Please use this identifier to cite or link to this item:
標題: 葉綠素螢光作為評估番木瓜溫度逆境之指標
Chlorophyll Fluorescence as an Indicator to Evaluate Temperature Stress of Papaya (Carica papaya L.)
作者: 李芸嫣
Li, Yun-Yen
關鍵字: 番木瓜
temperature stress
chlorophyll fluorescence
出版社: 園藝學系所
引用: 1. 王德男。2005。番木瓜。臺灣農家要覽農作篇(二)。農委會。pp. 129-136. 2. 王德男、李文力。2006。台灣番木瓜產業問題及發展方向。臺灣果樹產業調整及發展策略研討會專刊。pp. 59-67。 3. 王德男、劉碧娟、李文力。2006。台灣木瓜產業之變遷。木瓜產業發展研討會專刊。pp.1-20。 4. 江忠穎。2007。不同葉色甘藷的葉綠素螢光及葉片反射光譜特性。國立中興大學生命科學系碩士論文。臺灣:台中。pp.109。 5. 李文立。2009。木瓜栽培管理手冊。行政院農業委員會農業試驗所鳳山熱帶園藝試驗分析。pp. 6-25。 6. 陳福旗譯。1986。番木瓜之演進。中國園藝。32:146-150。 7. 黃薇綺。2005。高溫、低溫、乾旱與淹水逆境對甘藷葉片葉綠素螢光影響之研究。中國文化大學生物科技研究所碩士論文。臺灣:台北。pp.111。 8. 近藤始彦、盧虎生。2009。台湾の稲作における気象変動の影響と研究の現状。農業および園芸。 84: 36-41。 9. Abdul-Baki, A. A. and J. R. Stommel. 1995. Pollen viability and fruit-set of tomato genotypes under optimum-temperature and high temperature regimes. Hort. Sci. 30:115-117. 10. Ahmed, F. E., A. E. Hall, and D. A. DeMason. 1992. Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). Amer. J. Bot. 79:784-791. 11. Ahn, Y. L., K. Claussen, and J. L. Zimmerman. 2004. Genotypic differences in the heat-shock response and thermotolerance in four potato cultivars. Plant Sci. 166:901-911. 12. Allakhverdiev, S. I., V. D. Kreslavski, V. V. Klimov, D. A. Los, R. Carpentier, and P. Mohanty. 2008. Heat stress: an overview of molecular responses in photosynthesis. Photosyn. Res. 98:541-550. 13. Allakhverdiev, S. I., Ya. M. Feyziev, A. Ahmed, H. Hayashi, Ja. A. Aliev, V. V. Klimov, N. Murata, and R. Carprntier. 1996. Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. J. Photochem. Photobiol. Biol. 34:149-157. 14. Allen, D. J. and D. R. Ort. 2001. Impacts of chilling temperature on photosynthesis in warm climate plants. Trends Plant Sci. 6:36-42. 15. Allen, J. F. 2003. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci. 8:15-19. 16. Andaya, V. C. and D. J. Mackill. 2003. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J. Exp. Bot. 54:2579-2585. 17. Angadi, S. V., H. W. Cutforth, P. R. Miller, B. G. McConkey, M. H. Entz, S. A. Brandt, and K. M. Volkmar. 2000. Response of three Brassica species to high temperature stress during reproductive growth. Can. J. Plant Sci. 80:693-701. 18. Aro,E-M., I. Virgin, and B. Andersson. 1993. Photoinhibition of photosystem II: inactivation, protein damage and turnover. Biochim. Biophys Acta 1143:113-134. 19. Arshad, M. and W. T. J. Frankenberger. 2002. Ethylene, agricultural sources and applications. Kluwer Academic/Plenum Publishers. New York. 20. Arteca, R. N. and J. M. Arteca. 2007. Heavy-metal-induced ethylene production in Arabidopsis thaliana. J. Plant Physiol. 164:1480-1488. 21. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:601-639. 22. Ashley, D. A. 1972. C-labelled photosynthate translocation and utilization in cotton plants. Crop Sci. 12:69-74. 23. Austin, P.T., E. W. Heweet, D. Noitin, and J. A. Plummer. 1998. Self incompatibility and temperature affect pollen tube growth in ‘Sundrop’ apricot (Prunus armeniaca L.). J. Amer. Soc. Hort. Sci. 73:375-386. 24. Bajji, M., J. M. Kinet, and S. Lutts. 2001. The use of the electrolyte leakage method for assessing cell membrance stability as a water tolerance test in durum wheat. Plant Growth Regulation 00:1-10. 25. Baker, N. R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55:1607-1621. 26. Bhadula, S. K. and V. K. Sawheny. 1989. Amylolytic activity and carbohydrate levels during the stamen ontogeny of a male fertile, and a ‘gibberellin sensitive’ male sterile mutant of tomato (Lycopersicon esculentum). J. Exp. Bot. 40:789-794. 27. Binder, W. D. and P. Fielder. 1996. Chlorophyll fluorescence as an indicator of frost hardiness in white sprice seedling from different latitudes. New Forests 11:233-253. 28. Bilger, W. and O. Bjorkman. 