Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2944
DC FieldValueLanguage
dc.contributor林泰源zh_TW
dc.contributorTai-Yuan Linen_US
dc.contributor.advisor貢中原zh_TW
dc.contributor.advisorChung-Yuan Kungen_US
dc.contributor.authorChung, Ping-Hanen_US
dc.contributor.author鍾秉翰zh_TW
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T05:24:34Z-
dc.date.available2014-06-06T05:24:34Z-
dc.identifierU0005-0307200816443500zh_TW
dc.identifier.citationReference [1] V.Sallet, C.Thiandoume, J.F.Rommeluere, A.Lusson, A.Riviere, J.P.Riviere, O.Gorochov, R.Triboulet, V.Munoz-Sanjose, Materials Letters 53.(2002) 126 . [2] E. Vasco , C. Zaldo , L. Vázquez J. Phys. Condens Matter 13 (2001) L663 . [3] A. El-Shaer, A. Che Mofor, A. Bakin, M. Kreye and A. Waag, Superlattices and Microstructures 38 (2005) 265 . [4] C. Lee, A. Park, Y. Cho, M. Park, W. I. Lee and H. W. K. ,Ceramics International 34 (2008) 1093 . [5] R.T. Zaera , J.Z. Pérez , C.M. Tomás , V.M. Sanjosé, Journal of Crystal Growth 264 (2004) 237 . [6] P.Y.Lin, J.R.Gong, P.C.Li, D.Y.Lin, Jounal of Crystal Growth 310 (2008) 3024 . [7] S. Sun, G.S. Tompa, C. Rice, X.W. Sun, Z.S. Lee, S.C. Lien, C.W. Huang, L.C. Cheng and Z.C. Feng, Thin Solid Films 516 (2008) 5571 . [8] B. Lin, Z. Fu and Y. Jia Appl. Phys. Lett. 79 (2001) 07934 . [9] E. G. Bynlander, J. Appl. Phys. 49 (1978) 1188 . [10]R. Dingle, Phys. Rev. Lett. 23 (1969) 579 . [11]D. C. Reynolds, D. C. Look, B. Jogai, and H. Morkoç, Solid State Commun 101 (1997) 643 . [12]Y. W. Heo, K. Ip, S. J. Pearton, D. P. Norton, J. D. Budia, Appl.Surf. Sci. 252 (2006) 7442 . [13]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem. Int. Ed. 42 (2003) 3031 . [14]S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 84 (1998) 2287 . [15]J. Chen, and T. Fujita, Jpn. J. Appl. Phys. 42 (2003) 602 . [16]B. P. Zhang, N. T. Binh, Y. Segawa, Y. Kashiwaba, and K. Haga, Appl. Phys. Lett. 84 (2004) 586 . [17]C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback and H. Shen, J. Appl. Phys. 85 (1999) 2595 . [18]T. Koyama and S. F. Chichibu, J. Appl. Phys. 95 (2004) 7856 . [19]S. K. Kim, C. S. Hwang, S. H. K. Park, S. J. Yun, Thin Solid Films 478 (2005) 103 . [20]S. Jakschik, U. Schroeder, T. Hecht, G. Dollinger, A. Bergmaier J. W. Bartha , Materials Science and Engineering B 107 (2004) 251 . [21]J. R. Gong, D. Jung, N. A. El-Masry, and S. M. Bedair , Appl. Phys. Lett. 57 (1990) 400 . [22]A. Yamada , B. Sang , M. Konagai , Applied Surface Science 112 (1997) 216 . [23]K. H. Kim , K. C. Park , D Y. Ma , J. Appl Phys. 81 (1997) 12 . [24]E. Ziegler, A. Heinrich, H. Oppermann, and G. Stover, Phys. Status Solidi. 66 (1981) 635 . [25]J. K. Lee, H. M. Kim, S. H. Park, J. J. Kim, B. R. Rhee and S. H. Sohn, j Appl. Phys. 92 (2002) 5761 . [26]B. L. ZHU , X. H. SUN , S. S. GUO , J. WU , R. WU, J. LIU , JJAP 45 (2006) 7860 . [27]E.Fortunato,A.Goncalves,V.Assunca,A.Marques,H.Aguas,L. Pereira , I.Ferreira, R. Martins , Thin Solid Films 442 (2003) 121 .en_US
dc.identifier.urihttp://hdl.handle.net/11455/2944-
dc.description.abstractIn this thesis , low temperature (LT) zinc oxide (ZnO) films were prepared on c - plane sapphire substrates to explore the effect of buffer - layer annealing on the characteristic of the films . Atomic layer deposition (ALD) was employed to grow ZnO films using diethylzinc (DEZn) and nitrous oxide (N2O) . It was found that a LT - ZnO buffer layer having certein thickness annealed at an elevated temperature was beneficial to enable the realization of the high quality LT - ZnO films deposited subsequently . A self - limiting process window was observed in a range of DEZn admittance from 5.7 to 8.7 μmole/min . ZnO films grown at the self - limiting regime all show very good thickness uniformity . The monolayer - by - monolayer deposition nature along with buffer - layer annealing treatment allow to improve the structural , optical and electrical characteristics of the ALD - grown LT - ZnO films , post - annealing treatment under nitrogen (N2) ambient was also found to help achieving good properties of the ZnO films .en_US
dc.description.abstract本實驗第一部分探討在(0001)面藍寶石基板上成長低溫氧化鋅薄膜 , 觀察在不同溫度緩衝層的情況下薄膜的各項特性 , 此研究使用原子層沉積技術來製作氧化鋅薄膜 , 二乙機鋅跟氧化亞氮作為沉積氧化鋅的前趨物。從實驗結果可以發現 , 緩衝層經過退火有助於後續成長高品質的氧化鋅 , 並且在二乙基鋅的流量範圍5.7到8.7μmole/min可以觀察到原子層沉積的自限式生長 , 在此範圍內的氧化鋅薄膜具有非常均勻的厚度。實驗的第二部分是在氮氣環境下將氧化鋅做成長後退火 , 經由實驗結果可以發現經由退火後氧化鋅的電性與光學特性都有明顯的改善。zh_TW
