Please use this identifier to cite or link to this item:
標題: 以生命表為基礎之族群存活分析:以桃蚜(同翅目:蚜科)為例
Survival Analysis of Population Based on Life Table: A Case Study of Myzus persicae (Sulzer) (Homoptera: Aphididae)
作者: Chen, Yen-Hsun
出版社: 昆蟲學系所
引用: Anderson, J. R., L. Bernstein, and M. C. Pike. 1982. Approximate confidence intervals for probabilities of survival and quantiles in life-table analysis. Biometrics. 38(2): 407-416. Armstrong, D. P., I. Castro, and R. Griffiths. 2007. Using adaptive management to determine requirements of re-introduced populations: the case of the New Zealand hihi. J. Appl. Ecol. doi:10.1111/j.1365- 2664.2007.01320.x Birch, L. C. 1948. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17: 15-26. Burden, R. L., and J. D. Faires. 2005. Numerical analysis, 8th ed. Thomson, Belmont, CA. Caughly, G., and A. Gunn. 1996. Conservation Biology in Theory and Practice. Blackwell Science. Chi, H. 1988. Life-table analysis incorporating both sexes and variable development rate among individuals. Environ. Entomol. 17: 26-34. Chi, H. 2005. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. ( Chi, H., and H. Liu. 1985. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sinica 24: 225-240. Chi, H., and H. Y. Su. 2006. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 35(1): 10-21. Chung, S. J. 1995. Formulas expressing life expectancy, survival probability and death rate in life table at various ages in US adults. Int. J. Med. Informatics. 39: 209-217. Chung, S. J. 1997. Comprehensive life table of computer-assisted predictive mathematical relationship between age and life expectancy, survival probability or death rate in US adults. Comput. methods programs biomed. 52: 69-73. Cividanes F. J., and V. P. Souza. 2003. Thermal requirements and age-specific life tables of Myzus persicae (Sulzer) (Hemiptera: Aphididae) in laboratory. Neotro. Entom. 32(3): 413-419. (in Spanish) Denuit, M. 2007. Distribution of the random future life expectancies in log-bilinear mortality projection models. Lifetime Data Anal. doi: 0.1007/s10985-007-9040-6 Fisher, R. A. 1930. The genetical theory of natural selection. Clarendon Press, Oxford, United Kingdom. Frankham, R. 1995. Effective population size/adult population size ratios in wildlife: A review. Genet. Res. 66(2): 95-107. Goodman, D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 119: 803-823. Guldemond, J. A., W. J. van den Brink, and E. den Belder. 1998. Methods of assessing population increase in aphids and the effect of growth stage of the host plant on population growth rates. Entomol. Exp. Appl. 86: 163-173. Hubbell, S. T. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press. Leslie, P. H. 1945. On the use of matrices in certain population mathematics. Biometrika 33: 183-212. Leslie, P. H. 1948. Some further motes on the use of matrices in population mathematics. Biometrika 35: 213-245. Lewis, E. G. 1942. On the generation and growth of a population. Sankhya 6: 93-96. Lin, Y. C. 1999. Population growth and dispersal of Lipaphis erysimi (Kalt.) (Homoptera: Aphididae). National Chung Hsing University Master Thesis. (in Chinese) Lotka, A. J. 1907. Relation between birth rates and death rates. Science 26: 21. Memmott, J., P. G. Craze, H. M. Harman, P. Syrett, and S. V. Fowler. 2005. The effect of propagule size on the invasion of an alien insect. J. Anim. Ecol. 74: 50-62. Nicoll, M. A. C., C. G. Jones, and K. Norris. 2003. Declining survival rates in a reintroduced population of the Mauritius kestrel: evidence for non-linear density dependence and environmental stochasticity. J. Anim. Ecol. 72: 917-926. Pfister, C., and S. D. Peacor. 2003. Variable performance of individuals: the role of population density and endogenously formed landscape heterogeneity. J. Anim. Ecol. 72: 725-735. Rugman-Jones, P. F., M. S. Hoddle, and R. Stouthamer. 2007. Population genetics of Scirtothrips perseae: Tracing the origin of a recently introduced exotic pest of Californian avocado orchards, using mitochondrial and microsatellite DNA markers. Entomol. Exp. Appl. 124(1): 101-115. Shaffer, M. L. 1981. Minimum population sizes for species conservation. BioScience 31(2): 131-134. Watts, P. C., I. J. Saccheri, S. J. Kemp, and D. J. Thompson. 2007. Effective population sizes and migration rates in fragmented populations of an endangered insect (Coenagrion mercuriale: Odonata). J. Anim. Ecol. 76(4): 790-800.
摘要: The life history of Myzus persicae (Sulzer) (Homoptera: Aphididae) on kale (Brassica oleracea) was studied using the age-stage, two-sex life table. Populations of 1, 10, and 20 aphids were reared on a single kale leaf at constant temperature of 25C. In addition, populations of single aphids were studied using potted seedlings at 25C. The intrinsic rate of increase (r) at these population sizes was 0.067, 0.1724, -0.0171, and 0.3409 d-1, respectively, while the net reproductive rate (R0) was 2.73, 10.26, 0.76, and 43.91. The life expectancy of newborn (e01) was 11.86, 18.93, 10.81, and 21.48 d, and the mean generation time (T) was 14.83, 13.5, 16.06, and 11.1 d, respectively. At population size of 1, the growth performance of aphids reared on seedlings was better than for those reared on single leaves. Three factors affecting the survival of population were theoretically analyzed using the age-stage, two-sex life table: proportion of infertility, curtailed longevity, and last effective dispersal age. Moderate population size, shorter critical longevity and older effective dispersal age are advantageous for population survival.
以單片甘藍(Brassica oleracea)葉片飼養族群大小為1、10與20之桃蚜(Myzus persicae (Sulzer))與以單株甘藍苗飼養族群大小為1之桃蚜在25°C定溫下之內在增殖率(r)分別為0.067、0.1724、-0.0171和0.3409 d-1,淨增殖率(R0)分別為2.73、10.26、0.76和43.91,新生個體預期壽命(e01)分別為11.86、18.93、10.81和21.48 d,平均世代時間(T)分別為14.83、13.5、16.06和11.1 d。實驗結果顯示在不同族群大小中,族群大小為10的生長表現優於其他族群大小,而以單株植株飼養族群大小為1之桃蚜生長表現優於以單片葉片飼養之桃蚜。本研究討論三個影響族群存活之因子:無生殖個體比率、壽命縮減與最後有效分散年齡,適當的族群大小、較短的關鍵壽命與較大的有效分散年齡有利於族群存活。
其他識別: U0005-2308200718085700
Appears in Collections:昆蟲學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.