Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29431
標題: 蝴蝶蘭組培苗品質及礦物元素分析
Analysis of Quality Criteria and Mineral Nutrient of in vitro Phalaenopsis Plantlets
作者: 蔣若珊
Chiangwijaya, Melanie
關鍵字: 蝴蝶蘭
phalaenopsis
礦物元素
增殖
發根
mineral nutrition
multiplication
rooting
出版社: 園藝學系所
引用: 劉厚志. 2009. 原種蝴蝶蘭簡介. 台灣花卉園藝出版社. 台北. pp. 40-44. Association of Analytical Chemist (AOAC). 1995. Metal in plants 975.03. In: Official methods of analysis of AOAC International. 18th ed. Arlington, Virginia. Beechey, C. N. 1970. Propagation of orchids from aerial roots. Am. Orchid Soc. Bull. 39:1085-1086. Blanchard, M. G., and E. S. Runkle. 2006. Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. J. Exp. Bot. 57(15):4043-4049. Bernier, P. Y., M. S. Lamhamedi, and D. G. Simpson. 1995. Shoot:root ratio is of limited use in evaluating the quality of container conifer stock. Tree Planters’ Notes 46(3):102-106. Chang, K. H., F. N. Wang, T. F. Hsieh, and R. S. Chung. 2008. The effect of three fertilizer formulae on the growth and nutrient uptake of Phalaenopsis amabilis var. formosana in seedling stage. Taiwan J. Agric. Food Sci. 46(2):57-69. (Chinese paper with English abstract). Chen, L. Y. Nutrient management of Phalaenopsis. 2008. Phalaenopsis cultivation. National Chiayi University, Taiwan, pp. 35-40. (In Chinese). Chen, Y. C., C. Chang, and W. C. Chang. 2000. A reliable protocol for plant regeneration from callus culture of Phalaenopsis. In Vitro Cell. Dev. Biol. Plant 36:420-423. Chen, J. T., and W. C. Chang. 2004. Induction of repetitive embryogenesis from seed derived protocorms of Phalaenopsis amabilis var. formosana Shimadzu. In Vitro Cell. Dev. Biol. Plant 40:290-293. Chen, J. T., and W. C. Chang. 2006. Direct somatic embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biol. Plant. 50(2):169-173. Chugh, S., S. Guha, and I. U. Rao. 2009. Micropropagation of orchids: A review on the potential of different explants. Sci. Hort. 122:507-520. Chirstensen, B., S. Sriskandarajah, M. Serek, and R. Muller. 2008. In vitro culture of Hibiscus rosa-sinensis L.: Influence of iron, calcium and BAP on establishment and multiplication. Plant Cell Tiss. Org. Cult. 93:151-161. Council of Agriculture http://agrapp.coa.gov.tw/TS2/TS2Jsp/Index.jsp Dantas, A. K., J. P. Majada, B. Fernandez, and M. J. Canal. 2001. Mineral nutrition in carnation tissue cultures under different ventilation conditions. Plant Growth Regul. 33:237-243. Dubois, M., D. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for the determination of sugars and related substances. Anal. Chem. 28:350-356. Ernst, R. 1994. Effects of thidiazuron on in vitro propagation of Phalaenopsis and Doritaenopsis (Orchidaceae). Plant Cell Tiss. Org. Cult. 1:239-245. Fan, M. C., and R. R. Williams. 1997. Factors affecting pH changes of in vitro media. Acta Bot. Sinica 39(4):347-352. Faria, R. T., F. N. Rodrigues, L. V. R. Oliveira, and C. Muller. 2004. In vitro Dendrobium nobile plant growth and rooting in different sucrose concentration. Hortic. Bras. 22(4):780-783. Gaba, V. P. 2005. Plant growth regulators in plant tissue culture and development. In: Plant Tissue Culture and Development (Eds. R. N. Trigano and D. J. Gray). CRC Press, Boca Raton, U.S.A. p. 87-99. George, E. F., A. M. Hall, and G.-J. De Klerk. 2008. Plant Propagation by Tissue Culture. 3rd ed. Dordrecht, Springer. pp 65-113 and 115-173. Gow, W. P., J. T. Chen, and W. C. Chang. 2008. Influence of growth regulators on direct formation from leaf explants of Phalaenopsis orchids. Acta Physiol. Plant 30:507-512.13. Gow, W. P., J. T. Chen, and W. C. Chang. 