請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/3054
標題: 以超臨界二氧化碳及二甲醚抗溶沉澱法純化棲狀褐茸藻之岩藻黃質
Supercritical Carbon Dioxide and Dimethyl Ether Anti-solvent Pulverizations of Fucoxanthin from Hincksia mitchellae P.C. Silva
作者: 林達明
Lin, Da-Ming
關鍵字: 棲狀褐茸藻
Hincksia mitchellae P.C. Silva
岩藻黃質
溶劑萃取及管柱層析
超臨界二氧化碳抗溶沉澱
微米聚集顆粒
Fucoxanthin
Column Fractionation
Supercritical anti-solvent precipitation
Micro-sized precipitates
出版社: 化學工程學系所
引用: [1]蔡儀冠,黃培安,吳純衡,健康享瘦,褐藻萃取之岩藻黃質,水產試驗所水產加工組,水試專訊,27期30-32頁,2009 [2]行政院衛生署,100年國人主要死因統計, 行政院衛生署,2012 [3]陳睿哲,棲狀褐茸藻Hincksia mitchllae (Harvey) P.C. Silva天然物提純與結構解析,台灣大學生命科學院漁業科學研究所碩士論文,2007 [4]卓岳正,超臨界流體抗溶沉澱製備管柱分劃的擬球藻玉米黃素,中興大學化學工程學系碩士論文,2011 [5]洪祥恩,擬球藻養殖、類胡蘿蔔素萃取、及高含量玉米黃素奈米粉粒體製備,中興大學化學工程學系碩士論文,2011 [6]張禮斌,管柱層析與抗溶結晶純化枸杞玉米黃素棕櫚酸酯及對視網膜上皮色素細胞株增生作用,中興大學化學工程學系碩士論文,2011 [7]鄭家輝,抗溶沉澱製備枸杞玉米黃素棕櫚酸酯粉粒體及其對視網膜上皮色素細胞株增生作用, 中興大學化學工程學系碩士論文,2011 [8]陳建任,對撞式超臨界二氧化碳抗溶純化法從杜莎藻中製備9-順式及反式貝塔胡蘿蔔素, 中興大學化學工程學系碩士論文,2013 [9]沈宜臻,管柱流動層析結合超臨界二氧化碳抗溶沉澱杜莎藻富含類胡蘿蔔素粉粒體, 中興大學化學工程學系碩士論文,2011 [10]Valonia,棲狀褐茸藻,台灣大百科全書集體撰稿,中華民國文化部,2011 [11]尹尚軍,徐濤,劉麗平,汪財生,錢國英,羊栖菜岩藻黃質的提取工藝研究,浙江萬里學院生物與環境學院碩士論文,2011 [12]劉麗平,奚歆兒,汪財生,李彩燕,錢國英,超聲波輔助提取羊栖菜岩藻黃質的工藝優化,浙江萬里學院生物與環境學院碩士論文,2012 [13]劉梁,勾明玥,張春枝,武璽卓,李曉洋,海帶岩藻黃素提取工藝的優化,大連理工大學生物工程學院碩士論文,2010 [14]連培榮,孫傳家,超臨界萃取的應用,科學發展月刊,441期30-34頁,2009 [15]R.L. Airs, C.A. Llewellyn, Improved detection and characterization of fucoxanthin-type carotenoids: Novel pigments in Emiliania huxleyi (Prymnesiophyceae), Journal of Phycology, 42 (2006) 391-399. [16] J.M. Billakanti, O. Catchpole, T. Fenton, K. Mitchell, Extraction of fucoxanthin from Undaria pinnatifida using enzymatic pre-treatment followed by DME and EtOH co-solvent extraction, in: 10th International Symposium on Supercritical Fluids, CASSS: Emeryville, CA, 2012. [17] M. Calderone, S. Tallon, Particle formation by rapid expansion from solution using near-critical dimethyl-ether, The Journal of supercritical fluids, 45 (2008) 245-252. [18] Y.C. Cho, Y.C. Wang, C.J. Shieh, J.C.T. Lin, C.M.J. Chang, E. Han, Countercurrent flow of supercritical anti-solvent in the production of pure xanthophylls from Nannochloropsis oculata, Journal of Chromatography A, 1250 (2012) 85-91. [19] I. De Marco, E. Reverchon, Supercritical carbon dioxide plus ethanol mixtures for the antisolvent micronization of hydrosoluble materials, Chem. Eng. J., 187 (2012) 401-409. [20] N. D''Orazio, E. Gemello, M.A. Gammone, M. de Girolamo, C. Ficoneri, G. Riccioni, Fucoxantin: A Treasure from the Sea, Marine Drugs, 10 (2012) 604-616. [21] A. Erriguible, T. Fadli, P. Subra-Paternault, A complete 3D simulation of a crystallization process induced by supercritical CO2 to predict particle size, Comput. Chem. Eng., 52 (2013) 1-9. [22] N.R. Foster, H. Singh, S.L.J. Yun, D.L. Tomasko, S.J. Macnaughton, Polar and nonpolar cosolvent effects on the solubility of cholesterol in supercritical fluids, Industrial & engineering chemistry research, 32 (1993) 2849-2853. [23] A. Fung, N. Hamid, J. Lu, Fucoxanthin