dc.description.tableofcontentsAbstrate (in chinese) ..................................................................................i Abstrate .....................................................................................................ii Table of contents ......................................................................................iii List of figures ...........................................................................................vi List of tables .............................................................................................x Chapter 1 Introduction ...............................................................................1 Chapter 2 Background ...............................................................................3 2-1 Physical properties of ZnO ....................................................3 2-2 (0001) sapphire substrate.......................................................6 2-3 Fundamental aspects of ALD ................................................9 2-4 Advantages and limitation of ALD process ........................12 Chapter 3 Experimental procedures .........................................................15 3-1 Substrate cleaning................................................................ 15 3-2 Growth of ZnO films ...........................................................15 3-3 Buffer annealed ZnO films with different DEZn flow rates.....................................................................................18 3-4 Post -annealed ZnO films with different annealing temperatures........................................................................18 3-5 Charcterization methods ......................................................21 3-5-1 X-ray diffraction ..........................................................21 3-5-2 UV-Vis spectroscopy ...................................................23 3-5-3 Atomic force microscopy .............................................25 3-5-4 Field-emission scanning electron microscopy .............27 3-5-5 Van der Pauw Hall measurement .................................27 3-5-6 Photonluminescence spectroscopy ...............................28 Chapter 4 Results and Discussion ...........................................................30 4-1 Buffer annealed ZnO films with different DEZn flow rates.....................................................................................30 4-1-1 Comparison on the roughness of the ZnO buffer layers with and without annealing .........................................30 4-1-2 The growth rate of ZnO films as a function of DEZn flow rate .......................................................................32 4-1-3 θ-to-2θ XRD plots of the buffer layer annealed ZnO films with different DEZn flow rates ..........................37 4-1-4 Transmission spectra of the buffer layer-annealed ZnO films with different DEZn flow rates ..........................43 4-1-5 FESEM observations on the ZnO films having ZnO buffer layer ..................................................................47 4-1-6 AFM observations on the ZnO films with ZnO buffer layer .............................................................................53 4-1-7 Hall measurements of the buffer – layer - annealed ZnO films .............................................................................59 4-2 Post annealed ZnO films with different annealing temperatures .......................................................................67 4-2-1 θ-to-2θ XRD plots of the post-annealed ZnO films .....67 4-2-2 FESEM micrographs of the post-annealed ZnO films ...........................................................................70 4-2-3 Transmission spectra of the post-annealed ZnO films with different annealing temperatures .......................72 4-2-4 Room temperature PL spectra of the post-annealed ZnO films grown on (0001) sapphire substrates ..................74 4-2-5 Hall measurements of the ZnO films post – annealed at different annealing temperatures under N2 atmosphere....................................................................77 Chapter 5 conclusions...............................................................................79 Reference .................................................................................................80 List of figures Fig.2-1 A plot of the wurtzite structure of ZnO..........................................4 Fig.2-2 A plot of E-K relationship of a direct band gap semiconductor ...5 Fig.2-3 A