1990. Role of xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis. Photosynth. Res. 25:173-185. 29. Boavida, L. C. and S. McCormick. 2007. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J. 52:570-582. 30. Board, J. E., M. L. Peterson, and E. Ng. 1980. Floret sterility in rice in a cool environment. Agron. J. 72:483-487. 31. Breek, J.P. 1968. Some causes of poor fruit set in Jucunda strawberries. Euphytica 17:311-318. 32. Bukhov, N. G. and R. Carpentier. 2000. Heterogeneity of photosystem II reaction center as influenced by heat treatment of barely leaves. Physiol. Plant. 110:279-285. 33. Burke, J. J., J. Velten, and M. J. Oliver. 2004. In vitro analysis of cotton pollen germination. Agron. J. 96: 359-368. 34. Butker, W. L. 1978. Energy distribution in the photochemical apparatus of photosynthesis. Annu. Rev. Plant Physiol. 29:345-378. 35. Campos, P. S., V. Quartin, J. C. Ramalho, and M. A. Nunes. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plant. J. Plant Physiol. 160:283-292. 36.Carpentier, R. 1999. Effect of high-temperature stress on the photosynthetic apparatus. pp337-348. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker Inc, New York. 37. Chen, H., R. G. Qualls, and G. C. Miller. 2002. Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ. Exp. Bot. 48:119-128. 38. Christiane, F. S. and S. Shabala. 2003. Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct. Plant Biol. 30: 335-343. 39. Christiansen, M. N. 1979. Physiological bases for resitance to chilling. HortScience 14:583-586. 40. Cohen, E. and U. Lavi. 1989. Spiegel-Roy: Papaya pollen viability and storage. Sci. Hort. 40:317-324. 41. Cossins, A. R., J. Christiansen, and C. L. Prosser. 1978. Adaptation of biological membranes to temperature. The lack of homeoviscous adapation in the sarcoplasmic reticulum. Biochim. Biophys. Acta 511:442-452. 42. Crafts-Brandner, S. J. and M. E. Salvucci. 2004. Analyzing the impact of high temperature and CO2 on net photosynthesis: biochemical mechanisms, models and genomics. Field Crops Research 90:75-85. 43. Crafts-Brandner, S. J. and R. D. Law. 2000. Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase / oxygenase activation state. Planta 212:67-74. 44. Davenport, T. L. and R. N&uacute;&ntilde;ez-Elisea. 1983. Abscission and ethylene production of mango (Mangifera indica L.) fruit cv. Tommy Atkins. Proc. Florida State Hort. Soc. 96:185-188. 45. Dickson, M. H. and M. A. Boettger. 1984. Effect of high and low temperature on pollen germination and seed set in snap beans. J. Amer. Soc. Hort. Sci. 109:372-374. 46. Dubey, R. S. 1997. Photosynthesis in plants under stressful condition. 859-875. In: Pessarakli M (ed) Handbook of Photosynthesis. Marcel Dekker Inc, New York. 47. Dunlap, J. R., S. E. Lingle, and G.E. Lester. 1990. Ethylene production in netted muskmelon subjected to postharvest heating and refrigerated storage. HortScience 25:207-209. 48. Dupuis, I. and C. Dumas. 1990. Influence of temperature stress on in vitro fertilization and heat-shock protein-synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol. 94:665-670. 49. Eaks, I. L. 1960. Effect of chilling on the respiration of orange and lemon. Proc. mer. Soc. Hort. Sci. 87:181-185. 50. Eaks, I. L. 1980. Effect of chilling on the respiration and volatiles of California lemon fruit. J. Amer. Soc. Hort. Sci. 105:865-869. 51. Elsheery, N. I. and K. F. Cao. 2008. Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol. Plant. 30:769-777. 52. Fan, X. and K. J. B. Sokorai. 2005. Assessment of radiation sensitivity of fresh-cut vegetables using electrolyte leakage measurement. Post. Biol. Technol. 36:191-197. 53. Field, R. J. 1985. The effect of temperature on ethylene production by plant tissue. pp47-69.In: Roberts, J. A., Tucker, G. A. (Eds.), Ethylene and Plant Development. Butterworth, London. 