2009. Effects of genotype, light regime, explants position and orientation on direct somatic embryogenesis from leaf explants of Phalaenopsis orchids. Acta Physiol. Plant 31:363-369. Huang, C. W., and C. C. Chen. 2005. Physical properties of culture vessels for plant tissue culture. Biosys. Eng. 91(4):501-511. Hsu, C. C., and F. C. Chen. 2003. Plant regeneration form protocorm like bodies induced in etiolated leaves of Phalaenopsis aphrodite Rchb. f. J. Chinese Soc. Hort. Sci. 49(4):335-342. (Chinese paper with English abstract). Ichihashi, S. 1992. Micropropagation of Phalaenopsis through the culture of lateral buds from young flower stalks. Lindleyana 7:208-215. Ichihashi, S., and M. O. Islam. 1999. Effects of complex additives on callus growth in three orchid genera, Phalaenopsis, Doritaenopsis, and Neofinetia. J. Japan Soc. Hort. Sci. 68(2):269-274. Intuwong, O., and Y. Sagawa. 1974. Clonal Propagation of Phalaenopsis by shoot tip culture. Amer. Orchid Soc. Bull. 54: 893-895. Ishii, Y., T. Takamura, M. Goi, and M. Tanaka. 1998. Callus induction and somatic embryogenesis of Phalaenopsis. Plant Cell Rep. 17:446-450. Islam, M. O., S. Ichihashi, and S. Matsui. 1998. Control of growth and development of protocom like body derived from callus by carbon sources in Phalaenopsis. Plant Biotechnol. 15(4):183-187. Islam, M. O., and S. Ichihashi. 1999. Effects of sucrose, maltose and sorbitol in callus growth and plantlet regeneration in Phalaenopsis, Doritaenopsis, and Neofinetia. J. Japan Soc. Hort. Sci. 68(6):1124-1131. Jackson, J. C., A. Gorson, G. Wizzard, K. McCook, and R. Rolle. 2004. Changes in chemical composition of coconut (Cocos nucifera) water during maturation of the fruit. J. Sci. Food Agric. 84:1049-1052. Khoddamzadeh, A. A., U. R. Sinniah, M. A. Kadir, S. B. Kadzimin, M. Mahmood, and S. Sreeramanan. 2011. In vitro induction and proliferation of protocorm like bodies (PLBs- from leaf segments of Phalaenopsis bellina (Rchb.f.) Christenson. Plant Growth Regul. 65:381-387. Knudson, L. 1946. A nutrient germination of orchid seeds. Am. Orchid Soc. Bull. 15:214-217. Kosir, P., S. Skof, and Z. Luthar. 2004. Direct shoot regeneration from nodes of Phalaenopsis orchids. Acta Agr. Slovenica 83:233–242. Kuo, H. L., J. T. Chen, and W. C. Chang. 2005. Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalaenopsis ‘Little Steve’. In Vitro Cell. Dev. Biol. Plant 41:453-456. Latip, M. A., R. Murdad, Z. A. Aziz, L. H. Ting, L. M. Govindasamy, and R. Ripin. 2010. Effects of N6-benzyladenine and thidiazuron on proliferation of Phalaenopsis gigantea protocorms. AsPac J. Mol. Biol. Biotechnol. 18(1):217-220. Lentini, Z., H. Mussel, M. A. Mutschler, and E. D. Earle. 1988. Ethylene generation and reversal of ethylene during development in vitro of rapid-cycling Brassica campestris L. Plant Sci. 54(1):75-81. Lin, C. C. 1985. Clonal propagation of Phalaenopsis and Doritaenopsis by internode of flower stalk in vitro. J. Chinese Soc. Hort. Sci. 31(2):84-93. (Chinese paper with English abstract). Liu, T. H. A., J. J. Lin, and R. Y. Wu. 2006. The effects of using trehalose as a carbon source on the proliferation of Phalaenopsis and Doritaenopsis protocorm like bodies. Plant Cell Tiss. Org. Cult. 86:125-129. Majada, J. P., M. A. Fal, and R. Sanchez-Tames. 1997. The effect of ventilation rate on proliferation and hyperhydricity of Dianthus Caryophyllus L. In Vitro Cell. Dev. Biol. Plant 33:62-69. McClelland, M. T., and M. A. L. Smith. 1990. Vessel type, closure and explants orientation influence in vitro performance of five woody species. HortScience 25(7):797-800. Millaleo, R., M. Reyes-Diaz, A. G. Ivanov, M. L. Mora and M. Alberdi. 2010. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanism. J. Soil Sci. Plant Nutr. 10(4):476-494. Moatshe, O. G., V. E. Emongor, and O. Oagile. 