Please use this identifier to cite or link to this item:
標題: Effects of different catalysts on the growth of ZnO nanorods for the application of dye-sensitized solar cells
作者: 江朋威
Chiang, Peng-Wei
關鍵字: 氧化鋅
出版社: 光電工程研究所
引用: [1] 林永昇 儀科中心71期 [2] 五南出版社 有機與塑膠太陽能電池 [3] F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfolda and J. H. Harding ,J. Mater. Chem., 15 139–148 (2005) [4] Huang MH, Mao D, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R , Yang P, SIENCE 292, 1897, 2001. [5] 林素霞,博士論文,”氧化鋅薄膜特性改良與應用”,國立成功大學材料科學研究所(2003). [6] Triboulet R, PROC. SPIE 1-8, 4412, 2001. [7] C. Barrett, T. B. Massalski, “Structure of Metals 3rd revised edition: Crystallographic Methods, Principles, and Data”, International Series on Materials Science and Technology, 35(1987). [8] 張修誠,郭正次 ”鋁薄膜輔助常溫水溶液法製備氧化鋅奈米結構之製程及其性質”,國立交通大學碩士論文,民國九十七年 [9] E. S. Kim, and R. S. Muller ─IC-processed piezoelectric microphone,∥ IEEE electron device lett., 8 467-468 (1987) [10] 吳金寶,”氧化鋁鋅(AZO)透明導電薄膜技術發展與應用”,工業材料雜誌(2008). [11] Jin-Hong Lee, Byung-Ok Park , Thin Solid Films, 426, 94 (2003) [12] D.J. Park, J.Y. Lee, D.C. Kim, S.K. Mohanta, and H.K. Cho, Appl. Phys Lett.,91,143115(2007). [13] Y.Ding, P.X. Gao,and Z.L. Wang, J.Am. Chem. Soc.,126,2066(2004) [14] J.J. Wu and S.C. Liu, J. Phys. Chem. B, 106,9546(2002) [15] Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science, 291,1947(2001) [16] R.M. Wang, Y.J. Xing, J. Xu, and D.P. Yu, New J. Phys.,5,1151(2003) [17] P.X. Gao and Z.L. Wang, J. Phys. Chem., B 108, 7534(2004) [18] M. Law, D.J. Sirbuly, J.C. Johnson, J. Goidbberger, R.J. Saykally, and P. Yang, Science, 305, 1269(2004) [19] Janson B. Baxter, and Eray.S. Aydil, Appl. Phys. Lett., 86, 053114(2005) [20] M. Gao, W.Li, Y. Liu, Q. Li, Q. Chen and L.M. Peng, Appl. Phys. Lett., 92, 113112(2008) [21] Z. Fan and J.G. Lu, Appl. Phys. Lett., 86, 123510(2005) [22] Vayssiers L , ADV. MATER. 15 , 464 ,(2003). [23] L.Vayssieres, K. Keis, A. Hagfeldt, and S. Lindquist ∥Three-dimensional array of highly oriented crystalline ZnO microtubes,∥ Chem. Mater., 13 4395-4398 (2001) [24] Govender K , Boyle DS , O’ Brien P , Binks D , West D , Coleman D , ADV. MATER. 14 , 1221 , (2002) [25] L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, and P.Yang ∥Low-temperature wafer-scale production of ZnO nanowire arrays,∥ Angew. Chem. Int., 42 3031–3034 (2003) [26] K. Govender, D.S. Boyle, P.B. Kenway, and P. O’Brien ” Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,∥ J . Mater . Chem., 14 2575–2591 (2004) [27] R.S. Wanger, W.C. Ellis, Appl. Phys. Letters 4 , 89(1964) [28] 交大出版社 半導體元件物理與製作技術 施敏 [29] 莊佑豪,林永仁 “ 水溶液法製備氧化鋅薄膜及其光學特性研究”,大同大學碩士論文,民國九十八年 [30] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide/aqueous electrolyte/platinum photocell” Nature 1976(261) 402 [31] M. Gatzel,“Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells” J. Photochem. & Photobio. A: Chem., 164 (2004) 3-14. [32] Nick Vlachopoulos, Paul Liska, Jan Augustynski, and Michael Gratzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am. Chem. Soc. 110(1988) 1216 [33] M. Gatzel,“Powering the planet”,Nature 403(2000)363. [34] A.Hageldt, M. Gatzel,“Light Induced Redox Reactions in Nanocrystalline Systems”Chem. Rev. 95,49,(1995). [35] K Tennakone et al., “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex” J. Phys. D: Appl. Phys. 1998(31) 1492-1496. [36] M. K. Nazeeruddin, P. Pĕchy and M Gratzel, “Efficient panchomatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex” Chem. Comm. 1997 1705-1706. [37] J.Nelson,“Organic photovoltaic films”,Mater.Today(2002)20-27. [38] P.Wang et al.,Nature Mater. (2002)20 [39] Tan et al.“Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells”,Langmuir20(2004)2934. [40] B.Pradhan and A.J. Pal,“Organic heterojunction photovoltaic cells: role of functional groups in electron acceptor materials”solar Energy Mater. &Solar cell 2004(81) 469-471. [41] D.Gebeyehu,CJ.Brabec and N.S.Sariciftci,“Solid-state organicyinorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes”,Thin Solid Films 403-404(2002)271-274. [42] K Tennakone et al.,“A solid state PV cell sensitized with Ru Bipyridyl complex”J.Phys.D:Appl.Phys.31(1998)1492-1496. [43] P.Wang, Shaik M. Zakeeruddin, Jacques-E. Moser, and Michael Gratzel, J. Phys. Chem. B, 2003, 107 (48), pp 13280–13285. [44] M. Gatzel,“Mesoporous oxide junctions and nanostructured solar cells”,Current Opinion in Colloid &Interface Science., 4(4), 314-321(1999). [45] K.kalyanasundaram and M. Gatzel,“Applications of functionalized transition metal complexes in photonic and optoelectronic devices”coord.chem.Rev.77(1998)347. [46] 角野 裕康, 村井 伸次, 御子柴 智,“Dye-sensitized solar cells using solid electrolytes” 東芝レビュー 2001(56) 7-10. [47] A Hagfeldt et al., “A new method for manufacturing nanostructured electrodes on plastic substrates” Nano Letters 2001(1) 97-100. [48] K. Hara et al., “A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6 %” Chem. Comm.