Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3042
標題: 以反應曲面法最適化聚乙烯醇修飾PET不織布做為固定化金屬親和吸附基材之研究
Optimization of polyvinyl alcohol-coated non-woven cloths as immobilized metal ion affinity adsorbents by response surface methodology.
作者: 錢佩欣
Chien, Pei-Hsin
關鍵字: PET不織布
PET non-woven cloths
反應曲面法
聚乙烯醇交聯反應
N-carbamoylase
PVA (polyvinyl alcohol) crosslinking reaction
RSM(Response Surface Methodology)
N-carbamoylase
出版社: 化學工程學系所
引用: 1. Stryer L., Biochemistry. New York: W. H. Freeman, 1995. 2. Altenbuchnera J., Siemann-Herzbergb M., Syldatk C., Hydantoinases and related enzymes as biocatalysts for the synthesis of unnatural chiral amino acids. Curr. Opin. Biotechnol., 2001. 12(6): p. 559-563. 3. Syldatk C., May O., Altenbuchner J., Mattes R., Siemann M., Microbial hydantoinases – industrial enzymes from the origin of life. Appl. Microbiol. Biotechnol., 1999. 51(3): p. 293-309. 4. Sue M., Ishihara A., and Iwamura H., Purification and characterization of a hydroxamic acid glucoside β-glucosidase from wheat seedlings. Planta, 2000. 210(3): p. 432-438. 5. Simon R., Protein purification techniques. New York: OXFORD., 2001 b. 6. Scopes R.K., Protein purification: principles and practice. New York:Springer-Verlag., 1987. 7. Simon R., Protein purification applications. New York: OXFORD., 2001 a. 8. Blanka K., Lindnera P., Diefenbachb B., and Pluckthun A., Self-Immobilizing Recombinant Antibody Fragments for Immunoaffinity Chromatography: Generic, Parallel, and Scalable Protein Purification. Protein Expr. Purif., 2002. 24(2): p. 313-322. 9. Chaga G.S., Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J. Biochem. Biophys. Methods, 2001. 49(1–3): p. 313-334. 10. Bayramoglu G., Senel A.U., and. Arica M.Y., Effect of spacer-arm and Cu(II) ions on performance of l-histidine immobilized on poly(GMA/MMA) beads as an affinity ligand for separation and purification of IgG. Sep. Purif. Technol., 2006. 50(2): p. 229-239. 11. 麥守義,磁性奈米吸附劑的製備與應用,碩士論文, 2006 ,台南, 國立成功大學。 12. 曾冠維,蛋白質特定方向固定化-以α-amylase為例,碩士論文,2006 ,桃園,國立中央大學 。 13. Sharma S., Gopal P. A., Interactions of Proteins with Immobilized Metal Ions: A Comparative Analysis Using Various Isotherm Models. Anal. Biochem., 2001. 288(2): p. 126-140. 14. Porath J., Jan C ., Ingmar O., Greta B., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975. 258(5536): p. 598-599. 15. Sulkowski E., Immobilized metal-ion affinity chromatography: imidazole proton pump and chromatographic sequlae. Π. Chromatographic sequelae. J. Mol. Recognit., 1996. 9:p. 494-498. 16. Syldatk C., Laufer A., Muller R., Hoke H., Production of optically pure D-and L-a-amino acids by bioconversion of D, L-5-monosubstituted hydantoin derivatives. Adv. Biochem. Eng. Biotechno.l, 1990. 41: p. 29-75. 17. Suen S.Y., Liu Y.C., and Chang C. S., Exploiting immobilized metal affinity membranes for the isolation or purification of therapeutically relevant species. J. Chromatogr. B, 2003. 797(1-2): p. 305-319. 18. Wu C.Y., Suen S.Y., Chen S.C., Tzeng J.H., Analysis of protein adsorption on regenerated cellulose-based immobilized copper ion affinity membranes. J. Chromatogr. A, 2003. 996(1–2): p. 53-70. 19. Alvarez C., Strumia M., and Bertorello H., Synthesis and characterization of a biospecific adsorbent containing bovine serum albumin as a ligand and its use for bilirubin retention. J. Biochem. Biophys. Methods, 2001. 49(1–3): p. 649-656. 20. 孫嘉徽,超順磁性奈米栗子於基因重組蛋白質純化的應用,碩士論文,2006,台南,南台科技大學。 