Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29430
標題: 薄層屋頂綠化栽培介質之研究
A Study of Extensive Green Roof Growing Medium
作者: 陶文吟
Tao, Wen-Yin
關鍵字: 薄層屋頂綠化
extensive green roof
栽培介質
葉綠素螢光
熱傳導係數
growing medium
chlorophyll fluorescence
thermal conductivity
出版社: 園藝學系所
引用: 一、 中文部分 方智芳。2011。薄層綠化屋頂介質及植栽之熱效應。科學農業。59(7,8,9):118-136。 王耀弘。2011。社區公園綠地配置對於都市熱島效應與微氣候之影響。國立成功大學土木工程學系碩博士班。 江哲銘 。2007。建築物理。三民書局股份有限公司。 李衛東、莊志勇。2008。屋頂綠化系統的栽培介質研究。湖南農業科學。(1):136-138。 李榮裕、陳長庚、任森珂、黃永泰、王興富、劉金昌。1997。建築設備。東大圖書股份有限公司。台北。 林炯明。2010。都市熱島效應之影響及其環境意涵。環境與生態學報。1(3):1-15。 林育德。2012。屋頂花園設置決策因子之研究-以臺北市成功國宅為例。逢甲大學景觀與遊憩學位學程碩士論文。 林冠宏、黃薇綺、羅筱鳳。2012。高溫、淹水及乾旱對甘藷葉綠素螢光之影響。 臺灣園藝。58 : 315-325。 林寶秀。2010。植栽綠地降溫效果之研究。國立台灣大學園藝系博士論文。 姚志廷。2011。隔熱材料對建築外殼隔熱性能及節能效益之影響。建築研究簡訊。內政部建築研究所。 姚銘輝、陳守泓、漆匡時。2007。利用葉綠素螢光估算作物葉片之光合作用。台灣農業研究。56(3):224-236。 姚銘輝、盧虎生、朱鈞。2002。葉綠素螢光與作物生理反應。科學農業。50(1,2):31-41。 馬月萍、董光勇。2011。屋頂綠化設計與建造。機械工業出版社。中國北京。 徐善德、廖玉琬。2005。植物生理學。偉明圖書有限公司。台北。 徐森雄、蔡奉廷、楊婉嘉、曾金楷、吳建賢。2005。不同土壤之地溫、水分與熱流之變化。作物、環境與生物資訊。12(3):201-210。 高鈺豐。2009。栽培介質、肥料種類及濃度對蝴蝶蘭生長與開花之影響。國立嘉義大學園藝學系碩士論文。 連祥萍。2009。運用省水耐旱植栽進行屋頂薄層綠化之熱效應研究國立中興大學園藝學系碩士論文。 陳啟中。1996。建築物理概論。詹式書局,台北。 陳慶安。2009。城市推行綠屋頂的策略、措施與成效之分析研究。國立台灣大學園藝系碩士論文。 張育森。2008。綠屋頂適用栽培介質的選擇與應用。綠屋頂推廣交流討論會。p10-21。 張育森、賴允慧。2012。綠屋頂的功能和技術。臺大農業推廣通訊。 許瑞銘。2006。屋頂綠化熱效益之研究。朝陽科技大學建築及都市設計研究所碩士論文。 曾明寶。1997。四種有機成分介質理化性變化及對盆栽植物的影響。國立中興大學園藝學系碩士論文。 黃國倉。2011。綠建築的屋頂綠化。科學發展月刊。406 :48-53。 黃薇綺。2004。高溫、低溫、乾旱與淹水逆境對甘藷葉綠素螢光影響之研究。碩士論文。中國文化大學生物科技研究所。 楊秋忠。1995。亞熱帶地區本土化介質應用手冊。國立中興大學土壤學系編印。 鄭地利。2008。建築外遮陽暨屋頂隔熱設計參考手冊。內政部建築研究所。 蔡建泓。2012。薄層屋頂綠化植栽種及灌溉量之研究。國立勤益科技大學景觀系碩士班。 劉思吟。2011。薄層屋頂綠化適用植栽之研究。國立中興大學園藝學系碩士論文。 劉秀貞。2008。熱傳導係數量測之研究。國立成功大學碩士論文。 劉敏莉。2011。葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報。21(1):1-15。 潘瑞熾。2011。植物生理學。藝軒圖書出版社。 魏國彥、許晃雄。1997。全球環境變遷導論。教育部。 蘇榮宗。2009。屋頂植草覆土層熱效應之研究。國立高雄大學碩士論文。 顧美萍、吳樹芳、彭光途。2007。輕質人工土壤在屋頂綠化中的運用。江西農業學報19(8):94-95。 Wemer Peter Kusters。2005。德國屋頂花園綠化Roof Garden in Germany。中國園林。21(4):71-75。 二、 英文部分 Baumann, S.. 2006. Ground-Nesting Birds on Green Roofs in Switzerland: Preliminary Observations. URBAN HABITATS 4:37-50. Beattie, D. J. and R. Berghage. 2004. Green roof media characteristics: The basic, p. 411-416. In Proc. of 2nd North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Portland, OR. 2-4 June 2004. The Cardinal Group, Toronto. Bragg, N. C., and B. J. Chambers. 1988. Interpretation and advisory applications of compost air-filled porosity (AFP) measurements. Acta Hort. 221: 35-44. Colla, S. R., E. Willis and L. Packer. 2009. Can green roofs provide habitat for urban bees (Hymenoptera: Apidae)?. Cities and the Environment 2:article 4, 12 pp, http://digitalcommons.lmu.edu/cgi/viewcontent.cgi?article=1017&context=cate. Durhman1, A. K. and D. B. Rowe. 2006. Effect of Watering Regimen on Chlorophyll Fluorescence and Growth of Selected Green Roof Plant Taxa. HORTSCIENCE 41(7):1623–1628. Emilsson T. 2008. Vegetation development on extensive vegetated green roofs: Influence of substrate composition, establishment method and species mix. Ecological Engineering 33: 265–277. Getter, K.L., D. B. Rowe, J. A. Andresen and I.S. Wichman. 2011. Seasonal heat flux properties of an extensive green roof in a Midwestern US climate. Energy and Buildings 43: 3548–3557. Getter, K. L. and D. B. Rowe. 2006. The role of green roofs in sustainable development. Hort Science 41(5):1276-1285. Getter, K. L. and D. B. Rowe. 2009. Substrate depth influences sedum plant communityon a green roof. Hort Science 44(2):401-407. Getter, K. L. and D. B. Rowe. 2007. Effect of substrate depth and planting season on Sedum plug survival on green roofs. J. Environ. Hort. 25(2):95–99. Jaffal, I., S.E. Ouldboukhitine, R. Belarbi. 2012. A comprehensive study of the impact of green roofs on building energy performance. Renewable Energy 43: 157–164. Jespersen, L. H. and J. Willumsen. 