Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30721
標題: Use of C and N stable isotope techniques in the sources identification,with special reference to the pear twigs, potatoes, and gingers
利用碳與氮穩定性同位素技術檢測農產品來源— 以梨接穗、馬鈴薯與薑為例
作者: Kuo, Wu-Yang
郭午暘
關鍵字: http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-2407200811480700
梨接穂
穩定性同位素
檢疫
馬鈴薯

產地辨別
營養流
出版社: 昆蟲學系所
引用: 參考文獻 王文哲、劉玉章。2002。食物引誘劑對瓜實蠅之引誘。台中區農業改良場研究 匯報,76:31-41。 王裕文、楊棋明、許明晃、楊志維、黃盟元、黃文達、葉學文。2007。穩定性 指紋圖譜在台灣咖啡產區判別之研究,通訊連絡。 安井 明美、進藤 久美子。2000。玄米中の無機元素組成による産地判別。 分析化学,49:405-410。 行政院農委會。2001a。國產梨產業之生產與收益分析。http://www.coa.gov.tw/view.php?catid=4303&print=1。 行政院農委會。2001b。加入WTO水果產業因應對策。http://www.coa.gov.tw/view.php?catid=944。 沈英士。2005。秋季水果─梨。果樹栽培指南,p.278-294。 林信山、林嘉興、張林仁。1997。以生化及組織化學方法預測橫山梨之萌芽期。 提升果樹產業競爭力研討會專集,II:197-207。 林嘉興、廖萬正、林信山、張林仁。1991。梨栽培之回顧與展望。台灣果樹之 生產及研究發展研討會專刊,p.379-396。 施昭彰。1997。由落葉果樹品種改良提升其產業競爭力。提升果樹產業競爭力 研討會專集,I:63-70。 施昭彰。2000。主要栽培品種與性狀。梨綜合管理,p.167-169。 施錫彬。2005。桃園地區入侵性有害生物及其發生現況。台灣昆蟲特刊,7:59-78。 陳中、黃朝窗、邱仁文、黃朝卿。1997。豐水梨腋花芽促生栽培技術改進研究。 提升果樹產業競爭力研討會專集,II:187-196。 陳玉惠,歐曉紅。1997。凹紋胡蜂食用蟲態營養成分分析及其利用價值評價。西 南林學院學報,17:39-42。 陳慶忠、劉添丁、林長平、郭克忠。2001。台灣疑似梨衰弱病問題之探討。植 物保護學會會刊,43:1-5。 陳慶忠。2006。防疫檢疫重要植物病毒之媒介昆蟲與傳毒原理。植物重要防疫 檢疫害蟲診斷鑑定研習會 (六) ,p. 34-37。 彭宗仁、劉滄棽、林幸助。2006。穩定同位素在農業及生態環境上之應用。台 灣農業研究,55(2):79-90。 黃文達、盧虎生、葉學文、楊棋明、許明晃。2006。北投垃圾焚化廠排放氣體及粒狀物與關渡平原農田及作物之關係調查研究。台北市政府環保局北投垃圾焚化廠委託計劃(案號PT-95-142),p. 43-64。 黃美華。2002。台灣果樹產業結構調整與展望。農業建設,11:41-47。 黃美華。2003。台灣梨產業問題及因應對策。農政與農情,1:52-59。 越福、王俊剛、田軍鵬、雷朝亮。2006。大頭金蠅營養成分分析。昆蟲知識, 43(5):688-690。 甯順熙。2002。梨接穗輸入檢疫作業辦法修正簡介。農政與法規,11:22-25。 楊曼妙。2005。防檢疫重要木蝨類害蟲之簡介。植物重要防疫檢疫害蟲診斷鑑 定研習會 (五) ,p. 67-79。 楊棋明、盧虎生、黃文達、徐濟泰、葉學文。2006。垃圾焚化廠排放氣體及粒 狀物沉降累積量對附近農作物影響之監測研究。台北市政府環保局北投垃圾 焚化廠委託計劃(案號PT-94-140),p. 60-80。 楊憶華,陳保良。2006。推動台灣植物種苗病毒驗證體系現況與展望。農政與 農情,166:25-28 葉學文。2003。質譜儀。實用儀器分析,p. 367-390。 蓋英萍,冀憲領。2000。中國梨木蝨若蟲的排蜜規律及蜜露中氨基酸成分的研 究。昆蟲知識,37(6):333-335。 劉秀玲、劉淑玲、林長平。2007a。台灣梨衰弱病病原與其媒介昆蟲之研究。植 物蟲媒病害與防治研討會專刊,p. 185-192。 劉秀玲、劉淑玲、楊曼妙、林長平。2007b。台灣梨衰弱病之媒介昆蟲與發病生態之探討。植保會刊49:13-26。 鄭安秀。2001。番茄與馬鈴薯晚疫病。台南區農業專訊,37:13-16。 劉明章。2001。台中區梨策略聯盟之成立與展望。興大農業,38:23-29。 Ariyama, K., and A. Yasui. 2006. The determination technique of the geographic origin of Welsh onions by mineral composition and perspective for the future. JARQ., 40(4):333-339. Ariyama, K., H. Horita,and A.Yasui, 2004. Chemometric techniques on inorganic elements composition for the determination of the geographic origin of Welsh onions. Anal. Sci., 20:871-877. Ashkenas, L. R., S. L. Johnson, S. V. Gregory, J. L. Tank, and W. M. Wollhein. 2004. A stable isotope tracer study of nitrogen uptake and transformation in and old-growth forest stream. Ecology, 85:1725-1739. Avinent, L., G. Llácer, J.Almacellas, and R. Torá. 1997. Pear decline in Spain. Plant Pathol., 46(05):694-698. Blomquist, C. L. and B. C. Kirlpatrick. 2002. Frequency and seasonal distribution of pear Psylla infected with the pear decline phytoplasma in California pear orchards. Phytopathol., 92:1218-1226. Bol, R., N. J. Ostle, K. J. Petzke, C. Chenu, and J. Balesdent. 