請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/30663
標題: Intensity-dependence of the color opponent cells in the lobula of honeybee, Apis mellifera
蜜蜂視葉顏色拮抗神經的光強度依變
作者: 洪于善
Hung, Yu-Shan
關鍵字: 蜜蜂
http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-1807200611264200
色覺
顏色結抗神經
出版社: 昆蟲學系所
引用: Autrum, H. 1958. Electrophysiological analysis of the visual systems in insects. Exp. Cell Res. 5: 426-439. Autrum, H. and I. Thomas. 1973. Comparative physiology of colour vision in animals. pp. 661-692. In: R. Jung, ed. Central Processing of Visual Information A: Integrative Finctions and Comparative Data. (Handbook of Sensory Physiology, Vol. 7/3A). Springer-Verlag Press, Berlin, Heidelberg, New York. Autrum, H., and V. von Zwehl. 1964. Spektrale Empfindichkeit einzelner Sehzellen des Bienenauges. Z. Vergl Physiol. 48: 357-384. Briscoe, A. D., L. Chittka. 2001. The evolution of color vision in insects. Annu. Rev. Entomol. 46: 471-510. Buchsbaum, G., A. Gottschalk. 1983. Trichormacy, opponent colours coding and optimum colour information in the retina. Proc. R. Soc. Lond. B. Biol. Sci. 220: 89-113. Chittka, L., J. Spaethe, A. Schmidt, and A. Hickelsberger. 2001. Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision. pp. 106-126. In: L. Chittka, J. D. Thomson, eds. Congnitive ecology of pollination: animal behaviour and floral evolution. Cambridge University Press, Cambridge. Chittka, L., W. Beier, H. Hertel, E. Steinmann, and R. Menzel. 1992. Opponent color coding is a universal strategy to evaluate the photoreceptor inputs in Hymentoptera. Journal of J. Physiol. A. 170: 545-563. Dyer, F. 1985. Nocturnal orientation by the Asian honeybee, Apis dorsata. Anim. Behav. 33: 769-774. Edwards, D. M. 1982. The cockroach DCMD neuron. II Dynamics of response habituation and convergence of spectral inputs. J. Exp. Biol. 99: 61-90. Fletcher, D. J. C. 1978. The African bee, Apis mellifera, in Africa. A. Rev. Entomol. 23: 151-171. von Frisch, K. 1914. Der farbensinn und formensinn der biene. Zoologische Fahrbücher. Abteilung für allgemeine Zoologie und Physiologie der Tiere. 35: 1-188. von Frisch, K. 1967. The dance language and orientation of bees. Cambridge University Press, Cambridge. Fukushi, T. 1994. Colour perception of single and mixed monochromatic lights in the blowfly Lucilia cuprina. J. Physiol. A. 175: 15-22. Hertel, H. 1980. Chromatic properties of identified interneurons in the optic lobes of the bee. J. Comp. Physiol. A. 137: 215-231. Hertel, H. and U. Maronde. 1987. Processing of visual information in the honeybee brain. pp. 141-157. In. R. Menzel and A. Mercer, eds. Neurobiology and Behavior of Honeybee. Springer Verlag. Kelber, A. and M. Pfaff. 1999. True colour vision in the orchard butterfly, Papillo aegeus. Naturwissenschaften 86: 221-224. Kelber, A and L. S. V. Roth. 2006. Nocturnal colour vision - not as rare as we might think. J. Exp. Biol. 209: 781-788. Kelber, A., M. Vorobyev, and D. Osorio. 2003. Animal colour vision-- Behavioural tests and physiological concepts. Biol. Rev. 78: 81-118. Kien, J. and R. Menzel. 1977a. Chromatic properties of interneurons in the optic lobes of the bee. I. Broad band neurons. J. comp. Physiol. 113: 17-34. Kien, J. and R. Menzel. 1977b. Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J. comp. Physiol. 113: 35-53. Kirchner, W. H. and C. Dreller. 1993. Acoustical signals in the dance language of the giant honeybee, Apis dorsata. Behav. Ecol. Sociobiol. 33: 67-72. Kolb, G. and C. Scherer. 1982. Experiments on wavelength specific behaviour of Pieris brassicae L. during drumming and egg-laying. J. Physiol. A. 149: 325-332. Lehrer, M. 1987. To be or not to be a colour-seeing bee. Israel Journal of Entomology XXI. 51-76. Lotto, R. B. and D. Purves. 2002. The empirical basis of color perception. Conscious. Cogn. 11: 609-629. Marshall, N. J., J. P. Jones, and T. W. Cronin. 1996 Behavioural evidence for colour vision in stomatopod crustaceans. J. Physiol. A. 179: 473-481. Menzel, R. 1974. Spectral sensitivity of monopolor cells in the bee lamina. J. comp. Physiol. 