1993. Production of compost in a heat composting plant and test of compost mixtures as growing media for greenhouse cultres. Acta Hort. 342:127-142. Jim, C.Y. and Lilliana L.H. Peng. 2012. Weather effect on thermal and energy performance of an extensive tropical green roof. Urban Forestry & Urban Greening 11(1):73-85. Jim, C.Y. and S.W. Tsang. 2011. Biophysical properties and thermal performance of an intensive green roof. Building and Environment 46(6):1263–1274. Kleerekoper L., M. v., Esch and T. B., Salcedo. 2012. How to make a city climate-proof, addressing the urban heat island effect. Resources, Conservation and Recycling 64: 30-38. Lin, Y. J. and H. T. Lin. 2011. Thermal performance of different planting substrates and irrigation frequencies in extensive tropical rooftop greeneries. Building and Environment 46:345-355. Long, S.P., S. Humphries and P. G. Falkowski. 1994. Photoinhibition of photosynthesis in Nature. Annu Rev Plant Physiol Plant Mol Biol, 45: 633–662. Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot 51: 659-668. McLean, E. O. 1982. Soil pH and lime requirement. In A. L. Page et al (ed.) Methods of soil analysis, Part 2. 2nd ed. Agronomy Monograph no.9 pp.199–224. Molineuxa C. J. , C. H. Fentimanb and A. C. Gange. Characterising alternative recycled waste materials for use as green roof growing media in the U.K.. Ecological Engineering 35:1507–1513. Nagase, A. and N. Dunnett. 2011. The relationship between percentage of organic matter in substrate and plant growth in extensive green roof. Landscape and Urban Planning 103:230-236. Ollya, L. M., A. J. Batesb, , J. P. Sadlerb and R. Mackay. 2011. An initial experimental assessment of the influence of substrate depth on floral assemblage for extensive green roofs. Urban Forestry & Urban Greening 10 (4):311–316. Ouzounidou G., M. Moustakas and R. Lannoye. 1995. Chlorophyll fluorescence and photoacoustic characteristics in relationship to changes in chlorophyll and Ca2+ content of a Cu-tolerant Silene compacta ecotype under Cu treatment. Physiologia Plantarum 93(3):551-557. Parizotto, S. and R. Lamberts. 2011. Investigation of green roof thermal performance in temperate climate: A case study of an experimental building in Florianopolis city, Southern Brazil. Energy and Buildings 43(7):1712–1722. Paul, J.L. and C.I. Lee, 1976. Relation between growth of chrysanthemum and aeration of various media. J. American Soc. HortSci., 101: 500–503. Rowe , D.B., K.L. Getter and A.K. Durhman. 2012. Effect of green roof media depth on Crassulacean plant succession over seven years. Landscape and Urban Planning 104: 310–319. Sailor, D.J., D. Hutchinson and L. Bokovoy. 2008. Thermal property measurements for ecoroof soils common in the western U.S.. Energy and Buildings 40(7): 1246–1251. Sailor, D.J. and M.Hagos. 2011. An updated and expanded set of thermal property data for green roof growing media. Energy and Buildings. 43:2298-2303. Schreiber, U., 1997. Chlorophyll Fluorescence and Photosynthetic Energy Conversion. Heinz Walz GmbH, Effleltrich. 73 pp. Susca, T., S.R. Gaffin and G.R. Dell''Osso. 2011. Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution 159: 2119–2126. Tabares-Velascoa, P. C., M. Zhaoa., N. Petersonb, J. Srebrica and R. Berghageb . 2012. Validation of predictive heat and mass transfer green roof model with extensive green roof field data. Ecological Engineering 47:165–173. Taiz, L. and E. Zeiger. 2006. Plant physiology, 4th ed. Sinauer Associates, Inc. Van Woert N. D., D. B. Rowe , J.A., Andresen, C. L. Rugh and Lan Xiao. 2005. Watering Regime and Green Roof Substrate Design Affect Sedum Plant Growth. HortScience 40: 659-664. William, G. H. 2004. Plant physiology. 