2011. Effect of benzyladenine (BA) on fruit set and mineral nutrition of morula (Sclerocarya birrea subspecies caffra). Afr. J. Plant Sci. 5(4):268-272. Mohamed, M. A. H., and A. A. Alsadon. 2010. Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Sci. Hort. 123:295-300. Molnar, Z., E. Virag, and V. Ordog. 2011. Natural substances in tissue culture media of higher plants. Acta Biol. Szegerdiensis 55(1):123-127. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bioassyas with tobacco tissue culture. Physiol. Plant. 15:472-497. Murdad, R., K. S. Hwa, C. K. Seng, M. A. Latip, Z. A. Aziz, and R. Ripin. 2006. High frequency multiplication of Phalaenopsis gigantea using trimmed bases protocorms technique. Sci. Hort. 111:73-79. Murdad, R., M. A. Latip, Z. A. Aziz, and R. Ripin. 2010. Effects of carbon source and potato homogenate on in vitro growth and development of Sabah’s endangered orchid: Phalaenopsis gigantea. AsPac J. Mol. Biol. Biotechnol. 18(1):199-202. Nambiar, N., C. S. Tee, and M. Maziah. 2012. Effects of organic additives and different carbohydrates sources on proliferation of protocorm like bodies in Dendrobium Alya Pink. Plant Omics 5(1):10-18. Nasib, A., K. Ali, and S. Khan. 2008. An optimized and improved method for the in vitro propagation of kiwifruit (Actinidia deliciosa) using coconut water. Pak. J. Bot. 40(6):2355-2360. Oliveira, A. K. D., M. Jesus Canal, M. Luz Centeno, I. Feito, and B. Fernnandez. 1997. Endogenous plant growth regulators in carnation tissue culture under different conditions of ventilation. Plant Growth Regul. 22:169-174. Park, Y. S., S. Kakuta, A. Kano, and M. Okabe. 1996. Efficient propagation of protocorm-like bodies of Phalaenopsis in liquid medium. Plant Cell Tiss. Org. Cult. 45:79-85. Park, S. Y., H. N. Murthy, and K. Y. Paek. 2002a. Rapid propagation of Phalaenopsis from floral stalk-derived leaves. In Vitro Cell. Dev. Biol. Plant 38:168:172. Park, S. Y., E. C. Yeung, D. Chakrabarty, and K. Y. Paek. 2002b. An efficient direct induction of protocorm like bodies from leaf sub-epidermal cells of Doritaenopsis hybrid using thin-section culture. Plant Cell Rep. 21:46-51. Park, S. Y., H. N. Murthy, and K. Y. Paek. 2003. Protocorm like body induction and subsequent plant regeneration from root tip cultures of Doritaenopsis. Plant Sci. 164: 919-923. Peng, Y. C., R. S. Chung, S. B. Ho, and Y. C. Chang. 2010. Ammonium to nitrate nitrogen ratio affects vegetative and reproductive growth in Phalaenopsis Sogo Yukidian ‘V3’. J. Taiwan Soc. Hort. Sci. 56(1):45-56. (Chinese paper with English abstract). Poole, H. A., and T. J. Sheehan. 1974. Chemical composition of plant parts of Phalaenopsis orchid. Amer. Orchid Soc. Bull. 43:242-247. Poole, H. A., and J. G. Seeley. 1978. Nitrogen, potassium and magnesium nutrition of three orchid genera. J. Amer. Soc. Hort. Sci. 103(4):485-488. Premkumar, A., J. A. Mercado, and M. A. Quesada. 2001. Effects of in vitro tissue culture conditions and acclimatization on the content of Rubisco, leaf soluble proteins, photosynthetic pigments, and C/N ratio. J. Plant Physiol. 158:835-840. Rahman, A. R. Md. M., M. O. Islam, A. K. M. Azad-ud-doula Prodhan, and S. Ichihashi. 2004. Effects of complex organic extracts on plantlet regeneration from PLBs and plantlet growth in Doritaenopsis orchid. JARQ-Jpn. Agr. Res. Q. 38(1):55-59. Rosas, A., Z. Rengel, and M. Mora. 2007. Manganese supply and pH influence growth, carboxylate exudation and peroxidase activity of ryegrass and white clover. J. Plant Nutr. 30:253-270. Rotor, G. 1949. A method of vegetative propagation of Phalaenopsis species and hybrids. Am. Orchid Soc. Bull. 18:738-739. Shrestha, B. R., K. Tokuhara, and M. Mii. 2007. Plant regeneration from cell suspension-derived protoplasts of Phalaenopsis. Plant Cell Rep. 26:719-725. Tanaka, M., and Y. Sakanishi. 