schematic of the unit cell of wurtzite structure showing c, a and r planes .........................................................................................7 Fig.2-4 The atomic arrangements of a c-plane ZnO film grown on the c-plane sapphire substrate ............................................................8 Fig.2-5 A schematic showing two growth steps of ALD of one AB compound monolayer ................................................................11 Fig.2-6 A schematic of the self - limiting window of ALD ....................14 Fig.3-1 A schematic diagram of the home-made ALD system at the Dept . of physics . NCHU .................................................................17 Fig.3-2 A schematic of the ZnO growth process having different buffer layer temperatures ......................................................................19 Fig.3-3 A schematic of the ZnO growth process having different post-annealing temperatures ......................................................20 Fig.3-4 A schematic diagram of θ-to-2θ x-ray diffractometer ................22 Fig.3-5 A schematic of a single-beam UV/vis spectrophotometer ..........24 Fig.3-6 A schematic diagram of an Atomic Force Microscope ...............26 Fig.3-7 A plot of the components of the PL measurement system ..........29 Fig.4-1 A comparison on the roughness of the 300℃-grown ZnO buffer layers (a) without and (b) with annealing ..................................31 Fig.4-2 A comparison of the roughness of the 200℃-grown ZnO buffer layers (a) without and (b) with annealing ..................................31 Fig.4-3 A plot of the growth rate of ZnO films deposited at 300℃ with 300℃ - grown LT – ZnO buffer layers as a function of DEZn flow rate .....................................................................................34 Fig.4-4 A plot of the growth rate of ZnO films deposited at 300℃ with 200℃ - grown LT - ZnO buffer layers as a function of DEZn flow rate .....................................................................................36 Fig.4-5 θ-to-2θ XRD plots of ZnO films with LT – ZnO buffer layers being deposited at 300℃ ............................................................38 Fig.4-6 Plots of θ-to-2θ XRD of ZnO films with LT – ZnO buffer layers being deposited at 200℃ ............................................................40 Fig.4-7 Comparison on plots of the FWHM of (0002) θ-to-2θ XRD diffracted signals of the buffer-layer-annealed ZnO films versus DEZn flow rate with buffer-layer deposition temperatures being 200 and 300℃ , respectively ......................................................42 Fig.4-8 (a) Plots of the transmittance of the ZnO films with 300℃ - grown LT –ZnO buffer layers ....................................................45 Fig.4-8 (b) Plots of (αһν)2 versus photon energy of the ZnO films with 300℃ - grown LT – ZnO buffer layers .....................................45 Fig.4-9 (a) Plots of the transmittance of the ZnO films with 200℃ - grown LT -ZnO buffer layers .....................................................46 Fig.4-9 (b) Plots of (αһν)2 versus photon energy of the ZnO films with 300℃ - grown LT -ZnO buffer layers .......................................46 Fig.4-10 FESEM micrographs of the ZnO films with ZnO buffer layer being deposited at 300℃ ...........................................................49 Fig.4-11 FESEM micrographs of the ZnO films with ZnO buffer layer being deposited at 200℃ ...........................................................51 Fig.4-12 AFM micrographs of the ZnO films with ZnO buffer layer being deposited at 300℃ .....................................................................54 Fig.4-13 AFM micrographs of the ZnO films with ZnO buffer layer being deposited at 200℃ .....................................................................56 Fig.4-14 Plots of RMS roughness of the buffer layer-annealed ZnO films with different DeZn flow rates ..................................................58 Fig.4-15 (a) Plots of (0002) θ-to-2θ XRD FWHM and Hall mobility of ZnO films as a function of DEZn flow rate (ZnO buffer layer deposited at 300℃) ....................................................................62 Fig.4-15 (b) Plots of carrier concentration , resistivity and Hall mobility of ZnO films as functions of DEZn flow rate (ZnO buffer layer deposited at 300℃) ....................................................................62 