994. Metabolic activity of cotton roots in response to temperature. Environ. Exp. Bot. 34:201-206. Meharg, A.A., and K. Killham. 1988. A comparison of carbon flow from pre-labelled and pulse-labelled plants. Plant soil 112:225-231. Mitchell, J.P., C. Shennan, and S.R. Grattan. 1991. Developmental changes in tomato fruit composition in response to water deficit and salinity. Physiol. Plant. 83:177-185. Monje, O., S. Anderson, and G. W. Stutte. 2007. The effects of elevated root zone temperature on the development and carbon partitioning of spring wheat. J. Amer. Soc. Hort. Sci. 132:178-184. Moon, J. H., Y.K. Kang, and H.D. Suh. 2007. Effect of root-zone cooling on the growth and yield of cucumber at supraoptimal air temperature. Acta Hort. 761:271-274. Moran, R., and D. Porath. 1980. Chlorophyll determination in intact tissues using N,N-Dimethylformamide. Plant Physiol. 65:478-479. Nada, K., L.X. He, and S. Tachibana. 2003. Impaired potosynthesis in cucumber (Cucumis sativus L.) by high root-zone temperature Involves ABA-induced stomatal closure and reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase activity. J. Japan. Soc. Hort. Sci. 72:504-510. Nagasuga, K., M. Murai-Hatano, and T. Kuwagata. 2011. Effects of low root temperature on dry matter production and root water uptake in rice plants. Plant Prod. Sci. 14:22-29. Nielsen, K.F. 1974. Root and root temperature, p293-333. In: E. W. Carson (ed.). The Plant Root and Its Environment. Univ. Press of Virginia, Charlottesville, Virginig, USA. Noctor G. and C. H. Foyer. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Mol. Biol. 49:249–279. Pardales Jr, J.R., A. Yamauchi, and Y. Kono. 1991. Growth and development of sorghum roots after exposure to different periods of a hot root-zone temperature. Environ. Exp. Bot. 31:397-403. Qin, L., J. He, S.K. Lee, and I.C. Dodd. 2007. An assessment of the role of ethylene in mediating lettuce (Lactuca sativa) root growth at high temperatures. J. Exp. Bot. 58:3017-3024. Quinn, P.J., and W.P. Williams. 1985. Environmentally induced changes in thylakoid membranes and their effect on photosynthetic function, p.1–47. In: J. Barber and N.R. Baker(eds.). Photosynthetic Mechanisms and the Environment. Amsterdam: Elsevier. Ruter, J.M., and D.L. Ingram. 1990. 14Carbon-labeled photosynthate partitioning in llex crenata ‘rotundifolia’ at supraoptimal root-zone temperatures. J. Am. Soc. Hort. Sci. 115:1008–1013. Ruter, J.M., and D.L. Ingram. 1991. Root respiratory characteristics of ‘Rotundifolia’ holly under supraoptimal temperatures. J. Am. Soc. Hortic. Sci. 116:560-564. S.H. Lee, A.P. Singh, and G.C. Chung. 2004. Rapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport. J. Exp. Bot. 55:1733–1741. Santis, A.D., P. Landi, and G. Genchi. 1999. Changes of mitochondrial properties in maize seedlings associated with selection for germination at low temperature. Fatty acid composition, cytochromec oxidase, and adenine nucleotide translocase activities. Plant Physiol. 119:743–754. Saruhan, N., R. Terzi, A. Saglam, and A. Kadioglu. 2009. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress. Biol. Res. 42:315-326. Sattelmacher, B., H.Marschner, and R. Kuhne. 1990. Effect of the rooting zone on the growth and development of potato(Solanum tuberosum). Ann. Bot. 65:27-36. Savchenko, G.E., E.A. Klyuchareva, L.M. Abrabchik, and E.V. Serdyuchenko. 2002. Effect of periodic heat shock on the membrane system of etioplasts. Russ. J. Plant Physiol. 49:349–359. Sharkova, V.E. 2001. The effect of heat shock on the capacity of wheat plants to restore their photosynthetic electron transport after photoinhibition or repeated heating. Russ. J. Plant Physiol. 48:793–797. Steponkus, P.L., and F.O. Lanphear. 1967. Refinement of the triphenyltetrazolium chloride method of determining cold injury. Plant Physiol. 42:1423–1426. Sullivan, C.Y. 1972. Mechanisms of heat and drought resistance in grain sorghum and methods of measurement. In: N.G.P. Rao, and L.R. House (eds.). Sorghum in the Seventies. Oxford and IBH Publ., New Dehli, India. Suzuki N., and R. Mittler. 2006. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol. Plant. 126:45–51. Tachibana, S. 1982. Comparison of effects of root temperature on growth and mineral nutrition of cucumber cultivars and figleaf gourd. J. Japan. Soc. Hort. Sci. 51:299-308. Taiz, L., and E. Zeiger. 1991. Plant physiology. The Benjamin/Cummings Publishing Company, Inc. Taiz, L., and E. Zeiger. 1998. Plant Physiology. 2nd ed. Sinauer Associates. Sunderland, Mass. Toselli, M., J.A. Flore, B. Maragoni, and A. Masia. 1999. Effects of root-zone temperature on nitrogen accumulation by non-bearing apple trees. J. Hort. Sci. Biotech. 74:118–124 Toth, S.Z., G. Schansker, J. Kissimon, L. Kovacs, G. Garab, and R.J. Strasser. 