93: 337-346. Menzel, R. 1979. Spectral sensitivity and color vision in invertebrates. pp. 503-580. In: H. Autrum, ed. Comparative Physiology and Evolution of Vision in Invertebrates A: Invertebrate Photoreceptors. (Handbook of Sensory Physiology, Vol. 7/6A). Springer-Verlag Press, Berlin, Heidelberg, New York. Menzel, R. 1981. Achromatic vision in the honeybee at low light intensities. J. Comp. Physiol. A. 141: 389-393. Menzel, R. and W. Backhaus. 1991. Colour vision in insects. The perception of colour. pp. 262-293. In: P. Gouras, ed. Macmillan Press, London. Menzel, R. and M. Blakers. 1976. Colour receptors in the bee eye-morphology and spectral sensitivity. J. Comp. Physiol. A. 108: 11-33. Menzel, R., D. F. Ventura, H. Hertel, J. M. de Souza, and U. Greggers. 1986. Spectral sensitivity of photoreceptors in insect cpmpound eyes: comparison of species and methods. J. Comp. Physiol. A. 158: 165-177. Mote, M. J. and L. J. Rubin. 1981. “On” type interneurons in the optic lobe of Periplaneta amerianan. J. Comp. Physiol. A. 141: 395-401. Mote, M. J., V. S. N. Kumar and K. R. Black. 1981. “On” type interneurons in the optic lobe of Periplaneta ameriana. II. Receptive fields and response latencies. J. Comp. Physiol. A. 141: 403-415. Naka, K. I. and W. A. H. Rushton. 1966. S-potentials from colour units in the retina of fish (Cyprinidae). J. Physiol. 185: 536-555. Neumeyer, C. 1980. Simultaneous color contrast in the honeybee. J. Physiol. A. 139: 165-176. Neumeyer. C. 1981. Chromatic adaptation in the honeybee: Successive color contrast and color constancy. J. Physiol. A. 144: 543-553. Neumeyer, C. 1991. Evolution of colour vision. pp. 284-305. In: J. R. Cronly-Dillon and R. L. Gregory, eds. Evolution of the eye and visual system. (Vision and Visual Dysfunction, Vol. 2). Macmillan press, London. Osorio, D. 1986. Ultraviolet sensitivity and spectral opponency in the locust. J. Exp. Biol. 122: 193-208. Osorio, D. 1987. The temporal properties of sustaining cells in the locust medulla. J. Comp. Physiol. A. 1612: 441-448. Pichaud, F., A. Briscoe, and C. Desplan. 1999. Evolution of color vision. Curr. Opin. Neurobiol. 9: 622-627. Ribi, W. A. 1974. Neurons in the first synaptic region of the bee, Apis mellifera. Cell Tiss. Res. 148: 277-286. Ribi, W. A. 1979. The first optic ganglion of the bee. III Regional comparison of the morphology of the photoreceptor-cell axon. Cell Tiss. Res. 200: 345-357. Ribi, W. A. and M. Scheel. 1981. The second and third optic ganglia of the worker bee. Cell Tiss. Res. 221: 17-43. Rose, R. and R. Menzel. 1981. Luminance dependence of pigment colour discrimination in bees. J. Comp. Physiol. A. 141: 379-388. de Souza, J., H. Hertal, D. F. Ventura, and R. Menzel. 1992. Response properties of stained monopolar sells in the honeybee lamina. J. Comp. Physioal. A. 170: 267-274. Troje, N. 1993. Spectral categories in the learning behaviour of blowflies. Zeitschrift für Naturforschung 48c: 96-104. de Valois, R. L. 1973. Central mechanisms of color vision. pp. 209-253. In: R. Jung, ed., Handbook of Sensory Physiology, vol. 7/3A. Springer, Berlin. Wakakuwa, M., M. Kurasawa, M. Giurfa, and K. Arikawa. 2005. Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften 92: 464-467. Warrant, E., T. Porombka, and W. Kirchner. 1996. Neural image enhancement allows honeybees to see at night. Proc. R. Soc. Lond. B. 263: 1521-1526. Yang, E. C. and D. Osorio. 1991. Spectral sensitivities of photoreceptors and lamina monopolar cells in the dragonfly, Hemicordulia tau. J. Comp. Physiol. A. 169: 663-669. Yang, E. C. and D. Osorio. 1996. spectral responses and chromatic processing in the dragonfly lamina. J. Comp. Physiol. A. 178: 543-550. Yang, E. C., H. C. Lin, and Y. S. Hung. 2004. Patterns of chromatic information processing in the lobula of honeybee, Apis mellifera L. J. Insect Physiol. 50: 913-925. Zhang, S. and M. V. Srinivasan. 1993. Behavioral evidence for parallel information processing in the visual system of insects. Japanese Journal of Physiology 43 (Suppl. 1): S247-S258.