21. Tsai Y.. H.,. Wang M..Y, Suen S.Y., Purification of hepatocyte growth factor using polyvinyldiene fluoride-based immobilized metal affinity membranes: equilibrium adsorption study. J. Chromatogr. B., 2002. 766(1): p. 133-143. 22. Beeskow T.C., Kusharyoto W., Anspach F.B., Kroner K.H., Deckwer W.D., Surface modification of microporous polyamide membranes with hydroxyethyl cellulose and their application as affinity membranes. J. Chromatogr. A., 1995. 715(1): p. 49-65. 23. Armisen P., Mateo C., Cortes E., Barredo J.L., Salto F., Diez B., Rodes L., Garcı́a J.L., Fernandez-Lafuente R., Guisan J.M., Selective adsorption of poly-His tagged glutaryl acylase on tailor-made metal chelate supports. J. Chromatogr. A, 1999. 848(1–2): p. 61-70. 24. Liu Y.C., ChangChien C.C., Suen S.Y., Purification of penicillin G acylase using immobilized metal affinity membranes. J. Chromatogr. B, 2003. 794(1): p. 67-76. 25. Denizli A., Şenel S., and Arıca M.Y., Cibacron Blue F3GA and Cu(II) derived poly(2-hydroxyethylmethacrylate) membranes for lysozyme adsorption. Colloids Surf., B, 1998. 11(3): p. 113-122. 26. Bereli N., Sener G., AltIntas E.B., Yavuz H., and Denizli A., Poly(glycidyl methacrylate) beads embedded cryogels for pseudo-specific affinity depletion of albumin and immunoglobulin G. Mater. Sci. Eng. C., 2010. 30(2): p. 323-329. 27. Arıca, M.Y., Testereci H.N., and Denizli A., Dye–ligand and metal chelate poly(2-hydroxyethylmethacrylate) membranes for affinity separation of proteins. J. Chromatogr. A, 1998. 799(1–2): p. 83-91. 28. 陳怡君,聚乙烯醇固定化金屬親和吸附材於蛋白質純化之應用,碩士論文,2006,台中,國立中興大學。 29. Lee W.C., Yusof S., Hamid N.S.A., Baharin B.S., Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). J. Food Eng., 2006. 73(1): p. 55-63. 30. Jackson J.C., Bourne M.C., Barnard J., Optimization of Blanching for Crispness of Banana Chips Using Response Surface Methodology. J. Food Sci., 1996. 61(1): p. 165-166. 31. Naidu G.S.N., Panda T., Performance of pectolytic enzymes during hydrolysis of pectic substances under assay conditions: a statistical approach. Enzyme Microb. Technol., 1999. 25(1–2): p. 116-124. 32. Lee M.T., Chen W.C., Chou C.C., Maximization of cholesterol oxidase production by Rhodococcus equi no. 23 by using response surface methodology. Biotechnol. Appl. Biochem., 1998. 28(3): p. 229-233. 33. Ismail,A., Linder M., Ghoul M., Optimization of butylgalactoside synthesis by β-galactosidase from Aspergillus oryzae. Enzyme Microb. Technol., 1999. 25(3–5): p. 208-213. 34. Beg Q.K., Sahai V., Gupta R., Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem., 2003. 39(2): p. 203-209. 35. Baş D., Boyacı İ.H., Modeling and optimization I: Usability of response surface methodology. J. Food Eng., 2007. 78(3): p. 836-845. 36. Bezerra M.A., Santelli R.E., Oliveira E.P., Villar L.S., Escaleira L.A., Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008. 76(5): p. 965-977. 37. Yates, F., Experimental design : selected papers / Frank Yates, 1970, London : Griffin. 38. 呂士欽,白殭菌蛋白質分解酵素發酵製備之研究探討,碩士論文,2004,台中,朝陽科技大學。 39. 李晉嘉,以反應曲面法研究生化柴油之最優化酵素合成,碩士論文,2003,彰化,大葉大學。 40. Morgan P.E., Thomas O.R.T., Dunnill P., Sheppard A.J., Slater N.K.H., Polyvinyl alcohol-coated perfluorocarbon supports for metal chelating affinity separation of a monoclonal antibody. J. Mol. Recognit., 1996. 9(5-6): p. 394-400. 41. Tsai Y.H., Wang M.Y., Suen S.Y., Purification of hepatocyte growth factor using polyvinyldiene fluoride-based immobilized metal affinity membranes: equilibrium adsorption study. J. Chromatogr. B, 2002. 