Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3048
標題: 以永續天然原料合成生物相容性聚胺酯
Synthesis of Biocompatible Polyurethanes based on Intermediates Derived from Renewable Resources
作者: 黃建森
Huang, Chien-Sen
關鍵字: 聚乳酸二元醇
polylactide diol
永續天然原料
生物相容性聚胺酯
非異氰酸鹽路徑
renewable resources
biodegradable polyurethane
non isocyanate route
出版社: 化學工程學系所
引用: 1. P.T.Anastas, Green Chemistry: Theory and Practice (1998) 2. 張敏, 崔春娜, 宋潔, 邱建輝, 包裝工程, pp. 16-18(2008) 3. E.T.H. Vink, K. R. Rabago, D.A. Glassner, P. R.Gruber, Polymer Degradation and Stability,Vol. 80, pp. 403-419(2003) 4. Rajeev Mehta, Vineet Kumar, Haripada Bhunia, S. N. Upadhyay, Journal of Macromolecular Science, Part C: Polymer Reviews, Vol. 45, pp. 325–349(2005) 5. K. Jamshidi, S.H. Hyon, Y. Ikada, Polymer, Vol. 29, pp. 2229-2234(1988) 6. S.H. Hyon, Khosrow Jamshidi, Yoshito Ikada, Biomateriols, Vol. 16, pp. 1503-1508(1997) 7. I. Engleberg, J. Kohn, Biomaterials, Vol. 12, pp. 292–304(1991) 8. Z. Wirpsza, Polyurethanes: Chemistry, Technology, and Applications; Polymer Science and Technology Series(1993) 9. T. Thomson, Polyurethanes as Specialty Chemicals: Principles and Applications, CRC Press: Boca Raton, Fla.,(2005) 10. S. A. Guelcher, Tissue Engineering Part B: Reviews, Vol. 14, pp. 3-17(2008) 11. J. H. de Groot, R. de Vrijer, B. S. Wildeboer, C. S. Spaans, A. J. Pennings, Polymer Bulletin, Vol. 38, pp. 211-218(1997) 12. C. J. Spaans, J. H. de Groot, F. G. Dekens, A. J. Pennings, Polymer Bulletin, Vol. 41, pp. 131-138(1998) 13. W. S. Wang, P. Ping, X. S. Chen, X. B. Jing, Journal of Applied Polymer Science, Vol. 104, pp. 4182-4187(2007) 14. C. Zeng, N.W. Zhang, J. Ren, Journal of Applied Polymer Science, Vol. 125, pp. 2564-2576(2012) 15. M.D. Zenner, Y. Xia, J.S. Chen, M.R. Kessier, ChemSusChem, DOI:10.1002/cssc.201 16. 陳學永, 國立中興大學碩士論文(2011) 17. Y. L. Wang, Y. G. Li, Y. F. Luo, M. N. Huang, Z. Q. Liang, Materials Letters, Vol. 63, pp. 347-349(2009) 18. B. C. Chun, T. K. Cho, Y. C. Chung, European Polymer Journal, Vol. 42, pp. 3367-3373(2006) 19. E. Yilgor, I. Yilgor, Polymer, Vol. 12, pp. 7953-7959(2001) 20. H. S. Lee, Y. K. Wang, S. L. Hsu, Macromolecules, Vol. 20, pp. 2089-2095(1987) 21. L. Ning, W. D. Ning, Y. S. Kang, Macromolecules, Vol. 30, pp. 4405-4409(1997) 22. H. Biebl, K. Menzel, A.P. Zeng, W.D. Deckwer, Applied Microbiology and Biotechnology, Vol. 52, pp. 289-297(1999) 23. G.A. Kraus, CLEAN – Soil, Air, Water, Vol. 36, pp. 648-651(2008) 24. J. V. Kurian, Journal of Polymers and the Environmen, Vol. 13, pp. 159-167(2005) 25. Y. Camberlin, J. P.Pascault, J. M. Letoffe, P. Claudy, Vol. 20, pp. 1445-1456(1882) 26. S. Miao, S. Zhang, Z. Su, P. Wang, Journal of Applied Polymer Science, Vol. 127, pp. 1929-1936(2013) 27. H.Tabor, C.White, The Journal of biological chemistry, Vol. 244, pp. 2286-2292(1969) 28. P. M. Konst, M. C. R. Franssen, E.L. Scotta, J. P. M. Sandersa, Green Chem, Vol. 13, pp. 1167-1174(2011) 29. Z. X. Wang, J. Zhugea, H. Fanga, B. Priorb,Biotechnology