摘要: The honeybee, Apis mellifera L., is one of the invertebrates that have been proven to have color vision through behavior tests. Previous study has shown that the chromatic information processing in the lobula of honeybee could be diverse with response patterns. Among those visual neurons, color opponent cells (COCs) have been thought to be the most important neurons for color discrimination. In the natural world, color vision of honeybee only expresses in luminant environment. The behavioral tests showed that bees performed color vision only above a certain intensities of light stimulus in dark. Thus it is possible that there is a neural response threshold in the color opponent system. To reveal the existence of the neural threshold, intracellular recording technique was applied in this study. Responses of higher order visual interneurons, especially the COCs, to different light intensities of flashes were recorded under dark-adapted. The recorded neurons can be divided into non-color opponent neurons (4 types) and color opponent neurons (5 types). Among the 5 types of color opponent types, 2 types of them are new discoveries. However, no color opponency could be observed when the stimulus intensity was lower than 3.16106 quanta cm-2 s-1 (6.5 log I). Besides, the recorded neurons showed the intensity-dependent phenomenon, which indicates the neural response patterns were different dependent on the stimulus intensity and the neural sensitivities. It is possible that the neural modulation of the intensity-dependent phenomenon may play a key role for the COCs in the complex light environment.
蜜蜂 (Apis mellifera, L.) 為少數經行為實驗證實具有色覺的昆蟲之一。蜜蜂色覺的生理學研究指出,蜜蜂視葉中的顏色訊息處理模式相當複雜,為三種不同光譜感度的感光細胞所共同參與。因其反應模式的不同,可將視神經細胞分為非顏色拮抗神經 (non-color opponent neurons),及顏色拮抗神經 (color opponent neurons) 兩類。其中,顏色拮抗作用 (color opponency) 為色覺形成的重要神經機制。蜜蜂為日行性昆蟲,由前人的行為試驗中指出,蜜蜂在暗適應下對不同光強度的色光辨認具一反應閥值 (response threshold);推測在蜜蜂的視覺神經系統中,可能存在與色覺相關的反應閥值。本研究利用電生理之細胞內記錄方法,記錄蜜蜂視神經細胞對不同光強度之顏色訊息的相關處理模式。以探討高階視覺神經,特別是顏色拮抗神經在暗適應中是否存在反應閥值。在記錄到的五種顏色拮抗模式中,有兩種反應模式為新發現的模式。在光刺激強度低於3.16×106 quanta cm-2 s-1時,並無觀察到顏色拮抗作用的形成;且顏色拮抗的模式顯示光強度依變的特性 (intensity-dependent phenomenon)。顯示在不同光強度的刺激下,在蜜蜂的高階視覺神經系統中可能會引發不同的訊號處理模式。推測視神經的光強度依變特性,可能與顏色結抗系統中處理及整合複雜的光環境訊號有關。
URI: http://hdl.handle.net/11455/30663
其他識別: U0005-1807200611264200
顯示於類別:昆蟲學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。