54. Firon, N., R. Shaked, M. M. Peet, D. M. Pharr, E. Zamski, K. Rosenfeld, L. Althan, and E. Pressman. 2006. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci. Hort. 109:212-217. 55. Forney, C. F. and S. J. Peterson. 1990. Chilling induced potassium leakage of cultured citrus cell. Physiol. Plant. 78:193-196. 56. Fracheboud, Y., P. Haldimann., J. Leipner., and P. Stamp. 1999. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J. Exp. Bot. 338:1533-1540. 57. Gawel, N. J. and C. D. Robacker. 1986. Effect of pollen-styleinteraction on the pollen tube growth of Gossypium hirsutum. Theor. Appl. Genet. 72: 84–87. 58. Georigieva, K. 1999. Some mechanisms of damage and acclimation of the photosynthetic apparatus due to high temperature. Bulgaria J. Plant Physiol. 25:89-99. 59. Giacometti, D. C. and D. H. van Sloten. 1987. Genetic resources of banana, citrus, mango, papaya and pineapple. Acta Hort. 196:7-24. 60. Godwin, D. C., W. S. Meyer, and U. Singh. 1994. Simulation of the effect of chilling injury and nitrogen supply on floret fertility and yield in rice. Aust. J. Exp. Agric. 34:921-926. 61. Gong, H. and S. Nilson. 1989. Effect of temperature on photoinhibition of photosynthesis, recovery, and turnover of the 32 kD chloroplast protein in Lemna gibba. J. Plant Physiol. 135:9-14. 62. Gonzalez, M. V., M. Coque, and M. Herrero. 1996. Pollen-pistil interaction in kiwifruit (Actinidia deliciosa; Actinidiaceae). Am. J. Bot. 83:148-154. 63. Govindachary, S., N. G. Bukhov, D. Joly, and R. Carpentier. 2004. Photosystem II inhibition by moderate light under low temperature in intact leaves of chilling-sensitive and -tolerance plants. Physiol. Planta. 121:322-333. 64. Gross, Y. and J. Kigel. 1994. Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crop Res. 36:201-212. 65. Gudkova, T. I. 1980. Physiological and cytological studies of the reasons for pollen sterility in spring wheat under low temperature. Nauch. Tr. Linengar. S Kh. In. Ta. 394:103-108. 66. Guerrero-Prieto, V. M., M. D. Vasilakakis, and P. B. Lombard. 1985. Factors controlling fruit set of ‘Napoleon’ sweet cherry in Western Oregon. HortScience 20:913-914. 67. Hall, A. E. 1992. Breeding for heat tolerance. Plant Breeding Rev. 10:129-167. 68. Hasselt, P. R. 1974. Photo-oxidative damage in cucumis leaves during chilling. Plant Physiol. Biochem. 69. Hedhly, A., J. I. Hormaza, and M. Herrero. 2003. The effect of temperature on stigmatic receptivity in sweet cherry ( Prunus avium L.). Plant Cell Enviorn. 26:1673-1680. 70. Hedhly, A, J. I. Hormaza, and M. Herrero. 2004. Effect of temperature on pollen tube kinetics and dynamics in sweet cherry, Prunus avium (Rosaceae). Am. J. Bot. 91:558-564. 71. Hedhly, A, J. I. Hormaza, and M. Herrero. 2005 Influence of genotype–temperature interaction on pollen performance. J. Evol. Biol. 18: 1494-1502. 72. Hellman, E. W. and J. D. Travis. 1998. Growth inhibition of strawberry at high temperature. Adv. Strawberry Prod. 7:36-38. 73. Herrero, M. and A. Arbeloa. 1989. Influence of the pistil on pollen tube kinetics in peach (Prunus persica). Am. J. Bot. 76:1441-1447. 74. Heslop-Harrison, Y. 2000. Control gates and micro-ecology: the pollen-stigma interaction in perspective. Ann. Bot. 85:5-13. 75. Higuchi, H., N. Utsunomiya, and T. Sakuratani. 1998. High temperature effects on cherimoya fruit set, growth and development under greenhouse conditions. Sci. Hort. 77:23-31. 76. Hipkins, M. F. and N. R. Baker. 1986. Spectroscopy. 51-101. In: Hipkins MF and NR Baker (eds) Photosynthesis, energy transduction: IRL Press, Oxford, United Kingdom. 77. Hsu, B. S. 2007. On the possibility of using a chlorophyll fluorescence parameter as an indirect indicator for the growth of Phalaenopsis seedlings. Plant Sci. 172:604-608. 78. Inaba, M., K. Chachin. 