content and antioxidant properties of Undaria pinnatifida, Food Chem., 136 (2013) 1055-1062. [24] Z. Guo, M. Zhang, H. Li, J. Wang, E. Kougoulos, Effect of ultrasound on anti-solvent crystallization process, J. Cryst. Growth, 273 (2005) 555-563. [25] S.J. Heo, Y.J. Jeon, Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage, J. Photochem. Photobiol. B-Biol., 95 (2009) 101-107. [26] T.L. Huang, J.C.T. Lin, C.C. Chyau, K.L. Lin, C.M.J. Chang, Purification of lignans from Schisandra chinensis fruit by using column fractionation and supercritical antisolvent precipitation, Journal of Chromatography A, 1282 (2013) 27-37. [27] I. Jaswir, D. Noviendri, H.M. Salleh, K. Miyashita, Fucoxanthin Extractions of Brown Seaweeds and Analysis of Their Lipid Fraction in Methanol, Food Sci. Technol. Res., 18 (2012) 251-257. [28] I. Jaswir, D. Noviendri, H.M. Salleh, M. Taher, K. Miyashita, Isolation of fucoxanthin and fatty acids analysis of Padina australis and cytotoxic effect of fucoxanthin on human lung cancer (H1299) cell lines, Afr. J. Biotechnol., 10 (2011) 18855-18862. [29] I. Jaswir, D. Noviendri, H.M. Salleh, M. Taher, K. Miyashita, N. Ramli, Analysis of fucoxanthin content and purification of all-trans-fucoxanthin from Turbinaria Turbinata and Sargassum Plagyophyllum by SiO2 open column, J. Liq. Chromatogr. Relat. Technol., 36 (2013) 1340-1354. [30] K. Kanazawa, Y. Ozaki, T. Hashimoto, S.K. Das, S. Matsushita, M. Hirano, T. Okada, A. Komoto, N. Mori, M. Nakatsuka, Commercial-scale Preparation of Biofunctional Fucoxanthin from Waste Parts of Brown Sea Algae Laminalia japonica, Food Sci. Technol. Res., 14 (2008) 573-582. [31] D. Kelman, E.K. Posner, K.J. McDermid, N.K. Tabandera, P.R. Wright, A.D. Wright, Antioxidant Activity of Hawaiian Marine Algae, Marine Drugs, 10 (2012) 403-416. [32] S.M. Kim, Y.F. Shang, B.-H. Um, A preparative method for isolation of fucoxanthin from Eisenia bicyclis by centrifugal partition chromatography, Phytochemical Analysis, 22 (2011) 322-329. [33] K.T. Kwon, M.S. Uddin, G.W. Jung, B.S. Chun, Preparation of micro particles of functional pigments by gas-saturated solution process using supercritical carbon dioxide and polyethylene glycol, Korean Journal of Chemical Engineering, 28 (2011) 2044-2049. [34] B.C. Liau, C.T. Shen, F.P. Liang, S.E. Hong, S.L. Hsu, T.T. Jong, C.M.J. Chang, Supercritical fluids extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity, J. Supercrit. Fluids, 55 (2010) 169-175. [35] C.-L. Liu, Y.-P. Lim, M.