Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30718
標題: 南台灣埃及斑蚊對合成除蟲菊殺蟲劑抗藥性之研究
Pyrethroid Resistance in Aedes aegypti from Southern Taiwan
作者: Shen, Wen-Kai
沈文凱
關鍵字: http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-2008200811490500
埃及斑蚊
合成除蟲菊
抗藥性
協力劑
作用部位不敏感
出版社: 昆蟲學系所
引用: 王亦勤。1996。埃及斑蚊苓雅對亞滅寧抗藥性之研究。國立台灣大學植物病蟲害研究所碩士論文。55頁。 未具名。1989。登革熱防治工作手冊。行政院衛生署及環保署登革熱防治中心。191頁。 吳盈昌。1986 。1981年屏東縣琉球鄉之第二型登革熱流行。中華微免雜誌 19: 203-211。 李學進。1994。白線斑蚊之吸血、產卵與壽命。中華昆蟲 14: 217-231。 林佳祺。2003。台灣地區東方果實蠅微衛星多型性分析。國立中興大學昆蟲學系碩士論文。60頁。 林鶯熹、吳淑靜、徐爾烈、鄧華貞、何照美、白秀華。2003。2002年台灣登革熱流行區埃及斑蚊的抗藥性。台灣昆蟲 23: 263-274頁。 疾病管制局。2006。國內重要疫情摘要報告。疫情報導。22(12):868-869頁。 疾病管制局。2007。國內重要疫情摘要報告。疫情報導。23(12):第742頁。 陳靜宜。1999。埃及斑蚊苓雅品系對亞滅寧的抗藥性。國立台灣大學植物病蟲害研究所碩士論文。52頁。 黃志傑。2005。2004年台灣地區登革熱疫情防治報告。疫情報導。21(6):385-407頁。 謝維銓、陳明臘、林桂堂。1982。1981年在屏東縣琉球鄉流行的登革熱之研究。臺灣醫誌 81: 1388-1395。 鍾兆麟。2006。漫談登革熱防治。疫情報導。22(9):589-596頁。 Boyer, S., J. Serandour, M. Raveton, G. Lemperiere, and P. Ravanel. 2006. Do Herbicide treatments reduce the sensitivity of mosquito larvae to unsecticides? Chemosphere 65: 721-724. Brengues, C., N. J. Hawkes, F. Chandre, L. McCarroll, S. Duchon, P. Guillet, S. Manguin, J. C. Morgan, and J. Hemingway. 2003. Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med. Vet. Entomol. 17: 87-94. Brooke, B. D., G. Kloke, R. H. Hunt, L. L. Koekemoer, E. A. Temu, M. E. Taylor, G. Small, J. Hemingway and M. Coetzee. 2001. Bioassay and biochemiscal analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae). Bull. Entomol. Res. 91 :265-272. Casimiro, S., M. Coleman, P. Mohloai, J. hemingway, and B. Sharp. 2006. Insecticide resistance in Anopheles funestus (Diptera: Culicidae) from Mozabique. J. Med. Entomol. 43: 267-275. Chen S. T., Y. L. Lin, M. T. Huang, M. F. Wu, S. C. Cheng, H. Y. Lei, C. K. Lee, T. W. Chiou, C. H. Wong and S. L. Hsieh. 2008. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453: 672-676. Chi, H. 1997. Computer program for probit analysis. National Chung Hsing University, Taichung, Taiwan. Daaboub, J., R. Ben Cheikh, A. Lamari, I. Ben Jha, M. Feriani, C. Boubaker, and H. Ben Cheikh. 2008. Resistance to pyrethroid insecticides in Culex pipiens pipiens (Diptera: Culicidae) from Tunisia. Acta. Trop. 107: 30-36. Danterman, W. C. and E. Hodgson. 1978. Detoxication mechanisms in insects. pp: 541-577. In: M. Rockstein, ed. Biochemistry of Insects. Academic Press, New York. David, J. P., S. Boyer, A. Mesneau, A. Ball, H. Ranson, and C. Dauphin-Villemant. 2006. Involvement of cytochrome P450 monooxygenase in the response of mosquito larvae to dietary plant xenobiotics. Insect Biochem. Mol. Boil. 36: 410-420. Dong, K. 1997. A single amino acid change in the Para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in German cockroach. Insect Biochem. Mol. Biol. 27: 93-100. Dong, K., S. M. Valles, M. E. Scharf, B. Zeichner, and G. W. Bennett. 1998. The knockdown resistance (kdr) mutation in pyrethroidresistant German cockroaches. Pestic. Biochem. Physiol. 60: 195-204. Du, W., T. S. Awolola, P. Howell, L. L. Koekemoer, B. D. Brooke, M. Q. Benedict, M. Coetzee and L. Zheng. 2005.Independent mutations in the Rdl lous cofer dieldrin resistance to Anopheles gambiae and An. Arabiensis. Inscet Mol. Biol. 14(2):179-183. Enayati, A. A., H. Vatandoost, H. Ladonni, H. Townson, and J. hemingway. 2003. molecular evidence of a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi. Med. Vet. Entomol. 17: 138-144. Farid, H. A., R. E. Hammad, M. M. Hassan, Z. S. Morsy, I. H. Kamal, G. J. Weil, and R. M. Ramzy. 2001. Detection of Wuchereria bancrofti in mosquitoes by the polymerase chain reaction: a potentially useful tool for large-scale control programmes. Trans. R. Soc. Trop. Med. Hyg. 95: 29–32. ffrench-Constant, R. H., B. Pittendrigh, A. Vaughan, and N. Anthony. 1998. Why are there so few resistance-associated mutations in insecticide target genes? Philosophical Transactions of the Royal Society 353: 1685-1693. Finney, D. J. 1971. Probit analysis. Cambridge University Press, Cambridge, UK, London. 333 pp. Fonseca, D. M., D. A. LaPointe, and R. C. Fleischer. 2000. Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Mol. Ecol. 9: 1803–1814. Georghiou, G. P., M. Wirth, H. Tran, F. Saume, and A. B. Knudsen. 1987. Potential for organophosphate resistance in Aedes aegypti (Diptera: Culicidae) in the Caribbean area and neighboring countries. J. Med. Entomol. 24: 290-294. Grant, D. F., and B. D. Hammock. 1992. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione Stransferase-2 expression in Aedes aegypti. Mol. Gen. Genet. 234: 169-176. Grant, D. F., E. C. Dietze, and B. D. Hammock. 1991. Glutathion S-transferase isozymes in Aedes aegypti: purification, characterization, and isozyme-specific regulation. Insect. Biochem. 21: 421–433. Gubler, D. J. 1988. Dengue. pp. 223-260. In: T. P. Monath, Ed. The Arboviruses: Epidemiology and Ecology CRC Press, Boca Raton, Florida. Habig, W. H., M. J. Pabst, and W. B. Jakoby. 1974. Glutathion S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130-7139. Halstead, S. B. 1980. Dengue haemorrhagic fever is a public problem and a field for research. Bull. W.H.O. 58: 1-21. Hargreaves, K., L. L. Koekemoer, B. D. Brooke, R. H. Hunt, J. Mthembu, and M. Coetzee. 2000. Anopheles funestus is resistance to pyrethroid insecticide in South Africa. Med. Vet. Entomol. 14: 181-189. Hemingway, J., and H. Ranson. 2000. Insecticide resistance in insect vectors of human diseases. Annu. Rev. Entomol. 45: 371-391. Hemingway, J., A. Callaghan, and A. M. Amin. 1990. Mechanisms of organophosphate and Carbamate resistance in Culex quinquefasciatus from Saudi Arabia. Me. Vet. Entomol. 4: 275-282. Hemingway, J., N. J. Hawkes, L. McCaroll, and H. Ranson. 2004. The molecular basis of insecticide resistance in mosquitoes. Insect. Biochem. Mol. Biol. 34: 653-665. Ingles, P. J., P. M. Adams, D. C. Knipple, and D.M. Soderlund. 1996. Characterization of voltage-sensitive sodium channel gene coding sequences from insecticide-susceptible and knockdown-resistant house fly strains. Insect Biochem. Mol. Biol. 26: 319-326. Jamroz, R. C., F. D. Guerrero, D. M. Kammlah, and S. E. Kunz. 1998. Role of the kdr and super-kdr sodium channel mutations in pyrethroid resistance: correlation of allelic frequency to resistance level in wild and laboratory populations of horn flies (Haematobia irritans). Insect Biochem. Mol. Biol. 28: 1031-1037. Karunaratne, S. H., and J. Hemingway. 2001. Malathion resistance and prevalence of the malathion carboxylesterase mechanism in populations of mosquito vectors of disease in Sri Lanka. Bull. W.H.O. 79: 1060-1064. Khoo, B. K., D. J. Sutherland, D. Sprenger, D. Dickerson, and H. Nguyen. 1988. Susceptibility status of Aedes albopictus to three topically applied adulticides. J. Am. Mosq. Control Assoc. 4:310-313. Kulasekera, V. L., L. Kramer, R. S. Nasci, F. Mostashari, B. Cherry, S. C. Trock, C. Glaser, and J. R. Miller. 2001. West Nile virus infection in mosquitoes, birds, horses, and humans, Staten Island, New York, 2000. Emerg. Infect. Dis. 7: 722–725. Kumar, S., A. Thomas, A. Sahgal, A. Verma, T. Samuel, and M. K. K. Pillai. 2002. Effectof synergist piperonyl butoxide, on the development of deltamethrin resistance in yellow fever moaquito, Aedes aegypti L. (Diptera: Culicidae). Arch. Insect Biochem. Physiol. 50: 1-8. Kumar, S., A. Thomas, A. Sahgal, A. Verma, T. Samuel, and M. K. K. Pillai. 2004. Variations in the insecticide-resistance spectrum of Anopheles stephensi after selection with deltamethrin or a deltamethrin-piperonyl-butoxide combination. Ann. Trop. Med. Parasitol. 98: 861-871. Liu, Z., S. M. Valles, and K. Dong. 2000. Novel point mutations in the German cockroach para sodium channel gene are associated with knockdown resistance (kdr) to pyrethroid insecticides. Insect Biochem. Mol. Boil. 30: 991-997. Lumjuan, N., L. McCarroll, L. A. Prapanthadara , J. Hemingway, and H. Ranson. 2005. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem. Mol. Biol. 35: 861-71. Malcom, C. A., and R. J. Wood. 1982. Location of a gene conferring resistance to knockdown by permethrin and bioresmethrin in adults of the BKPM3 strain of Aedes aegypti. Genetica (The Hague) 59: 233-237. Martinez-Torres, D., F. Chandre, M. S. Williamson, F. Darriet, J. B. Berge, A. L. Devonshire, P. Guillet, and N. Pasteur. 