1988. Influence of and recovery from high-temperature stress on harvested mature green tomatoes. HortScience 23:190-192. 79. Inaba, M., K. Chachin. 1989. High-temperature stress and mitochondrial activity of harvested mature-green tomatoes. J. Am. Soc. Hort. Sci. 114:809-814. 80. IPCC Fourth Assessment Report: Climate Change. 2007. Chapter 1: Historical Overview of Climate Change Science. <http://>. 81. Jensen R. G. 2000. Activation of Rubisco regulates photosynthesis at high temperature and CO2. Commentary 12937-12938. 82. Johansson, M. H. and A.G. Stephenson. 1998. Effects of temperature during microsporogenesis on pollen performance in Cucurbita pepo L. (Cucurbitaceae). Intl. J. Plant Sci. 159:616-626. 83. Jones, J.G. and L. Hardy. 1989. Stress and cognitive functioning in sport. J. Sports Sci. 7:41-63. 84. Kakani, V. G., K. R. Reddy, S. Koti, T.P. Wallace, P. V. V. Prasad, V. R. Reddy, and D. Zhao. 2005. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann. Bot. 96:59-67. 85. Kaneda, C. and H. M. Beachell. 1974. Response of indica-japonica rice to low temperature. Sabrao J. 6:17-32. 86. Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki.1999. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcriptional factor. Nat. Biotechnol. 17: 287-291. 87. Klein, J. D. and S. Lurie. 1990. Prestorage heat treatment as a means of improving poststorage quality of apples. J. Am. Soc. Hort. Sci. 115:265-269. 88. Komayama, K., M. Khatoon, D. Takenaka, J. Horie, A. Yamashita, M. Yoshioka, Y. Nakayama, M. yoshida, S. Ohira, N. Morita, M. Velitchkova, I. Enami, and Y. Yamamoto. 2007. Quality control photosystem II cleavage and aggregation of D1 protein in spinach thylakoids. Biochim. Biophys. Acta 1767:838-746. 89. Kozai, N., K. Beppu, R. Mochioka, U. Boonprakob, S. Subhadrabandhu, and I. Kataoka. 2004. Adverse effects of high temperature on the development of reproductive organs in ‘Hakuho’peach trees. J. Hortic. Sci. Biotech. 79:533-537. 90. Krause, G. H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313-349. 91. Kudoh, H. and K. Sonoike. 2002. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta 215:541-548. 92. Kumakura, H. and Y. Shishido. 1994. The effect of daytime, nighttime, and mean diurnal temperature on the growth of Morioka-16 strawberry fruit and plants. J. Jap. Soc. Hort. Sci. 62:827-832. 93. Lakshminarayana, S. and P. H. Aguilar. 1975. Effect of orchard heating in reducing parthenocarpic fruits in ‘Hadn’mango. Proc. Amer. Soc. Hort. Sci. 88:502-505. 94. Lang, P., C. K. Zhang, R. C. Ebel, F. Dane, and W. A. Dozier. 2005. Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene 359:111-118. 95. Lee, S. K. and R. E. Young. 1984. Temperature sensitivity of avocado fruit in relation to C2H4 treatment. J. Am. Soc. Hort. Sci. 109:689-692. 96. Ledesma, N. A., M. Nakata, and N. Sugiyama. 2008. Effect of high temperature stress on the reproductive growth of strawberry cvs. ‘Nyoho’ and ‘Toyonoka’. Sci. Hort. 130:341-347. 97. Leshem, Y. 1992. Plant membranes: A biophysical approach to structure, development and senescence. Kluwer Academic Piblishers, Dordrecht. 98. Liao, C. S. 1998. Effects of global climate change on meteorological circumstances in globe and Taiwan area and strategies in respone. (in Chinese with English abstract) p.7-32. In:Effects of Climate Change on Crop Production. C. Y. Lin, C. M. Yang (eds) Taiwan Agricultural Research Institute, Taichung Hsien, Taiwan ROC. 99. Liu, S. C., C. J. Shiu, and J. P. Chan. 2007. Climate change in Taiwan-The regional and global effect. Cent. Advis. Commit. Acad. Sin. Newslet. 15:72-75. 100. Liu, Z., Y. L. Yuan, S. Q. Liu, X. N. Yu, and L.Q. Rao. 2006.Screening for high temperature tolerant cotton cultivars by testing in vitro pollen germination, pollen tube growth and boll retention. J. Integr Plant Biol. 48:706-714. 101. Lobell, D. B. and G. P. Asner. 