-L. Hu, Fucoxanthin Enhances Cisplatin-Induced Cytotoxicity via NFκB-Mediated Pathway and Downregulates DNA Repair Gene Expression in Human Hepatoma HepG2 Cells, Marine Drugs, 11 (2013) 50-66. [36] T. Maoka, Y. Fujiwara, K. Hashimoto, N. Akimoto, Characterization of fucoxanthin and fucoxanthinol esters in the chinese surf clam, Mactra chinensis, Journal of Agricultural and Food Chemistry, 55 (2007) 1563-1567. [37] F. Mattea, Á. Martín, A. Matías-Gago, M.J. Cocero, Supercritical antisolvent precipitation from an emulsion:[beta]-Carotene nanoparticle formation, The Journal of supercritical fluids, 51 (2009) 238-247. [38] T. Mise, M. Ueda, T. Yasumoto, Production of fucoxanthin-rich powder from Cladosiphon okamuranus, Adv. J. Food Sci. Technol, 3 (2011) 73-76. [39] D. Noviendri, I. Jaswir, H.M. Salleh, M. Taher, K. Miyashita, N. Ramli, Fucoxanthin extraction and fatty acid analysis of Sargassum binderi and S. duplicatum, J. Med. Plants Res., 5 (2011) 2405-2412. [40] P. Prabhasankar, P. Ganesan, N. Bhaskar, A. Hirose, N. Stephen, L.R. Gowda, M. Hosokawa, K. Miyashita, Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation, Food Chem., 115 (2009) 501-508. [41] M.K. Roh, M.S. Uddin, B.S. Chun, Extraction of Fucoxanthin and Polyphenol from Undaria pinnatifida Using Supercritical Carbon dioxide with Co-solvent, Biotechnol. Bioprocess Eng., 13 (2008) 724-729. [42] D.T. SANTOS, M.A.A. MEIRELES, Micronization and encapsulation of functional pigments using supercritical carbon dioxide, Journal of Food Process Engineering,36 (2013) 36-49. [43] G.R. Seely, W.E. Vidaver, M.J. Duncan, Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide, Marine Biology, 12 (1972) 184-188. [44] Y.F. Shang, S.M. Kim, W.J. Lee, B.H. Um, Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) Setchell, J. Biosci. Bioeng., 111 (2011) 237-241. [45] Y.C. Shen, L.M. Chng, Y.C. Wang, C.J. Shieh, K.L. Lin, S.L. Hsu, H.N. Chou, C.M.J. Chang, Production of all trans-beta-carotene by using impinging flow of supercritical carbon dioxide anti-solvent pulverization, Journal of Chromatography A, 1270 (2012) 1-8. [46] S.J. Tallon, O.J. Catchpole, Supercritical Fluid Processing of Organic Compounds, Chemistry in New Zealand, (2008) 151-154. [47] M. Terasaki, A. Hirose, B. Narayan, Y. Baba, C. Kawagoe, H. Yasui, N. Saga, M. Hosokawa, K. Miyashita, Evaluation of recoverable functional lipid components of several brown seaweeds (Phaeophyta) from Japan with special reference to fucoxanthin and fucosterol contents, Journal of Phycology, 45 (2009) 974-980. [48] M.A. van Leeuwe, L.A. Villerius, J. Roggeveld, R.J.W. Visser, J. Stefels, An optimized method for automated analysis of algal pigments by HPLC, Marine chemistry, 102 (2006) 267-275. [49] W.J. Wang, G.C. Wang, M. Zhang, C.K. Tseng, Isolation of fucoxanthin from the rhizoid of Laminaria japonica Aresch, J. Integr. Plant Biol., 47 (2005) 1009-1015. [50] J.J. Wu, S.E. Hong, Y.C. Wang, S.L. Hsu, C.M.J. Chang, Microalgae cultivation and purification of carotenoids using supercritical anti-solvent recrystallization of CO2 + acetone solution, J. Supercrit. Fluids, 66 (2012) 333-341. [51] K. Yamamoto, C. Ishikawa, H. Katano, T. Yasumoto, N. Mori, Fucoxanthin and its deacetylated product, fucoxanthinol, induce apoptosis of primary effusion lymphomas, Cancer Letters, 300 (2011) 225-234. [52] P. York, Strategies