1977. Clonal propagation of Phalaenopsis by leaf tissue culture. Am. Orchid Soc. Bull. 46:733-737. Tisserat, B., and R. Silman. 2000. Interactions of culture vessels, media volume, culture density, and carbon dioxide levels on lettuce and spearmint shoot growth in vitro. Plant Cell Rep. 19:464-471. Tokuhara, K., and M. Mii. 1993. Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep. 13:7-11. Tokuhara, K., and M. Mii. 2001. Induction of embryogenic callus and cell suspension culture from shoot tips excised from flower stalk buds of Phalaenopsis (Orchidaceae). In Vitro Cell. Dev. Biol. Plant 37:457-461. Tokuhara, K., and M. Mii. 2003. Highly efficient somatic embryogenesis from cell suspension culture of Phalaenopsis orchids by adjusting carbohydrate sources. In Vitro Cell. Dev. Biol. Plant 39:635-639. Tsao, C. Y., U. C. Chen, and C. N. Hsia. 2011. Explant types derived from flower stalk culture and 6-benzyladenine concentrations affect shoot differentiation of Phalaenopsis hybrid in subculture. J. Taiwan Soc. Hort. Sci. 57(1):31-42. Tu, M. C., and N. Lee. 1987. Effect of pollination time and capsule maturity on seed germination in Phalaenopsis white hybrid. J. Chinese Soc. Hort. Sci. 33(3):190-200. (Chinese paper with English abstract). Tu, M. C., and N. Lee. 1988. Effect of nitrogen, sucrose concentration and light intensity on seed germination and seedling growth in Phalaenopsis white hybrid. J. Chinese Soc. Hort. Sci. 34(4):293-302. (Chinese paper with English abstract). Vacin, E., and F. W. Went. 1949. Some pH changes in nutrient solutions. Bot. Gaz. 110:605-613. Wall, M. M. 2006. Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. J. Food Comp. Anal. 19:434-445. Wang, Y. T., and L. L. Gregg. 1994. Medium and fertility affect the performance of Phalaenopsis orchid during two flowering cycles. HortScience 29:269-271. Wang, Y. T. 1996. Effect of six fertilizers on vegetative growth and flowering of Phalaenopsis orchids. Sci. Hort. 65:191-197. Wang, Y. T. 2000. Impact of a high phosphorus fertilizer and timing of termination of fertilization on flowering of a hybrid moth orchid. HortScience 35(1):60-62. Wang, Y. T., and E. A. Konow. 2002. Fertilizer source and medium composition affect vegetative growth and mineral nutrition of a hybrid of moth orchid. J. Amer. Soc. Hort. Sci. 127(3):442-447. Wang, Y. T. 2007. Potassium nutrition affects Phalaenopsis growth and flowering. HortScience 42(7):1563-1567. Wang, Y. T. 2008. High NO3-N to NH4-N ratios promotes growth and flowering of a hybrid Phalaenopsis grown in two root substrates. HortScience 43(2):350-353. Wetzstein, H. Y., C. Kim, and H. E. Sommer. 1994. Vessel volume, gelling agent, and basal salts affect pH and gel strength of autoclave tissue culture media. HortScience 29(6):683-685. Wimber, D. E. 1965. Additional observations on clonal multiplication of cymbidiums through culture of shoot meristems. Cymbidium Soc. News 20:7-10. Wu, H. H., and F. C. Chen. 2008a. Induction of flower stalk nodal buds of Phalaenopsis and Doritaenopsis and effect of wounding on shoot multiplication. J. Taiwan Soc. Hort. Sci. 54(1):67-74. (Chinese paper with English abstract). Wu, H. H., and F. C. Chen. 2008b. Effect of plant growth regulators on shoot multiplication from flower stalk nodal buds of Phalaenopsis and Doritaenopsis. J. Taiwan Soc. Hort. Sci. 54(2):151-159. (Chinese paper with English abstract). Yam, T. W., and J. Arditti. 2009. History of orchid propagation: a mirror of a history of biotechnology. Plant Biotechnol. Rep. 3:1-56. Young, J. W. H., L. Ge, Y. F. Ng, and S. N. Tan. 2009. The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 14:5144-5164.