2008. Amino acid 15N in long-term bare fallow soils: influence of annual N fertilizer and manure applications. Eur. J. Soil Sci., 0(0): 080221005440139 (web version) Burckhardt, D. 2005.Biology, ecology, and evolution of gall-inducing psyllids (Hemiptera: Psylloidea). p. 143-157. In: A. Ramen, C. W. Schaefer, and T. M. Withers [eds.] Biology, ecology and evolution of gall-inducing arthropods Vol. 1. SciencePub., Inc., Plymouth, UK. 429pp. Camin F., K. Wietzerbin, A. B. Cortes, G. Haberhauer, M. Lees, and G. Versini. 2004. Application of multielement stable isotope ratio analysis to the characterization of French, Italian, and Spanish cheeses. J. Agric. Food Chem., 52:6592–6601. Choi, W. J. S. M. Lee, H. M. Ro, K. C. Kim, and S. H. Yoo. 2002. Natural 15N abundances of maize and soil amended with urea and composted pig manure. Plant Soil., 245:223-232. Chou, L., and S. Fang. 1994. New record of Psylla qianli (Homoptera: Psyllidae) from Taiwan. J. Agric. Res. China, 43:467-468. Clark, I., and P. Fritz. 2000. Isotope ration mass spectrometry. p.1-31. In: I. Clark, and P. Fritz [eds.] Environmental isotopes in Hydrogeology. LewisPub., Boca Raton, Florida. Craig, H. 1957. Isotope standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochem. Cosmochim. Acta., 12:133-149. DeNiro, M. J., and S. Epstein. 1978. Influence of diet on the distribution of Carbon isotopes in animals. Geochim. Cosmochim. Acta., p.495-506. Doner, L., and J. W. White. 1977. Carbon-13/Carbon-12 ratio is relatively uniform among honeys. Science, 197:891-892. Doner, L., H. O. Ajie, L. S. L. Sternberg, J. M. Milburn, M. J. Deniro, and K. B. Hicks. 1987. Detecting sugar beet syrups in orange juice by deuterium/hydrogen and oxygen-18/oxygen-16 analysis of sucrose. J. Agric. Food Chem., 35:610-612. Fenilli, T. A.B., K. Reichardt, O. O.S. Bacchi, P. C.O. Trivelin, and D. Dourado- Neto. 2007. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant. An Acad Bras Cienc., 79:767-776. Fukatsu, T., and N. Nikon. 1998. Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera). Appl. Environ. Microbiol., 64:325-339. Gimenez-Miralles, J. E., D. M Salazar, and I. Solana. 1999. Regional origin assignment of red wines from valencia (Spain) by 2H NMR and 13C IRMS stable isotope analysis of fermentative ethanol. J. Agric. Food Chem., 47:2645 -2652. Girard, P., and C. Hillaire-Marcel. 1997. Determining the source of nitrate pollution in the Niger discontinuous aquifers using the natural 15N/14N ratios. J. Hydrol., 199:239-251. Hall-Aspland, S. A., A. P. Hall, and T. L. Rogers. 2005. A new approach to the solution of the linear mixing model for a single isotope: application to the case of an opportunistic predator. Oecologia, 143:143-147. Herrera, L. G., T. H. Fleming, and L. S. Sterngerg. 1998. Trophic relationships In a neotropical bat community: a preliminary study using carbon and nitrogen isotopic signatures. Tropical Ecol., 39(1):23-29. Hobson, K. A. 1999. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia, 102:314-326. Hobson, K. A., L. I. Wassenaar, and O. R. Taylor. 