2003. Climate and management contributions to recent trends in US agricultural yields. Sci. 299:1032. 102. Los, D. A. and N. Murata. 2004. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta. 1666:142-157. 103. Lush, W. M., F. Grieser, and M. Wolters-Arts.1998. Directional guidance of Nicotiana alata pollrn tubes in vitro and on the stigma. Plant Physiol. 118:733-741. 104. Lweis, D. A. and L. L. Morris. 1956. Effect of chilling storage on respiration and deterioration of several sweet potato varieties. Pro. Amer. Soc. Hort. Sci. 68:421-428. 105. Lyakh, V. A., A. N. Kravachenko, A. I. Soroka, and E. N. Dryuchina. 1991. Effects of high temperature on mature pollen grains in wild and cultivated maize accessions. Euphytica 55:203-207. 106. Lyons, J. M. 1973. Chilling injury in plant, Annu Rev. Plant Physiol. 24:455-466. 107. Lyons, J. M., and J. K. Raison. 1970. Oxidative activity of mitochondria isolated form plant tissues sensitive and resistant to chilling injury. Plant Physiol. 45:386-389. 108. Maxie, E. C., F. G. Mitchell, and N. F. Sommer. 1974. Effect of elevated temperature on ripening of ‘Bartlett’pear (Pyrus communis L.). J. Am. Soc. Hort. Sci. 99:344-349. 109. Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 345:659-668. 110. McCollum, T. G. and R. E. McDonald. 1991. Electrolyte leakage, respiration, and ethylene production as indices of chilling injury in grapefruit. HortScience 26:1191-1192. 111. McKee, J. and A. J. Richards. 1998. The effect of temperature on reproduction in five Primula species. Ann. Bot. 82:359-374. 112. McWilliam, J. R. 1980. Summary and synthesis—adaptation to high temperature stress. pp444-446. In:Turner, N. C., P. J. Krammer(eds), Adaptaion of plants to high temperature stress. John Wiley, New York. 113. Monterroso, V. A. and H. C. Wien. 1990. flower and pod abscission due to heat stress in bean. J. Amer. Soc. Hort. Sci. 115:631-634. 114. Muhanty, P., B. Vani, and J. S. S. Prakash. 2002. Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Z Naturforsch 57:836–842. 115. Murkowski, A. 1996. Heat stress and spermidine: effect on chlorophyll fluorescence in tomato plants. Biol. Plant. 44:53-57. 116. Nedbal, L., J. Soukupov&aacute;, J. Whitmarsh, M. Trt&iacute;lek. 2000. Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality. Photosynthetica 38:571-579. 117. Nishiyama, Y., S. I. Allakhverdiev, and N. Murata. 2005. Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth Res. 84:1-7. 118. Nishiyama, Y., S. I. Allakhverdiev, and N. Murata. 2006. A new paradigm for the action of reaction oxygen soecies in the photoinhibition of photosystem II. Biochim. Biophys. Acta. 1757:742-749. 119. Oquist, G. 1983. Effect of low temperature on photosynthesis. Plant Cell Environ. 6:281-300. 120. Pacini, E. 1996. Types and meaning of pollen carbohydrate reserves. Sex. Plant Reprod. 9:362-366. 121 Pacini, E. and L. Viegi. 1995. Total polysaccharide concentration of developing pollen in two angiosperm species. Grana 34:237-241. 122. Pantastico, E. B., J. Soule, and W. Grierson. 1968. Chilling injury in tropical and subtropical fruits: II. Limes and grapefruit. Proc. Trop. Reg. Amer. Soc. Hort. Sci. 12:171-193. 123. Paull, R. E. and N. J. Chen. 1990. Heat shock response in field growth, ripening papaya fruit. J. Am. Soc. Hort. Sci. 115:623-631. 124. Peet, M. M., S. Sato, and R. G. Gardner. 1998. Comparing heat stress effects on male-fertile and male-sterile tomato. Plant Cell Environ. 21:225-231. 125. Pehowich, D. J. 1998. Dietary n-3 fatty acids alter angiotensin-induced contraction and 1,2-diacylglycerol fatty acid composition in thoracic aortas from diabetic rats. Prostaglandins leukot. essent. fatty. acids 58:301-309. 126. Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush, and K. G. Cassman. 