1998. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiaes.s. Insect Mol. Bio. 7:179-184. Mazzarri, M. B. and G. P. Georghiou. 1995. Characterization of resistance to organophosphate, carbamate, and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. J. Am. Mosq. Control. Assoc. 11:315-322. Miyazaki, M., K. Ohyama, D. Y. Dunlap, and F. Matsumura. 1996. Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Mol. Gen. Genet. 252: 61-68. Mourya, D.T., J. Hemingway, and C. J. Leake. 1993. Changes in enzyme titres with age in four geographical strains of Aedes aegypti and their association with insecticide resistance. Med. Vet. Entomol. 7: 11-16. Nakatsugawa, T., and M. A. Morelli. 1976. Microsomal oxidation and insecticide metabolism. pp 61-114. In: C. F. Wilkinson, ed. Insecticide Biochemistry and Physiology. Plenum Press. New York. Nasci, R. S., and B. R. Miller. 1996. Culicine mosquitoes and the agents they transmit. pp. 85-97. In: B. J. Beaty, and W. C. Marquardt, eds. The Biology of Diseases Vectors. University of Colorado Press, Niwot, Colorado. Park, Y., and M. F. J. Taylor. 1997. A novel mutation L1029H in sodium channel gene hscp associated with pyrethroid resistance for Heliothis virescens (Lepidoptera: Noctuidae). Insect Biochem. Mol. Biol. 27: 9- 13. Pasteur, N., and M. Raymond. 1996. Insecticide resistance gene in mosquitoes: their mutations, migration, and selection in field population. J. Hered. 87: 444-449. Paul, A., L. C. Harrington, and J. G. Scott. 2006. Evalution of novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 43: 55-60. Prapanthadara, L., N. Promtet, S. Koottathep, P. Somboon, W. Suwonkerd, L. McCarroll, and J. Hemingway. 2002. Mechanisms of DDT and permethrin resistance in Aedes aegypti from Chiang Mai, Thailand. Dengue Bull. 26: 185-189. Ranson, H., B. Jensen, J. M. Vulule, X. Wang, J. Hemingway, and F. H. Collins. 2000. Identification of a point mutation in the voltagegated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol. Biol. 9: 491-497. Saelim, V., W. G. Brogdon, J. Rojanapremsuk, S. Suvannadabba, W. Pandii, J. W. Jones, and R. Sithiprasasna. 2005. Bottle and biochemical assays on temephos resistance in Aedes aegypti in Thailand. Southeast Asian j. trop. med. public health. 36: 417-25. Scott, J. C. 1999. Cytochrome P450 and insecticide resistance. Insect Biochem. Mol. Biol. 29: 757-777. Somboon, P., L. A. Prapanthadara, and W. Suwonkerd. 2003. Insecticide susceptibility tests of Anopheles minimus s.l., Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus in northern Thailand. Southeast Asian J. Trop. Med. Public Health. 34: 87-93. Tsai T. F., and C. J. Mitchell. 1989. St. Louis encephalitis. pp. 113-143. In: T. P. Monath, ed. The Arboviruses: Epidemiology and Ecology. CRC Press, Boca Raton, Florida. Turell, M. J., L. M O’Guinn., D. J. Dohm, and J. W. Jones. 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J. Med. Entomol. 38: 130–134. Vaughan, A., D. D. Chadee, and R. efrench-Constant. 1998. Biochemical monitoring of organophosphorus and carbamate insecticide resistance in Aedes aegypti mosquitoes from Trinidad. Med. Vet. Entomol. 12: 318-321. van-Asperen, K. 1962. A study of housefly esterase by means of a sensitive colormetric method. J. Ins. Physiol. 8: 401-416. Walsh, P. S., D. A. Metzger, and R. Higuchi. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10: 507-509. WHO. 2002. Dengue and dengue haemorrhagic fever. Fact sheet No. 117. World Health Organization, Geneva. Williamson, M. S., D. Martinez-Torres, C. A. Hick, and A. L. Devonshire. 1996. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet. 252: 51-60. Xu, Q., H. Liu, L. Zhang, and N. Liu. 2005. Resistance in the mosquito, Culex quinquefasciatus, and possible mechanisms for resistance. Pest Manag Sci 61: 1096–1102. Yu, S. J. 1984. Interactions of allelochemical with detoxication enzymes of insecticide susceptible and resistance fall armyworm. Pestic. Biochem. Physiol. 22:60-68.