766(1): p. 133-143. 42. Liu Y.C., Suen S.Y., Huang C.W., ChangChien C.C., Effects of spacer arm on penicillin G acylase purification using immobilized metal affinity membranes. J. Membr. Sci., 2005. 251(1–2): p. 201-207. 43. DeMerlis C.C., Schoneker D.R., Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem. Toxicol., 2003. 41(3): p. 319-326. 44. Kobayashi M., Toguchida J., Oka M., Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials, 2003. 24(4): p. 639-647. 45. Zhai M., Liu N., Li J., Yi M., Li J., Ha H., Radiation preparation of PVA-g-NIPAAm in a homogeneous system and its application in controlled release. Radiat. Phys. Chem., 2000. 57(3–6): p. 481-484. 46. Schmedlen R.H., Masters K.S., West J.L., Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials, 2002. 23(22): p. 4325-4332. 47. Chiellini E., Corti A.,. Solaro R., Biodegradation of poly(vinyl alcohol) based blown films under different environmental conditions. Polym. Degrad. Stab., 1999. 64(2): p. 305-312. 48. Chen J., Zhang Y., Du G.C., Hua Z.Z., Zhu Y., Biodegradation of polyvinyl alcohol by a mixed microbial culture. Enzyme Microb. Technol., 2007. 40(7): p. 1686-1691. 49. Zhang L.S., Wu W.Z., Wang J.L., Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel. J. Environ. Sci. , 2007. 19(11): p. 1293-1297. 50. Lin H.L., Liu W.H., Liu Y.F., Cheng C.H., Complexation Equilibrium Constants of Poly(vinyl alcohol)-Borax Dilute Aqueous Solutions – Consideration of Electrostatic Charge Repulsion and Free Ions Charge Shielding Effect. J. Polym. Res., 2002. 9(4): p. 233-238. 51. Casassa E.Z., Sarquis A.M., Van Dyke C.H., The gelation of polyvinyl alcohol with borax: A novel class participation experiment involving the preparation and properties of a "slime". J. Chem. Educ., 1986. 63(1): p. 57. 52. Park J.S., Park J.W., Ruckenstein E., On the viscoelastic properties of poly(vinyl alcohol) and chemically crosslinked poly(vinyl alcohol). J Appl. Polym. Sci., 2001. 82(7): p. 1816-1823. 53. Miranda T.M.R., A.R. Goncalves, Amorim M.T.P., Ultraviolet-induced crosslinking of poly(vinyl alcohol) evaluated by principal component analysis of FTIR spectra. Polym. Int., 2001. 50(10): p. 1068-1072. 54. Kurokawa H., Shibayama M., Ishimaru T., Nomura S., Wu W.L., Phase behaviour and sol-gel transition of poly(vinyl alcohol)-borate complex in aqueous solution. Polym., 1992. 33(10): p. 2182-2188. 55. Kim S.H., Kyu M.H., Seok T., Tetsu M., Hong J.S., Ahn K.H., Lee S.J., Morphology–rheology relationship in hyaluronate/poly(vinyl alcohol)/borax polymer blends. Polym., 2005. 46(18): p. 7156-7163. 56. Lin H.L., Liu W.H., Liu Y.F., Cheng C.H., Complexation Equilibrium Constants of Poly(vinyl alcohol)-Borax Dilute Aqueous Solutions – Consideration of Electrostatic Charge Repulsion and Free Ions Charge Shielding Effect. J. Polym. Res., 2002. 9(4): p. 233-238. 57. Kurokawa H., Shibayama M., Ishimaru T., Nomura S., Phase behaviour and sol-gel transition of poly(vinyl alcohol)-borate complex in aqueous solution. Polym., 1992. 33(10): p. 2182-2188. 58. Mehta A., Zydney A.L., Effect of spacer arm length on the performance of charge-modified ultrafiltration membranes. J. Membr. Sci., 2008. 313(1-2): p. 304-314. 59. Chen C.Y., Chiu W.C., Liu J.S., Hsu W.H., Wang W.C., Structural Basis for Catalysis and Substrate Specificity of Agrobacterium radiobacter N-Carbamoyl-D-amino Acid Amidohydrolase. J. Biol. Chem., 2003. 278(28): p. 26194-26201.