2003. Rice yields decline with high night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A. 101:9971-9975. 127. Perks, M. P., B. A. Osborne, and D. T. Mitchell. 2004. Rapid predictions of cold tolerance in Douglas-fir seedlings using chlorophyll fluorescence after freezing. New Forests 28:49-62. 128. Pipattanawong, R., K. Yamane, N. Fujishige, S. Bang, and Y. Yamaki. 2009. Effects of high temperature on pollen quality, ovule fertilization and development of embryo and achene in ‘Tochiotome’ strawberry. J. Japan. Soc. Hort. Sci. 78:300-306. 129. Porch, T. G. and M. Jahn. 2001. Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ. 24:723-731. 130. Prasad, P.V. V., P. Q. Craufurd, R. J. Summerfield, and T. R. Wheeler. 2000. Effects of short episodes of heat stress on flower production and fruit-set of groundnut (Arachis hypogaea L.). J. Exp. Bot. 51:777-784. 131. Pressman, E. M., M. Peet., and D. M. Pharr. 2002. The effect of heat stress on tomato pollen characteristics is associated with change in carbohydrate concentration in the developing anthers. Ann. Bot. 90:631-636. 132. Rabinowitch, H. D., B. Ben-David, and M. Friendmann. 1986. Light is essential for sunscald induction in cucumber and pepper fruit, whereas heat conditioning provides protection. Sci. Hort. 29:21-29. 133. Rohacek, K. and M. S. Bartak. 1999. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339-363. 134. Roose, J. L., K. M. Wegener, and H. B. Pakrasi. 2007. The extrinsic proteins of Photosystem II. Photosynth Res. 92:369-387. 135. Rosell, P., M. Herrero, and V. Gal&aacute;n Sa&uacute;co. 1999. Pollen germination of cherimoya (Annona cherimola (Mill.)). In vivo characterization and optimization of in vitro germination. Sci. Hort. 81:251-265. 136. Rosenzweing, C. A., X. B. Iglesias, P.R. Yang, E. Epstein, and E. Chivian. 2001. Climate change and extreme weather events. Implications for food production, plant diseases and pest. Global Change and Human Health 2:90-104. 137. Saini, H. S., M. Sedgley, and D. Aspinall. 1983. Effect of heat stress during floral development on pollen tube growth and ovary anatomt in wheat (Triticum aestivum L.). Austral. J. Plant Physiol. 10:137-144. 138. Saini, H. S., M. Sedgley, and D. Aspinall. 1984. Development anatomy in wheat male sterility induced by heat stress, water deficit or abscisic acid. Austral. J. Plant Physiol. 11:243-253. 139. Saini, H. S. 1997. Effects of water stress on male gametophyte development in plants. Sex. Plant Reprod. 10:67-73. 140. Sakata, T., H. Takahashi, I. Nishiyama, and A. Higashitani. 2000. Effects of high temperature on the development of pollen mother cells and microspores in barley Hordeum vulgare L. J. Plant Res. 113:395-402. 141. Salem, M. A., V. G. Kakani, S. Koit, and K. R. Reddy. 2007. Pollen-based screening of soybean genotypes for high temperatures. Crop Sci. 47:219-231. 142. Saltveit, Jr., E. Mikal. 1991. Prior temperature exposure affects subsequent chilling sensitivity. Physiol. Plant. 82:529-536. 143. Sanzol, J. and M. Herrero. 2001. The effective pollination period in fruit trees. Sci.Hort. 90:1-17. 144. Sanzol, J., P. Rallo, and M. Herrero. 2003. Asynchronous development of stigmatic receptivity in the pear (Pyrus communis L. Rosaceae) flower. Amer. J. Bot. 90:78-84. 145. Sato, S., M. M. Peet, and J. F. Thomas. 2000. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ. 23:719-726. 146. Schreiber, U., U. Schliwa, and W. Bilger. 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10:51-62. 147. Smethurst, C. F. and S. Shabala. 2003. Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct. Plant Biol. 30:335-343. 148. Smillie, R. M. and S.E. Hetherington. 1983. Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo. Plant Physiol. 72:1043-1050. 149. Snider, J. L., D. M. Oosterhuis, B. W. Skulman, and E. M. Kawakami. 2009. Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiol. Plant.137:125-138. 150. Snider, J. L., D. M. Oosterhuis, D. A. Loka, and E. M. Kawakami. 2011. High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils. Plant Physiol. 168:1168-1175. 151. Song, J., K. Nada, and S. Tachibana. 1999. Ameliorative effect of polyamines on the high temperature inhibition of in vitro pollen germination in tomato (Lycopersicon esculentum Mill.). Sci. Hort. 80:203-212. 152. Song, J., L. Fan, C. F. Forney, and M. A. Jordan. 2001. Using volatile emissions and chlorophyll fluorescence as indicators of heat injury in apples. J. Amer. Soc. Hort. Sci. 126:771-777. 153. Speranza, A., G. L. Calzoni, and E. Pacini. 1997. Occurrence of mono- or disaccharides and polysaccharide reserves in mature pollen grains. Sex. Plant Reprod. 10:110-115. 154. Srinivasan, A., N. P. Saxena, and C. Johansen. 1999. Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): genetic variation in gamete development and function. Field Crops Res. 60:209-222. 155. Stadler, R., E. Truernit, M. Gahrtz, and N. Sauer. 1999. The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant J. 19:269-278. 156. Stanley, R. G. 1971. Pollen chemistry and tube growth. In: Heslop-Harrison J. ed. Pollen: development and physiology. London: Butterworths. 131-155. 157. Sthapit, B. R., J. R. Witcombe, and J. M. Wilson. 1995. Methods of selection for chilling tolerance in nepalese rice by chlorophyll fluorescence analysis. Crop Sci. 35:90-94. 158. Strasser, R. J., A. Srivastava, and Govindjee. 1995. Polyphasic chlorophyll a fluorescence transient in plant and cyanobacteria. Photochem. Photobiol. 61:32-42. 159. Styring, S., I. Virgin, A. Ehrenberg, and B. Andersson. 1990. Strong light photoinhibition of electron transport in photosystem II. Impairment of the functions of the first quinone acceptor, QA. Biochim Biophys Acta 1015:269-278. 160. Subedi, K. D., P.J. Gregory, R. J. Summerfield, and M. J. Gooding. 1998. Cold temperatures and boron deficiency caused grain set failure in spring wheat(Triticum aestivum L.). Field Crops Res. 57:277-288. 161. Sukhvibul, N., A. W. Whiley, M. K. Smith, S. E. Hetherington, and V. Vithanage. 1999. Effect of temperature on inflorescence and floral development in four mango (Mangifera indica L.) cultivars. Sci. Hort. 82:67-84. 162. Sukhvibul, N., A. W. Whiley, V. Vithanage, M. K. Smith, V. J. Doogan, and S. E. Hetherington. 2000. Effect of temperature on pollen germination and pollen tube growth of four cultivars of mango (Mangifera indica L.). J. Hort. Sci. Biotechnol. 75:64-68. 163. Tan, C. Z. W. Yu., H. D. Yang, and S. W. Yu. 1988. Effect of high temperature on ethylene production in two plant tissues. Acta Phytophysiol. Sin. 14:373-379. 164. Tanino, K. K. and B. D. McKersie. 1985. Injury within the crown of winter wheat seedlings after freezing and icing stress. Can. J. Bot. 63:432. 165. Taub, D. R., J. R. Seemann, and J. S. Coleman. 2000. Growth in elevated CO2 protects photosynthesis against high-temperature damage. Plant Cell Environ. 23:649-656. 166. Taylor, A. O. and A. S. Craig. 1971. Plants under climatic stress. II. Low temperature, high light effects on chloroplast ultrastruvture. Plant Physiol. 47:719-725. 167. Toth, S. Z., G. Schansker, J. Kissimon, L. Kovacs, G. Garab, and R. J. Strasser. 2005. Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.) J. Plant Physiol. 162:181-194. 168. Urban, L. and M. Jannoyer. 2004. Functioning and role of stomata in mango leaves. Acta Hort. 645:441-446. 169. Vass, I., S. Styring, T. Hundal, A. Koivuniemi, E. M. Aro, and B. Andersson. 1992. Reversible and irreversible intermediates during photoinhibition of photosystem II. Stable reduced QA species promote chlorophyll triplet formation. Proc. Natl Acad Sci. USA. 1102:195-201. 170. Wahid, A., S. Gelani, M. Ashraf, and M. R. Foolad. 