摘要: 蝴蝶蘭是台灣最重要的經濟盆花作物。本研究目的為調查和了解台灣北中南區生產的蝴蝶蘭組培苗之形態、並分析在不同培養密度、容器類型及增殖發根階段的瓶苗之礦物元素含量變化,以建立蝴蝶蘭組培苗形態及內生成份品質指標。 本研究從組培苗形態調查及小苗栽植結果顯示,當瓶苗有3-4片葉、2條根以上以及莖根乾重比約1-2時候,栽植後小苗植株生長良好。當瓶苗之莖根乾重比率大於2時候植株生長不良。蝴蝶蘭組培苗有高的氮和鉀組成份。此外,試驗調查顯示蝴蝶蘭葉片中有高之錳含量。 在不同栽培密度和培養容器研究中,比較低之栽培密度不會產生比較多之葉片及根數。低之栽培密度可產生更大的葉面積。瓶苗培養於塑膠容器中之葉片進行四個月栽培後會有落葉現象。不同栽培密度及培養容器對礦物元素之吸收和碳水化合物含量並沒有很大之影響。 在蝴蝶蘭增殖發根及小苗栽培不同生長階段使用的培養基研究中,增殖培養基中加了椰子水有比較高之鉀含量。發根培養基加了香蕉泥顯示有比較高之磷含量。增殖以及發根培養基中之pH值為5.4,經過高壓滅菌後,pH值有下降之情形。本研究結果顯示在發根過程中瓶苗內生之礦物元素含量會有下降之現象。試驗結果顯示比較低之礦物元素含量在發根生長階段導致葉片黃化和黑色斑點之形成。總可溶性糖的含量從增殖至到發根1生長階段沒有顯著差異,並在發根2生長階段會提高。澱粉含量在不同之生長階段沒有顯著差異。四個月栽培後,總可溶性糖和澱粉含量有下降之情形。 本研究報導關於蝴蝶蘭組培苗的生長和發育的情形,期望經由研究可以了解礦物元素需求並提高蝴蝶蘭的組培苗之品質。
Phalaenopsis orchid is one of the most important economic pot plants in Taiwan. The present study was initiated to investigate and understand the condition of in vitro Phalaenopsis plantlets in Taiwan industry that hope could be used to improve the quality of Phalaenopsis plantlets in the future. At first, we found that in vitro plantlets with 3 to 4 leaves, more than 2 roots and with shoot root dry weight ratio about 1 to 2 have a better growth condition when cultivated in greenhouse. Higher shoot/root dry weight ratio resulted in the poor growth of plantlets after cultivation. Regardless of medium composition, Phalaenopsis have a high absorption of nitrogen (N) and potassium (K). Besides, experiments also found that Phalaenopsis also have a high absorption of manganese (Mn). In the different plant density and culture vessel experiments, lower plant density didn’t result in the higher leaf and root number. Lower plant density could result in the bigger plant size, but we assume that medium have a bigger effect than plant density. The number of leaf from the plantlets that were culture in plastic container previously was decreased 1 or 2 after cultivated in the greenhouse. Different plant density and vessel type didn’t affect the mineral absorption and carbohydrates content in the plantlets. In the study of mineral nutrient and carbohydrates content of in vitro medium and leaf tissue from different growth stage, with additional of coconut water in the multiplication medium, it resulted in the increment of K concentration. While, additional of banana homogenate resulted in the higher phosphorus (P) concentration. pH value of the medium from 5.4 was decline to 4.5 to 4.8 after autoclaved. In the rooting stage, it’s found that the concentration of macro-element was lower than multiplication stage. We suggest that lower content of macro-element in rooting growth stage is one factor that caused the presence leaf yellowing and black spotting. The total soluble sugar (TSS) concentration was stable during the multiplication to rooting stage 1 and increased during rooting stage 2. There was no significance different in the starch concentration during in vitro culture. The TSS and starch concentration decreased after 4 months of cultured in greenhouse. This study was showed some phenomenon in the growth and development of in vitro phalaenopsis plantlets. We suggest that through this study, we could improve the quality of in vitro phalaenopsis plantlets in the future.
URI: http://hdl.handle.net/11455/29431
其他識別: U0005-0708201215185600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0708201215185600
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.