摘要: 本研究以PET不織布做為固定化金屬親和吸附材之固體載體,利用聚乙烯醇(Polyvinyl alcohol,PVA)與硼砂(Borax)產生交聯反應,將聚乙烯醇披覆於PET不織布上;以硼砂濃度、交聯時間及交聯溫度作為影響聚乙烯醇披覆量之因子,利用反應曲面法(Response Surface Methodology,RSM)尋求出最適交聯條件,接著利用化學合成的方式接上環氧氯丙烷(Epichlorohydrin,EPI)及1,2-乙二胺 (1,2-diaminoethane)、亞胺基二乙酸 (Iminodiacetic acid,IDA)作為螯合劑以固定上銅離子,即完成固定化金屬親和吸附基材,並應用於純化N-carbamoylase之粗酵素液及蛋白質吸附量之探討。 由反應曲面法回歸之聚乙烯醇披覆量之最大值點,換算出硼砂濃度8.82%、交聯時間69.2分鐘及交聯溫度34.4℃,其聚乙烯醇披覆量回規模式預測值為5.53 g PVA/g NWC。進一步以此交聯條件做三重複實驗,所得之聚乙烯醇披覆量為5.29、5.39及5.50g PVA/g NWC,平均值為5.43g PVA/g NWC,以上顯示回應曲面法研究模式之可靠性。由實驗改質而得之不織布將先鑑定其材料特性。透過SEM觀察改質後之表面型態,選擇PVA披覆量為0.7、0.95及5.43g PVA/g NWC ,探討孔洞性質對蛋白質純化之影響;於表面積及孔洞性質分析,經過改質後不織布比表面積,由於 PVA披覆量增加而下降;由ATR-FTIR確認改質後表面帶有–OH官能基。 利用改質後PVA披覆量0.7、0.95g PVA/g NWC具有孔洞之不織布與最適PVA披覆量5.43g PVA/g NWC不具有孔洞之不織布,將銅離子固定於上,以進行蛋白質純化實驗。實驗中探討孔洞性質對蛋白質純化之影響,經實驗結果得知,最適化N-carbamoylase粗酵素液純化之改質不織布PVA披覆量為0.7g PVA/g NWC,銅離子吸附量為8.56±0.19 micromole/cm2,蛋白質吸附量與脫附量分別為480.17±0.11microg/cm2、39.26±0.10 microg/cm2 ;利用Langmuir equation假設蛋白質與配位基之間為單一層均勻吸附作用,而獲得動力參數qmax :1.81 mg/cm2、Kd:1.73 mg/ml。
In this study, polyvinyl alcohol-coated PET non-woven cloths were prepared by crosslinking PVA with Borax onto the surface of PET non-woven cloths as immobilized metal ion affinity adsorbent. The effects of Borax concentration, crosslinking time and crosslinking temperature on the amount of PVA-coated were analyzed by RSM (Response Surface Methodology) to decide the optimum value. The PVA-coated PET non-woven cloths were then activated by Epichlorohydrin (EPI) and 1,2-diaminoethane, modified by IDA (Iminodiacetic acid) as the chelating agent for loaded with Cu2+ to attain an immobilized metal affinity (IMA) absorbents. It was regressed by RSM found that the corresponding concentrations were- Borax concentration 8.82%, crosslinking time 69.2minutes and crosslinking temperature 34.4℃. The theoretical amount of PVA-coated is 5.53g PVA/g NWC, which coincides with repeated experiment value 5.43g PVA/g NWC. It reveals the reliability of RSM mode. The morphological changes of PVA-coated non-woven cloths were characterized by scanning electron microscopy (SEM), Brunauer Emmett Teller (BET) and attenuated total reflectance Fourier transform infrared (ATR-FTIR). The effect of pores property on protein purification were chose PVA-coated 0.70、0.95 and 5.43 g PVA/g NWC. It was found that the optimum PVA-coated non-woven cloths to purify a target protein from crude of N-carbamoylase is 0.7g PVA/g NWC, the copper ion capacity is 8.56±0.19 micromole/cm2 which result in protein adsorption and elution for 480.17±0.11microg/cm2、39.26±0.10microg/cm2,respectively. The adsorption phenomena appeared to follow a typical Langmuir isotherm. The maximum capacity (qm) of the Cu2+-PVA-coated NWC for N-carbamoylase is 1.81 mg/cm2, and the dissociation constant (Kd) is 1.73 mg/ml.
URI: http://hdl.handle.net/11455/3042
其他識別: U0005-3107201215304800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3107201215304800
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.