1999. Stable isotopes (δD and δ13C) are geographic indicators of natal origins of monarch bitterflies In eastern North America. Oecologia, 120:397-404. Kelly, S., K. Heaton, and J. Hoogewerff. 2005. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends food Sci Tech.,16:555-567. Kelly, S., M. Baxter, S. Chapman, C. Rhodes, J. Dennis, and P. Brereton. 2002. Tha application of isotopic and elemental anaslysis to determine tha geographical origin of premium long grain rice. Eur. Food Res. Technol., 214:72-78. Kolb, K. J., and R. D. Evans. 2002. Implications of leaf nitrogen recycling on the nitrogen isotope composition of deciduous plant tissues. New Phytol., 156:57-64. Lee, Y. C., H. H. Kuo, and Y. G. Chen. 2002. Discrimination and abundance estimation of wild and released abalone Haliotis diversicolor using stable carbon and oxygen isotope analysis in north-eastern Taiwan. Fisheries Sci., 68:1020-1028. Lee, H. C., M. M. Yang, and W. B. Yeh. 2008. Identification of two invasive Cacopsyllia chinensis (Hemiptera: Psyllidae) lineages based on two mitochondrial sequences and restriction fragment length polymorphism Of COI amplicon. Jour. Econ. Ent. (in press) Leffler, A. J. and B. J. Enquist. 2002. Carbon isotope composition of tree leaves from Guanacaste, Costa rica: comparison across tropical forests and tree life history. J.Tropical Ecol., 18:151-159. Liu, H. L., and C. P. Lin. 2007. Development and application of PCR-based strategies for the detection of pear decline phytoplasma. Plant Pathol. Bull., 16:1-10. Lopes, M. S., and J. L. Araus. 2006. Nitrogen source and water regime effects on durum wheat photosynthesis and stable carbon and nitrogen isotope composition. Physiol. Plant, 126:435-445. Luykx, D. M. A. M., and S. M. van Ruth. 2008. An overview of analytical methods for determining the geographical origin of food products. Food Chem., 107:897-911. Markow, T. A., S. Anwar, and E. Pfeiler. 2000. Stable isotope ratios of carbon and nitrogen in natural populations of Drosophila species and their hosts. Functional Ecol., 14:261-266. Mitchell, M. J., C. T. Driscoll, J. S. Owen, D. Schaefer, R. Michener, and D. J. Raynal. 2001. Nitrogen biogeochemistry of three hardwood ecosystems in the Adirondack Region of New York. Biochem., 56:93-133. Moreda-Pinerio, A., A. Fisher, and, S. J. Hill. 2003. The classification of tea according to region of origin using pattern recognition techniques and trace metal data. J. Food Comp. Anal., 16:195-211. Nardoto, G. B., S. Silava, C. Kendall, J. R. Ehleringer, L. A. Chesson, E. S.B. Ferraz, M. Z. Moreira, J. P.H.B. Ometto, and L. A. Martinelli. 2006. Geographical patterns of human diet derived from stable-isotope anylysis of fingernails. Amer. J. Phys. Anthropol., 131:137-146. O''Leary M. H. 1981. Carbon isotope fractionation in plants. Phytochem., 20(4):553-567. O''Leary M. H. 1988. Carbon isotopes in phytosynthesis. BioSci., 38(5):328-336. Peterson, B. J. 1999. Stable isotopes tracers of organic matter input and transfer in benthic food web: A review. Acta Oecol., 20:479-487 Piasentier, E., R. Valusso, F. Camin, and G. Versini. 