Advances, Vol. 19, pp. 201-223(2001) 30.Y. Zhang, M.A. Dube, D.D. McLean, M. Kates, Bioresource Technology , Vol. 89, pp. 1-16(2003) 31. B. C. Chun, M. H. Chong, Y.C. Chung, Journal of Materials Science, Vol. 42, pp. 6524-6531(2007) 32. J. G. Zeikus, M. K. Jain, P. Elankovan, Applied Microbiology and Biotechnology, Vol. 51, pp. 545-552(1999) 33. I. Bechthold, K. Bretz, S. Kabasci, R. Kopitzky, A. Springer, Chemical Engineering & Technology, Vol. 31, pp. 647-654(2008) 34. S. S. Liow, V. T. Lipik, L. K. Widjaja, S. S. Venkatraman, M. J. M. Abadie, eXPRESS Polymer Letters, Vol. 5, pp. 897-910(2011) 35. W. S. Wang, P. Ping, X. S. Chen, X. B. Jing, European Polymer Journal, Vol. 42, pp. 1240-1249(2006) 36. W. S. Wang, P. Ping, X. S. Chen, X. B. Jing, Polymer International, Vol. 56, pp. 840-846(2007) 37. M. Nagata, Y. Sato, Polymer International, Vol. 54, pp. 386-391(2005) 38. 陳佑星, 國立中興大學碩士論文(2010) 39. 林惠美, 國立中興大學碩士論文(2011) 40. J. Huang, M. S. Lisowski, J. Runt, Macromolecules, Vol. 31, pp. 2593-2599(1998) 41. N. Yamazaki, T. Iguchi, Advenced Materials, Vol.17, pp.835-841(1979) 42. V. R. M, S. R. P, M. E. W, Macromolecules, Vol. 38, pp 3176-3184(2005) 43. 黃春櫻,國立中興大學碩士論文(2010) 44. K. Lewandowski, L. R. Krepski, D. E. Michus, R. R. Roberts, S. M. Heilmann, W. K. Larson, M. D. Purgett,S. D. Koecher, S. A. Johnson, D. J. Mcgurran, C. J. Rreb, S. V. Pathre, K. A. M. Thakur, Journal of Polymer Science: Part A: Polymer Chemistry, Vol.40, pp. 3037-3045(2002) 45.S. H. Hsu, W. P. Chu, Y. S. Lin, Y. L. Chiang, Journal of Bioltechnology, Vol. 111, pp. 143–154(2004) 46. 鄭絜文, 國立中興大學碩士論文(2011) 47. P. Ping, W. Wang, X. Chen, X. Jing, Journal of Polymer Science Part B: Polymer Physics, Vol. 45, pp. 557–570(2007). 48. S. Miao, L. Sun, P. Wang, R. Liu, Z. Su, S. Zhang, European Journal of Lipid Science and Technology, Vol. 114, pp. 1165-1174(2012)
摘要: 本研究致力以永續天然原料合成生物相容性聚胺酯,聚胺酯主要發展原料為聚乳酸二元醇及聚四氫呋喃二元醇。聚乳酸二元醇以1,4-丁二醇或1,3-丙二醇作為起始劑與L-丙交酯反應而得。利用聚乳酸二元醇作為軟鏈段應用於聚胺酯的合成中。本實驗將探討幾種脂肪族異氰酸鹽包括異佛爾酮二異氰酸鹽(IPDI)、1,6-己二異氰酸鹽(HDI)、1,4-丁二異氰酸鹽(BDI),配合不同鏈延長劑包括1,3-丙二醇(PDO)、1,4-丁二醇(BDO)、1,4-丁二胺(BDA)、丙三醇(Glycerol)等永續原料對所合成聚胺酯之性能影響。 於聚乳酸二元醇的合成上,發現在約1000分子量的聚乳酸二元醇以1,3-丙二醇合成的聚乳酸二元醇比1,4-丁二醇合成的聚乳酸二元醇具有較低結晶度。在聚胺酯合成中,以1,3-丙二醇合成之聚乳酸二元醇作為軟鏈段佔聚胺酯80 %,以1,6-己二異氰酸鹽及1,3-丙二醇作為硬鏈段,其具有相對較優異的機械性質,延伸率為161 %及拉伸強度為17.2 MPa,同時此聚胺酯已通過生物相容性測試。 實驗另一重點為嘗試非異氰酸鹽路徑(NIR)為新綠色製程合成聚胺酯,此新法是以碳酸二苯酯(DPC)與二元胺合成Tetramethylene-1,4-bis (phenyl carbamate),並利用Tetramethylene-1,4-bis(phenyl carbamate)作為替代之異氰酸鹽取代1,4-丁二異氰酸鹽作為聚胺酯配方之一。Tetramethylene-1,4-bis(phenyl carbamate)以環丁碸(TMS)作為溶劑於200 0C下熱裂解中產生之異氰酸鹽與聚四氫呋喃二元醇及甘油反應,最後以1,4-丁二胺於90 0C進行終結聚胺化反應,將剩餘之Tetramethylene- 1,4-bis(phenyl carbamate)轉為聚尿素高分子。經由非異氰酸鹽路徑合成的最後產物為聚胺酯-聚尿素,其具有優異的機械性質,伸長率366 %,機械強度為21.6 MPa,並通過生物相容性測試。 實驗最後之聚胺酯合成更延伸至以碳酸二苯酯作為羫基化反應之反應物,配方中並加入其它之永續天然原料包括聚四氫呋喃二元醇、甘油及1,4-丁二胺。最適化之聚胺酯-聚尿素高分子具有優異機械性質,其延伸率為189 %及拉伸強度為42.9 MPa,並擁有優異的熱性質(Td=276 0C) ,在此研究中聚胺酯-聚尿素之原料可經由再生資源中的取得及應用達91 %,加上採以新安全綠色程序來製成,這雙管齊下的改進,將帶來具大的新發展潛力。