2005. Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). J. Plant Physiol. 162:181–194. Towill, L.E., and P. Mazur. 1975. Studies on the reduction of 2,3,5-triphenyltetrazolium chloride as a viability assay for plant tissue cultures. Can. J. Bot. 3:1097-1102. Udomprasert, N., P.H. Li, D.V. Davis, and A.H. Markhart. 1995. Root cytokinin level in relation to heat tolerance of Phaseolus acutifolius and Phaseolus vulgaris. Crop Sci. 35:486– 490. Vapaavuori, E.M., R. Rikala, and A. Ryyppo. 1992. Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation. Tree Physiol. 10:217–230. Vasilieva, G., N. Mironomva, and A. Glyanko. 1999. Low above-zero temperature effect in the root zone on nitrate reductase activity and nitrate content in pea organs with stage of growth. J. Plant Nutr. 22:967–976. Wahid A., S. Gelani, M. Ashraf, and M. R. Foolad. 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61:199–223. Wahid, A., and A. Shabbir. 2005. Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Reg. 46:133–141. Wang, Z., J. Pote, and B. Huang. 2003. Responses of cytokinins, antioxidant enzymes, and lipid peroxidation in shoots of creeping bentgrass to high root-zone temperatures. J. Am. Soc. Hort. Sci. 128:648–655. Weih, M., and P.S. Karlsson. 1999. The nitrogen economy of mountain birch seedlings: implications for winter survival. J. Ecol. 87:211–219 Weis, E. 1981. The temperature sensitivity of dark-inactivation and light-activation of the ribulose-1,5-bisphosphate carboxylase in spinach chloroplasts. FEBS Lett. 129:197–200. Xu, Q., and B. Huang. 2000a. Growth and physiological responses of creeping bentgrass to changes in air and soil temperatures. Crop Sci. 40:1363–1368. Xu, Q., and B. Huang. 2000b. Effects of differential air and soil temperature on carbohydrate metabolism in creeping bentgrass. Crop Sci. 40:1368–1374. Yamane, Y., Y. Kashino, H. Koike, and K. Satoh. 1998. Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth. Res. 57:51–59.
摘要: 夏季高溫,易使設施栽培作物產生高溫逆境,對作物生育或果實品質產生不良影響,因此進行本實驗。於正值夏季(6-8月)與秋季(8-10月)時,對東方甜瓜嘉玉品種進行降低根溫的實驗。以根溫控制於23±2℃為處理組,顯著增加株高與生長速率,但葉面積則無明顯增加;處理組明根部呼吸率有顯著增加,但根部活性方面無顯著差異與趨勢,推測可能與根部有微生物干擾有關係。鮮乾重於處理間在秋季開花無顯著差異,採收後處理組葉片鮮乾重則有明顯降低30與16%;碳水化合物於兩處理間並無差異,秋季採收時,處理組果實糖度有顯著降低的現象。礦物元素方面,兩處理間皆並無顯著的趨勢。另外於生長箱內設定日夜溫為20/15℃,對甜瓜植株進行增加根溫處理,將根溫提高至30℃為處理組,對株高、葉片數、葉面積、葉片的延展、根長與鮮乾重表現皆較對照組有明顯地增加;根部活性與根部呼吸率,處理組則明顯有降低的現象,分別降低79與42%。碳水化合物則無顯著差異;而增加根溫對礦物元素之吸收,使呈現顯著促進作用。另一方面,番茄進行降低根溫與噴施300ppm穀胱甘肽,對植株株高、葉片數無顯著差異;降低根溫處理與噴施穀胱甘肽對果實品質無顯著提升。
In summer, heat stress can cause negative effects on crop growth and fruit quality. The purpose of this study is to investigate the effect of root temperature on plant growth and development of oriental melon ‘Jill’ and tomato ‘YU NU’. The experiments were conducted in summer (June-August) and autumn (August-October). A significant increase in plant height and growth rate but not in leaf area were observed when root temperature was lowered to 23±2℃. Root respiration rate of treated plants with root temperature lowered to 23±2℃ increased significantly, but the activity of the treated root showed no significant difference from control and this might be explained by microorganism interference. No significant difference on root fresh and dry weight between treatment and control can be observed before anthesis; however, leaf fresh and dry weight after harvest was significantly deceased by 30 and 16%, respectively, compared with control. Carbohydrate content was not statistically different between treatment and control. In autumn, the total soluble solid of the root-treated fruits was significantly decreased relative to the control . Mineral elements between treatment and control plants were not significantly different. Growing in a growth chamber with a constant temperature of 30℃, plant showed higher plant height, leaf number, leaf area, leaf extension, root length, fresh and dry weight than those grown in a growth chamber with a 20/15℃ day/night temperature. The root activity and root respiration rate in plants under 30℃ were significantly decrease 79 and 42%, respectively, compared with those grown at 20/15℃ day/night temperature. The carbohydrate content was not significantly influenced by temperature. The mineral content was significantly higher in plants under 30℃ suggested root temperature could affect mineral absorption. Furthermore, tomato plants with or without treatment of lowered root temperature at 20±2℃and with or without application of 300 ppm glutathione showed no significant difference in plant height, leaf number and fruit quality.
URI: http://hdl.handle.net/11455/29406
其他識別: U0005-0508201318151000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0508201318151000
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.