摘要: The objective of this study is to study the resistance development of Aedes aegypti collected from Kaohsiung in 2006 and Tainan in 2007 to frequently used pyrethroid insecticides, and investigate the possible mechanisms involved in resistance development. The bioassay results showed that the larvae collected from different areas of Kaohsiung have developed more than 10-fold resistance to permethrin, cypermethrin, lambda-cyhalothrin, deltamethrin and fenvalerate. In particular, the larvae of Chianjen strain had developed 5783-fold resistance to fenvalerate, which is even higher than 3127-fold of Per-R37 strain. Similar results were observed on the larvae collected from Guosing, Yuhuang and Dafu areas of Tainan. The larvae of these three strains had developed more than 20-fold resistance to tested insecticides, and the adults had showed less than 31% of mortality after 24-hr exposure to insecticides-impregnated papers. These results demonstrated that some field strains of Aedes aegypti have developed relatively high resistance to various pyrethroid insecticides, especially fenvalerate, and therefore these insecticides are not recommended to control the vectors of dengue fever in Kaohsiung and Tainan. Based on synergist study, the resistance of Chianjen and Per-R42 strains of Aedes aegypti to permethrin, cypermethrin and fenvalerate, is correlated to the degradation of monooxygenase. However the specific activity of monooxygenase in Per-R is only 1.9-fold higher than the Bora Bora susceptible strain. The analysis of kdr point mutation had shown that the frequency of point mutation was 100% in Per-R42 strains and 6.3% in Bora Bora strain. These results indicate the monooxygenase and target site insensitivity might play an important role in resistance developed of Per-R strain to pyrethroids insecticides.
本研究目的在於調查2006年高雄市與2007年台南市的埃及斑蚊對常用合成除蟲菊殺蟲藥劑的抗性發展程度,及其對藥劑產生抗藥性之可能機制。經由幼蟲基礎藥效測試結果顯示,高雄地區埃及斑蚊幼蟲皆對百滅寧、賽滅寧、賽洛寧、第滅寧與芬化利產生至少10倍以上的抗藥性,其中以前鎮品系對芬化利的抗性最為嚴重,其抗性比已高達5783倍,高於抗百滅寧(Per-R)第37代品系的3127倍。類似的抗藥性情形也發生在台南市的北區國姓里、玉皇里以及東區大福里埃及斑蚊,此三區的幼蟲於基礎藥效結果顯示對上述藥劑有著20倍以上的抗性比;成蟲經由藥膜擊昏試驗顯示對10%芬化利藥膜的死亡率皆低於31%以下。综合結果顯示上述地區已對上述五種殺蟲劑產生抗藥性,其中以芬化利抗藥性最為嚴重,因此不適合繼續施用於台南高雄地區。經由協力劑試驗發現,前鎮品系與Per-R品系第42代埃及斑蚊品系對百滅寧、賽滅寧及芬化利的抗藥性與氧化酶相關性高。酵素試驗也發現Per-R第42代品系的氧化酶活性比感性高1.9倍。抗擊昏基因定序結果顯示,幼蟲與成蟲分別對百滅寧具有196及580倍的Per-R第42代品系,其體內鈉離子通道基因與抗藥性相關的點突變頻率為100%,高於感性品系的6.3%,推測Per-R品系抗藥性的提昇,除了氧化酵素的參與外,作用部位不敏感也可能扮演重要的角色。
URI: http://hdl.handle.net/11455/30718
其他識別: U0005-2008200811490500
Appears in Collections:昆蟲學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.