This study devotes to the synthesis of bio-compatible polyurethanes (B-PU) utilizing chemical raw materials mostly originated from biomass resources. The major raw materials investigated in this study for B-PUs are long-chained diols derived from polylactic acid (PLA-diols), polytetramethylene etherdiol (PTMEG). The preparation of PLA-diols in this study were done by the reactions of dilactide with 1,4-butanne-diol (BDO) or 1,3-propanediol (PPO) as the initiator. The prepared PLA-diols were then used as the soft-segment components in the PU formulations. In the study, several aliphatic diisocyanates, such as isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), or 1,4-tetramethylene diisocyanate (BDI) combines with different extenders originating from biomass , such as PDO, BDO, BDA or glycerin, for optimizing PU performances. On synthesis of long-chained PLA-diols, it was found that PDO initiated PLA diols of around 1,000 molecular weight showed lower crystallinity than those made from the BDO counterparts. If the PDO based PLA diols with weight of 80 % were then formulated with HDI and PDO as the hard segment, the resulting PU possesses the overall higher mechanical performances than all others prepared with an improved elongation of 161 % and the tensile strength of 17.2 MPa, which also passed the bio-compatible test. In another study, green processes using “Non-Isocyanate Route” (NIR) were attempted in making B-PU. In this approach, BDA and diphenyl carbonate (DPC) were reacted first to provide Tetramethylene-1,4-bis (phenyl carbamate), (BDI-BC) to serve as the building block replacing BDI in the PU formulation. BDI-BC was then heated in Tetramethylene sulfone(TMS) at 200 0C to generate partial BDI which was quickly reacted with PTMEG and Glyerol to form the major portion of PU. In the last stage of PU preparation, BDA was added to the mixture at 90 0C to transform the residual biscarmate groups in the PU by trans-amination by BDA to the final B-PU product. Through this new NIR process, an excellent PU-urea product was obtained with elongation at 366 % , tensile strength of 21.6 MPa and it also passed the bio-compatible test. Finally, our study has extended to use diphenyl carbonate (DPC) as the carbonylation agent in making PU with other raw materials made from biomass. It was found that the optimized formulation was made consisting of PTMEG, Glycerol and BDA under the condition similarly carried out in the previous section, and it resulted in PU with elongation of 189 %, tensile strength of 42.9 MPa and Td (5%) at 276 0C. It is worthy of indicating that this green B-PU product contains up to 91 % of bio-mass raw materials. Thus, with the demonstration of both green processing and green raw materials achieved in this research, it will bring about the new trend of making B-PU materials.
URI: http://hdl.handle.net/11455/3048
其他識別: U0005-0807201315153100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0807201315153100
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.