3rd ed. Wiley, Inc. Wong, N. H., Y. Chena, C. L. Ongb and A. Siab. 2003. Investigation of thermal benefits of rooftop garden in the tropical environment. Building and Environment 38:261–270. Yang, H., M. Choi and J. Kang. 2010. Laboratory study of the effects of green roof systems on oise reduction at street levels for diffracted sound. INTERNOISE 2010. 日文部分 財団法人都市緑化機構 特殊緑化共同研究会, 2012, 新版 知っておきたい屋上緑化のQ&A, 鹿島出版会, Japan. 網路資料 聯合國人類住區規劃署官方網站。最後檢索:2013/04/15。 http://www.unhabitat.org/categories.asp?catid=9 新北市政府網站。最後檢索:2013/03/11。 http://www.ntpc.gov.tw/web/News?command=showDetail&postId=222240 高雄市政府工務局網站。最後檢索:2013/04/02。 http://pwb.kcg.gov.tw/ 國立中興大學生物系統工程研究室。最後檢索:2013/05/03。 http://amebse.nchu.edu.tw/ 全國法規資料庫。最後檢索:2013/05/20。 http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=D0070116
摘要: Global warming, rapid development of urbanization, and energy consumption bring negative impacts on our live environment. How to let urban cooling strategies and how to utilize useful building energy savings methods become important goals that all countries need to face to improve. The extensive green roof has become to achieve the aforementioned objectives of counter measures, which of the vegetation and growing medium are playing important roles of extensive green roof. This study aims to investigate the physiological effects of planting on water stress, and the effects of cooling the roof slab insulation of extensive green roof growing medium, to provide references for medium selection in future extensive green roof. In this study, firstly, the first experiment used chlorophyll fluorescence detection for growing medium on water stress experiment, and observed the planting of the physiological changes. Secondly, through the growing medium physicochemical properties and thermal conductivity coefficients measured by me to investigate the extensive green roof growing medium’s physicochemical properties and heat insulation efficiency. Finally, both of the results have been conducted to be discussion. The results shown that selection for extensive green roof growing medium should be carefully taken into account for the effect of plant physiology, roof insulation efficiency, and roof load problem. The growing medium on water stress experiment results show that when peat moss and vermiculite of the growing medium for C3 and C4 plants, the physiological effects are smaller. When using perlite as growing medium on planting CAM plants in flooding treatment had a greater impact. For C3, C4 and CAM plants'' physiological effects, using expanded clay as growing medium had a greater impact for plants’ physiological. The heat thermal conductivity measured results have been shown that growing medium''s thermal conductivity in wet state was larger than that in the dry state, and sand’s thermal conductivity in wet state are larger than that of the other kinds of growing medium. Furthermore, vermiculite’s thermal conductivity in wet state was smaller than the other kinds of growing medium. The consolidated on plant physiology, roof insulation, and roof load efficiency considerations for the experiment medium of peat moss and vermiculite as planting medium for the plant physiological effects have been detected smaller. Peat moss and vermiculite’s thermal conductivity variation were stability than that of the other growing medium. Their bulk density was detected to be moderate loading on the roof which would not be caused too much burden to be compared.
URI: http://hdl.handle.net/11455/29430
其他識別: U0005-3107201318073200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3107201318073200
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.