Fig.4-16 (a) Plots of (0002) θ-to-2θ XRD FWHM and Hall mobility of ZnO films as functions of DEZn flow rate (ZnO buffer layer deposited at 200℃) ....................................................................64 Fig.4-16 (b) Plots of carrier concentration , resistivity and Hall mobility of ZnO films as functions of DEZn flow rate (ZnO buffer layer deposited at 200℃) ....................................................................64 Fig.4-17 (a) Plots of Hall mobilities of ZnO films with 300℃ – and 200℃ – grown ZnO buffer layers as a function of DEZn flow rate..............................................................................................65 Fig.4-17 (b) Plots of carrier concentrations of ZnO films with 300℃ – and 200℃ – grown ZnO buffer layers as functions of DEZn flow rate .....................................................................................65 Fig.4-17 (c) Plots of resistivities of ZnO films with 300℃ – and 200℃ – grown ZnO buffer layers as functions of DEZn flow rate .............................................................................................66 Fig.4-18 θ-to-2θ XRD plots of the post-annealed ZnO films ..................68 Fig.4-19 FESEM micrographs of the post-annealed ZnO films ..............71 Fig.4-20 (a) Transmission spectra of the post - annealed ZnO films with different annealing temperatures ...............................................73 Fig.4-20 (b) Plots of the (αһν)2 versus photon energy of the post-annealed ZnO films with different annealing temperatures ...............................................................................73 Fig.4-21 RT PL spectra of the post-annealed ZnO films grown on (0001) sapphire substrates .....................................................................75 List of tables Tab.1 A list of thickness , growth rate and DEZn flow rate for ZnO films being deposited at 300℃ using different DEZn flow rates ...........33 Tab.2 A list of thickness , growth rate and DEZn flow rate for ZnO films being deposited at 200℃ using different DEZn flow rates ...........35 Tab.3 A list of (0002) θ-to-2θ XRD FWHM of the ZnO films with buffer layer being deposited at 300℃ .......................................................39 Tab.4 A list of (0002) θ-to-2θ XRD FWHM of the ZnO films with LT - ZnO buffer layers being deposited at 200℃ ..................................41 Tab.5 The grain sizes of ZnO films prepared under various DEZn flow rates with ZnO buffer layer being deposited at 300℃ ..................50 Tab.6 The grain sizes of ZnO films prepared under various DEZn flow rates with ZnO buffer layer being deposited at 300℃ ..................52 Tab.7 A list of RMS surface roughness of the ZnO films with 300℃ - grown ZnO buffer layers ...............................................................55 Tab.8 A list of RMS surface roughness of the ZnO films with 200℃ - grown ZnO buffer layers ...............................................................57 Tab.9 RT Hall data of the buffer – layer – annealed ZnO films grown under various DEZn flow rates with buffer layer being deposited at 300℃ .............................................................................................61 Tab.10 Hall data of the ZnO films prepared under various DEZn flow rates with buffer layer being deposited at 200℃ ...........................63 Tab.11 (0002) θ-to-2θ XRD FWHM of the post-annealed ZnO films ...............................................................................................69 Tab.12 RT PL data of the post-annealed ZnO films grown on (0001) sapphire substrates .........................................................................76 Tab.13 Hall data of the ZnO films with different annealing temperatures ...................................................................................78en_US
dc.language.isoen_USzh_TW
dc.publisher光電工程研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0307200816443500en_US
dc.subjectZnOen_US
dc.subject氧化鋅zh_TW
dc.subjectALDen_US
dc.subjectBuffer layer-annealingen_US
dc.subjectPost-annealingen_US
dc.subject原子層沉積技術zh_TW
dc.subject緩衝層退火zh_TW
dc.subject成長後退火zh_TW
dc.title以原子層沉積技術在低溫使用二乙基鋅及氧化亞氮成長高品質氧化鋅薄膜之研究zh_TW
dc.titleHigh quality ZnO films prepared by ALD at low temperatures using DEZn and nitrous oxideen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:光電工程研究所
文件中的檔案:

取得全文請前往華藝線上圖書館

Show simple item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.