for particle design using supercritical fluid technologies, Pharmaceutical Science & Technology Today, 2 (1999) 430-440. [53] G.X. Zhou, M. Fujiwara, X.Y. Woo, E. Rusli, H.H. Tung, C. Starbuck, O. Davidson, Z.H. Ge, R.D. Braatz, Direct design of pharmaceutical antisolvent crystallization through concentration control, Cryst. Growth Des., 6 (2006) 892-898. [54] O.J. Catchpote, S.J. Tallon, J.B. Grey, K. Fenton, K. Fletcher, A.J. Fletcher, Extraction of Lipids from Aqueous Protein-Rich Streams using Near-Critical Dimethylether, Chemical Engineering&Technology, 30(2007) 501-510
摘要: 本研究結合超音波溶劑萃取法、正相管柱層析法和超臨界抗溶沉澱法,進行純化棲狀褐茸藻粉之岩藻黃質,並製備成微米級粉粒。以353 K索式乙酸乙酯萃取,獲知每克棲狀褐茸藻粉含5.5毫克的岩藻黃質量。超音波乙酸乙酯在溫度298 K,溶固比60:1,時間10分鐘及重複3次的接續性萃取,獲得每克萃出物含5.4毫克的岩藻黃質量。以正己烷比丙酮(7:3)的連續兩次25公分矽膠管柱層析,在沖提流速每分鐘12毫升,可得每克濃縮物含719.8毫克之岩藻黃質。層析之岩藻黃質平均回收率分別為85.4 %。在超臨界二氧化碳抗溶沉澱管柱層析物回溶乙醚溶液的預實驗,探討進料流速、抗溶溫度、抗溶壓力、抗溶時間及進料濃度的操作變數對沉澱物中岩藻黃質含量的重要性。吾人選擇抗溶壓力(90 bar到110 bar)、抗溶時間(10分鐘到30分鐘)的反應曲面實驗設計法進行抗溶沉澱實驗。90 bar及10分鐘的超臨界二氧化碳抗溶沉澱實驗,獲得每克沉澱物中含886.2毫克岩藻黃質,其回收率可達98.7 %,優於液液抗溶沉澱實驗每克析出物含790.5毫克之岩藻黃質,回收率71.2 %。電子顯微鏡照射圖顯示抗溶沉澱粉粒的型態為不規則型花瓣狀的微米聚集堆疊。抗溶沉澱純化物的磷酸緩衝液溶離度實驗,指出6小時,岩藻黃質溶解量約佔其原總量的70 %。
This study investigated ultrasonic solvent extraction, normal phase column elution fractionation and supercritical anti-solvent (SAS) precipitation of fucoxanthin from brown algae of Hincksia mitchellae P.C. Silva. The 5.5 mg/g content of fucoxanthin in algae was evidenced by soxhlet ethyl acetate extraction at 353 K and 16 hours. The 5.4 mg/g content of fucoxanthin of extract was obtained by ultrasonic ethyl acetate extraction at temperature (298 K), solvent to solid ratio (60:1), time (10 min) and continuous 3 times of extraction. Ultrasonic extract eluted by normal phase column fractionations with a mixed solvent of n-hexane and acetone (7:3), then we can get 719.8 mg/g content of fucoxanthin in fraction with an average recovery of 85.4%. preliminary SAS diethyl ether solution precipitation of the column fractions were carried out by investigating the effect of temperature, pressure, retention time, feed flow rate and feed concentration on purity and recovery of fucoxanthin. Two-factor (pressure and time) schemed response surface methodology designed SAS experiments produced micro-sized irregularly flower-type agglomerated precipitates containing 886.2 mg/g of fucoxanthin with a recovery of 98.7% and showed that pressure is a major factor on enhancing purity of fucoxanthin. The result also showed SAS is prior to liquid-liquid anti-solvent precipitation of the fucoxanthin content of 790.5 mg/g. Dissolution rate tests showed the SAS product was faster dissolved in aqueous solution than that of the liquid-liquid anti-solvent precipitates and brown algae powders.
URI: http://hdl.handle.net/11455/3054
其他識別: U0005-2808201318144300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808201318144300
顯示於類別:化學工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。