(2001)569-570. [49] W Kubo et al., “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator” Chem. Comm.(2002)374-375. [50] 原浩二郎, “有機色素増感太陽電池で変換効率7.5%の世界最高性能を達成”,AIST Today 2002(12) 14. [51] K Tennakone et al., “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex” J. Phys. D: Appl. Phys. 1998(31) 1492-1496. [52] M Gratzel, “Conversion of sunlight to electric power by nanocrystalline DSSCs”,J. Photochem. & Photobio. A: Chem. 2004(164) 3-14. [53] C. Barrett, T. B. Massalski, “Structure of Metals 3rd revised edition: Crystallographic Methods, Principles, and Data”, International Series on Materials Science and Technology, 35(1987) [54] Qingwei Li a, Jiming Bian a,*, Jingchang Sun b, Jingwei Wanga, Yingmin Luo a, Kaitong Sun a, Dongqi Yu b, Applied Surface Science 256 (2010) 1698–1702 [55] T. Prasada Rao *, M.C. Santhoshkumar,Applied Surface Science ,255, 4579 (2009). [56] I. Hamberg,physical Review B, 30,3240(1984). [57] Jia-Min Shieh, Yi-Fan Lai, Yong-Chang Lin, and Jr-Yau Fang 奈米通訊第十二卷第二期 [58] 賴致遠,吳季珍 ”化學浴沉積法合成氧化鋅奈米線及其特性分析” 國立成功大學碩士論文,民國九十五年 [59] Thavasi , V. ; Renugopalakrishnan , V . ;Jose , R. ; Ramakrishna , S. Materials Science and Engineering : R : Reports 2009 , 63 , 81-99. [60] Qingwei Li a, Jiming Bian a,*, Jingchang Sun b, Jingwei Wanga, Yingmin Luo a, Kaitong Sun a, Dongqi Yub, Applied Surface Science 256 (2010) 1698–1702.
摘要: The analysis is mainly aimed at transforming Zno nanorods to array on the ITO substrate by Chemical Bath Deposition (CBD), and utilizing for the electrode pole of Dye-sensitized solar cells (DSSC). This investigation would help us in evaluating how three different kinds of catalysts (NaOH, NH4OH and HMT) and their respective reaction time (3, 6 and 9 hours) have an influence on the composition of Zno nanorods, superficial micro structure, optical and photo electricity attribution.The nanorods are grown with three kinds of catalysts is at wurtzite structure composition category, and to be provided with the characteristic of C axis (002) orientation. The nanorods grown with HMT has greater growth rate and aspect ratio, whilst the reaction time increases, the length of nanorods goes up correspondingly. According to PL analysis, the intensity of ultraviolet of Zno nanorods escalates with the rising reaction time. It was observed that as the reaction time increases, the crystalline of Zno nanorods gets stronger, which further results in an effect of enhanced intensity of ultraviolet.In addition it was noted that, the lattice structure of nanorods transformed with NaOH has the worst outcome. Furthermore, it also runs short of oxygen defects at most. With view point of DSSC, the Zno nanorods transformed with HMT has better efficiency on converting photoelectricity, and accounts for 0.644 percent. Due to its greater aspect ratio, and better dye attachment, the current and converted efficiency possesses better performance. However, the Voc and F.F. does not rise up with respect to the reaction time which concludes that the loop resistance does not increase with the nanorods aspect ratio accordingly. Therefore, it could be concluded that the nanorods has greater electricity attribution.
本研究主要利用化學浴沉積法(Chemical Bath Deposition, CBD) 製備氧化鋅奈米柱陣列於ITO基板上,作為染料敏化太陽能電池(DSSC)之工作電極,並探討三種不同催化劑(NaOH、NH4OH及HMT)及反應時間(3小時、6小時及9小時)對氧化鋅奈米柱之晶格結構、表面微結構、光學特性及光電特性的影響。結果顯示,使用三種催化劑成長之奈米柱皆屬於六角纖鋅塊結構,具有C軸(002)優選排向之特性。使用HMT催化劑成長之氧化鋅奈米柱具有較大之成長速率及高寬比值,反應時間增加時,奈米柱長度也會隨著反應時間增長。從PL分析結果顯示,氧化鋅奈米柱之紫外光(UV)強度會隨反應時間增加而增強,這是因為當反應時間越長時,氧化鋅奈米柱結晶性越好而導致紫外光強度增加。另外,使用NaOH所製備而成的奈米柱結晶性最差,而氧空缺缺陷也是最多的。在染敏太陽能電池應用分析方面,使用HMT製備之奈米柱製作之染敏太陽能電池效率具有較高之光電轉換效率為0.646 %,這是因為HMT奈米柱的寬高比值最大,染料吸附量最高,因此具有較高之光電流及轉換效率。然而開路電壓(Voc)與填充係數(F.F)並沒有隨著反應時間而改變,表示迴路電阻並沒有因為奈米柱高寬比增加而變大,表示奈米柱具有良好的電性。
其他識別: U0005-0408201114255300
Appears in Collections:光電工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.