2007. Heat tolerance in plants: An overview. Env. Exp. Bot. 61:199-223. 171. Wang, C. Y. 1982. Physiological and biochemical responses of plants to chilling stress. HortScience 17:173-181. 172. Wang, C. Y., and D. O. Adams. 1982. Chilling-induced ethylene production in cucumbers (Cucumis sativus L.). Plant Physiol. 69:424-427. 173. Wang, S. Y. and M. J. Camp. 2000. Temperature after bloom affect plant growth and fruit quality of strawberry. Sci. Hort. 85:183-199. 174. Whiley, A. W, C. Searle, B. Schaffer, and D. R. Simson. 1997. Leaf gas exchange responses of avocado (Persea Americana Mill. ) and mango (Mangifera indica L.) trees to photon and CO2 fluxes. Tree Physiology. 175. Whiley, A. W., J. B. Saranah, T. S. Rasmussen, E C. Winston, and B. N. Wolstenholme. 1988. Effect of temperature on growth of 10 mango cultivars with relevance to production in Australia. pp76-185. In: Batten, D. (Ed.), Proceedings of the Fourth Australasian Conference on Tree and Nut Crops. 176. Willits, D. H. and M. M. Peet. 2001. Measurement of chlorophyll fluorescence as a heat stress indicator in tomato: laboratory and greenhouse comparisons. J. Amer. Soc. Hort. Sci.126:188-194. 177. Wise, R. R. and A. W. Naylor. 1987. Chilling-enhanced photooxidation. Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 83:278-282. 178. Wise, R. R., J. McWilliam, and A. W. Naylor. 1983. A comparative study of low-temperature-induced ultrastructural alterations of three species with differing chilling sensitivities. Plant Cell Environ. 6:525-535. 179. Woolf A. B. and W. A. Laing. 1996. Avocado fruit skin fluorescence following hot water treatments and pretreatments. J. Amer. Soc. Hort. Sci.121:147-151. 180. Wu, J., J. Lightner, N. Warwick, and J. Browse. 1997. Low temperature damage and subsequent recovery of fabl mutant Arabidopsis exposed to 2℃. Plant Physiol. 113:347-356. 181. Wullschleger, S. D. and D. M. Oosterhuis. 1990. Photosynthetic carbon production and use by developing cotton leaves and bolls. Crop Sci. 30:1259-1264.. 182. Yakir, D., A. Sadovski, H. D. Rabiniwitch, and J. Rudich. 1984. Effect of high temperature on quality of processing tomatoes of various genotypes ripened off the vine. Sci. Hort. 23:323-330. 183. Yamada, M., T. Hidaka, and H. Fukamachi. 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci. Hort. 67: 39-48. 184. Yeh-Jin, A., K. Clausen, and J. L. Zimmerman. 2004. Genotypic differences in the heat shock response and themotolerance in four potato cultivars. Plant Sci. 166:901-911. 185. Young, L. W., R. W. Wilen, and P. C. Bonham-Smith. 2004. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 55:485-495. 186. Yu, Y. B., S. F. Yang, and D. O. Adams. 1980. Inhibition of ethylene production by 2,4-dinitrolphenol and high temperature. Plant Physiol. 66:286-290. 187. Zribi, L., G. Fatma., R. Fatma., R. Salwa., N. Hassan., R. M. N&eacute;jib. 2009. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato Solanum lycopersicum (variety Rio Grande). Sci. Hortic. 120:367-372.
摘要: 全球暖化伴隨著極端氣象,對農業生產的衝擊與影響日益受到重視,因此篩選出具有耐熱和耐寒潛力之基因型是重要的,快速且簡單的選別方法在育種過程中是不可或缺。葉綠素螢光測定的方法簡單、快速、靈敏且為非破壞性檢測,本試驗以網室栽培番木瓜品種包含‘Thailand-1’、‘Diamond Star’、‘ML’、‘PPI’、‘Havay’、‘Sunrise’、‘TN-2’、‘Kaeg Dahm’、‘Thailand-2’、‘N-10’、‘PPI×ML’、‘Red Lady’、‘Exotica’、‘Mex’,採取成熟葉片(45°角)作為材料,分別以50 ℃和1 ℃作為高溫及低溫逆境篩選溫度,利用葉綠素螢光儀選出耐熱品種‘Havay’以及不耐熱品種‘Thailand-1’;耐寒品種‘Mex’和‘Kaeg Dahm’以及不耐寒品種‘N-10’和‘Thailand-1’。 結果顯示,不論是高溫逆境或低溫逆境,葉綠素螢光變化與電解質滲漏率、乙烯釋放率及呼吸率皆有良好之正相關性;離體葉片與完整植株試驗結果相似,耐熱品種‘Havay’以及耐寒品種‘Kaeg Dahm’葉綠素螢光維持較高,幼苗植株外觀較不受高或低溫逆境影響。花粉試驗方面,因‘Thailand-1’品種番木瓜花朵為雌花,故無法評估兩品種花粉萌發率和葉綠素螢光對高溫逆境反應是否相同;低溫逆境下營養組織試驗(葉片和完整植株)以‘Kaeg Dahm’品種有最佳耐寒力,而花粉試驗以‘Mex’為最佳耐寒力。因此葉綠素螢光可以作為番木瓜在溫度逆境下非破壞性生理指標,可快速篩選出具有耐熱和耐寒潛力之品種,加速育種選拔效率。
其他識別: U0005-1607201210415900
Appears in Collections:園藝學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.