請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/30667
標題: Arylphorin receptor cDNA cloning and transcriptional profiles in the oriental fruit fly, Bactrocera dorsalis
東方果實蠅芳基蛋白受器基因選殖及轉錄情形
作者: 游曜誌
Yu, Yao-Chih
關鍵字: Bactrocera dorsalis
東方果實蠅
arylphorin receptor
transcriptional profile
dsRNA
芳基蛋白受器
轉錄情形
雙股RNA
出版社: 昆蟲學系所
引用: 左雨涵。2009。東方果實蠅成蟲脂肪體之特性與芳基蛋白受器基因及 卵黃蛋白基因1之轉錄調節。國立中興大學碩士論文。 邱煇宗。1977。東方果實蠅(Dacus dorsalis Hendel)之大量繁殖 。台灣農業 13:114-120。 邱煇宗。1978。東方果實蠅大量飼育法之改進實驗。植保會刊 20: 87-92。 Aguila JR, Suszko J, Gibbs AG, Hoshizaki DK. 2007. The role of larval fat cells in adult Drosophila melanogaster. J Exp Biol 210: 956-963. Beintema JJ, Stam WT, Hazes B, Smidt MP. 1994. Evolution of arthropod hemocyanins and insect storage proteins (hexamerins). Mol Biol Evol 11: 493-503. Bitondi MM, Nascimento AM, Cunha AD, Guidugli KR, Nunes FM, Simões ZL. 2006. Characterization and expression of the Hex 110 gene encoding a glutamine-rich hexamerin in the honey bee, Apis mellifera. Arch Insect Biochem Physiol 63: 57-72. Burmester T. 2001. Molecular evolution of the arthropod hemocyanin superfamily. Mol Biol Evol 18: 184-195. Burmester T. 2002. Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol B 172: 95-107. Burmester T. 2004. Evolutionary history and diversity of arthropod hemocyanins. Micron 35: 121-122. Burmester T, Scheller K. 1995. Complete cDNA-sequence of the receptor responsible for arylphorin uptake by the larval fat body of the blowfly, Calliphora vicina. Insect Biochem Mol Biol 25: 981-989. Burmester T, Scheller K. 1996. Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor. J Mol Evol 42: 713-728. Burmester T, Scheller K. 1997. Developmentally controlled cleavage of the Calliphora arylphorin receptor and posttranslational action of the steroid hormone 20-hydroxyecdysone. Eur J Biochem 247: 695-702. Burmester T, Scheller K. 1999. Ligands and receptors: common theme in insect storage protein transport. Naturwissenschaften 86: 468-474. Burmester T, Antoniewski C, Lepesant JA. 1999. Ecdysone- regulation of synthesis and processing of fat body protein 1, the larval serum protein receptor of Drosophila melanogaster. Eur J Biochem 262: 49-55. Burmester T, Massey HCJr, Zakharkin SO, Benes H. 1998. The evolution of hexamerins and the phylogeny of insects. J Mol Evol 47: 93-108. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611-622. Chen SL, Dai SM, Lu KH, Chang C. 2008. Female-specific doublesex dsRNA interrupts yolk protein gene expression and reproductive ability in oriental fruit fly, Bactrocera dorsalis (Hendel). Insect Biochem Mol Biol 38: 155-165. Cheon HM, Seo SJ, Sun J, Sappington TW, Raikhel AS. 2001. Molecular characterization of the VLDL receptor homolog mediating binding of lipophorin in oocyte of the mosquito Aedes aegypti. Insect Biochem Mol Biol 31: 753-760. Chung SO, Kubo T, Natori S. 1995. Molecular cloning and sequencing of arylphorin-binding protein in protein granules of the Sarcophaga fat body. J Biol Chem 270: 4624-4631. Cristino AS, Nunes FM, Barchuk AR, Aguiar-Coelho VM, Simões ZL, Bitondi MM. 2010. Organization, evolution and transcriptional profile of hexamerin genes of the parasitic wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). Insect Mol Biol 19 Suppl 1: 137-146. Cunha AD, Nascimento AM, Guidugli KR, Simões ZL, Bitondi MM. 2005. Molecular cloning and expression of a hexamerin cDNA from the honey bee, Apis mellifera. J Insect Physiol 51: 1135-1147. Damara M, Gullipalli D, Dutta-Gupta A. 2010. Cloning and expression of fat body hexamerin receptor and its identification in other hexamerin sequestering tissue of rice moth, Corcyra cephalonica. J Insect Physiol 56: 1071-1077. Duxbury MS, Whang EE. 2004. RNA interference: a practical approach. J Surg Res 117: 339-44. Hagner-Holler S, Pick C, Girgenrath S, Marden JH, Burmester T. 2007. Diversity of stonefly hexamerins and implication for the evolution of insect storage proteins. Insect Biochem Mol Biol 37: 1064-1074. Hansen IA, Gutsmann V, Meyer SR, Scheller K. 2003. Functional dissection of the hexamerin receptor and its ligand arylphorin in the blowfly Calliphora vicina. Insect Mol Biol 12: 427-432. Haunerland NH. 1996. Insect storage proteins: gene families and receptors. Insect Biochem Mol Biol 26: 755-765. Huggett J, Dheda K, Bustin S, Zumla, A. 2005. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6: 279-284. Hughes AL. 1999. Evolution of the arthropod prophenoloxidase /hexamerin protein family. Immunogenetics 49: 106-114. Manohar D, Gullipalli D, Dutta-Gupta A. 2010. Ecdysteroid- mediated expression of hexamerin (arylphorin) in the rice moth, Corcyra cephalonica. J Insect Physiol 56: 1224-1231. Martins JR, Nunes FM, Simões ZL, Bitondi, MM. 2008. A honeybee storage protein gene, hex 70a, expressed in developing gonads and nutritionally regulated in adult fat body. J Insect Physiol 54: 867-877. Martins JR, Nunes FM, Cristino AS, Simões ZL, Bitondi MM. 2010. The four hexamerin genes in the honey bee: structure, molecular evolution and function deduced from expression patterns in queens, workers and drones. BMC Mol Biol 11: 23. Nelliot A, Bond N, Hoshizaki DK. 2006. Fat-body remodeling in Drosophila melanogaster. Genesis 44: 396-400. Pan ML, Telfer WH. 1996. Methionine-rich hexamerin and arylphorin as precursor reservoirs for reproduction and metamorphosis in female luna moths. Arch. Insect Biochem Physiol 33: 149-162. Pick C, Hagner-Holler S, Burmester T. 2008. Molecular characterization of hemocyanin and hexamerin from the firebrat Thermobia domestica (Zygentoma). Insect Biochem Mol Biol 38: 977-983. Pick C, Schneuer M, Burmester T. 2009. The occurrence of hemocyanin in Hexapoda. FEBS J 276: 1930-1941. Sappington TW, Kokoza VA, Cho WL, Raikhel AS. 1996. Molecular characterization of the mosquito vitellogenin receptor reveals unexpected high homology to the Drosophila yolk protein receptor. Proc Natl Acad Sci USA 93: 8934-8939. Telfer WH, Kunkel JG. 1991. The function and evolution of insect storage hexamers. Annu Rev Entomol 36: 205-228. Telfer WH, Pan ML. 2003. Storage hexamer utilization in Manduca sexta. J Insect Sci 3: 26. Ullmannová V, Haškovec C. 2003. The use of housekeeping genes (HKG) as an internal control for the detection of gene expression by quantitative real-time RT-PCR. Folia Biol (Praha) 49: 211-216. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.
摘要: In this study, we cloned an arylphorin receptor cDNA (BdArR) of 3,749bp from the newly emerged female adult fat tissues of the oriental fruit fly, Bactrocera dorsalis, by rapid amplification of cDNA end (RACE) and polymerase chain reaction (PCR). Further, we used real-time PCR to analyze BdArR transcriptional profiles in all developmental stages of B. dorsalis and female adult fat tissues. In larval stages, BdArR mRNA was highly expressed in the late last instar larvae. In the pupal stages, the highest expression of BdArR mRNA was found at the newly pupated pupae and then decreased with the age. In both the whole bodies and fat tissues of female adult, BdArR mRNA was highly expressed in the newly emerged samples and decreased rapidly in the next three days. At 3 days after eclosion, BdArR mRNA expressed at very low level. In order to explore the function of BdArR, RNA interference (RNAi) was applied. The results showed that all treatments including injection of 1 or 2 μg of dsRNA or 1 μg of dsRNA with transfection reagent were unable to knock down the expression of BdArR mRNA.
使用東方果實蠅(Bactrocera dorsalis)第0日齡雌成蟲脂肪組織總量RNA進行反轉錄,以末端快速擴增法(rapid amplification of cDNA end, RACE)及聚合酶連鎖反應(polymerase chain reaction, PCR)進行選殖,得到一全長3749 bp之cDNA序列,命名為東方果實蠅芳基蛋白受器(B. dorsalis arylphorin receptor, BdArR)。利用即時定量聚合酶連鎖反應(real-time PCR)分析BdArR mRNA於幼蟲、蛹、雌成蟲及雌成蟲脂肪組織的轉錄情形。在幼蟲期,BdArR mRNA會大量表現於末齡幼蟲末期。於蛹期,BdArR mRNA的表現以第0日齡最高,隨後隨著日齡的增加而逐漸下降。最後,雌成蟲及其脂肪組織,BdArR mRNA的表現皆以第0日齡為最高,並在三天內快速的下降,至第3日齡及之後,BdArR mRNA的表現量極低。在試驗中欲以BdArR雙股RNA默化東方果實蠅雌成蟲體內脂肪組織之BdArR mRNA表現,探討其與飢餓抗性的關連性。經初步測試後結果顯示,無論注射1或2 μg或搭配轉染試劑注射1 μg的BdArR雙股RNA,皆無法完全的默化每一隻東方果實蠅雌成蟲芳基蛋白受器的表現。
URI: http://hdl.handle.net/11455/30667
其他識別: U0005-0408201116244300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0408201116244300
顯示於類別:昆蟲學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。