2003. Stable isotope ratio analysis for authentication of lamb meat. Meat Sci., 64:239-247. Suzuki, Y., Y. Chikaraishi., N. O. Ogawa., N. Ohkouchi, and T. Korenaga. 2008. Geographical origin of polished rice based on multiple element and stable isotope analyses. Food Chem., 109:470-475. Sykes, M. L., H. W. Yeh., I. F. West., R. W. Gauldie, and C. E. Helsley. 1994. A carbon-13 method for evaluating degradation of starch-based polymers. J. Environ. Polymer Degradation, 2(3):201-209. Vallano, D. M., and J. P. Sparks. 2008. Quantifying foliar uptake of gaseous nitrogen dioxide using enriched foliar δ15N values. New Phytol., 177:946-955. Vitousek, P. M., G. Shearer, and D. H. Kohl. 1989. Foliar 15N natural abundance in Hawaiian rainforest: patterns and possible mechanisms. Oecologia, 78:383-388. Wang, W. L., and H. W. Yeh. 2003. δ13C values of marine macroalgae from Taiwan. Bot. Bull. Acad. Sin., 44:107-112. White, I. M. and I.D. Hodkinsom. 1985. Nymphal taxonomy and systematic of the Psylloidea (Homoptera). Bull. Br. Mus. Nat. Hist. (Ent.)., 50(2): 154 Yang, M. M., J. H. Huang, and F. Li. 2004. A new record of Cacopsylla species (Hemiptera: Psyllidae) from pear orchards in Taiwan. Formosan Entomol., 24:213-220. Yarnes, C. T., J. N. Rockwell, and W. J. Boecklen. 2005. Patterns of trophic shift in δ15N and δ13C through a cynipid gall wasp community (Neuroterus sp.) in Quercus turbinella. Environ. Entomol., 34(6):1471-1476. Yeh, H. W. 2005. Genetic effect on carbon-isotope composition of a plant. Eos Trans. AGU, 86(18), Jt. Assem. Suppl. Yeh, H. W. and W. Y. Kao. 1996. δ13CPDB variation in contemporary bryophytes and the constraint on its use as a proxy of paleoatmospheric CO2 contents. J. Geol.Soc. China., Vol.39, No.3, p.325-336. Yeh, H. W., and W. M. Wang. 2001. Factors affecting the isotopic composition of organic matter. (1) carbon isotopic composition of terrestrial plant materials. Proc. Natl. Sci. Counc. ROC(B)., 25(3):137-147. Yeh, H. W., M. K. Wang, and B. N. Chiang. 1999 a. Invasion between forest and grassland in shaddle of the Ta-Ta-Chia. Soil and Environ., Vol.2. No.4. p.317-332. Yeh, H. W., C. M. Yang, and F. W. C. 2003. Genetic effect on carbon isotope composition of a C3-plant. Goldschmidt conference abstracts 2003. A563. Yeh, H. W., S. H. Chen, W. C. Chang, and W. Y. Kao. 1995. Paleolimonology of Yuen-Yang Lake based on isotope composition of organic carbon. J. Geol. Soc. China, p.125-139. Yeh, H. W., J. R. Hein., J. Ye, and D. Fan. 1999 b. Stable isotope, chemical, and mineral compositions of the middle proterozoic Lijiaying Mn deposit, Shaanxi province, China. Ore Geology Review, 15:55-69. Yeh, W. B., M. M. Yang, H. C. Lee, and F. Li. 2007. Genetic variation of Cacopsylla chinensis (Hemiptera: Psyllidae) in Taiwan based on mitochondrial 16S rDNA sequence. Formosan Entomol., 27:157-168. Yun, S. I., H. M. Ro, W. J. Choi, and S. X. Chang. 2006. Interactive effects of N fertilizer source and timing of fertilization leave specific N isotope signatures in Chinese cabbage and soil. Soil Bio. & Biochem., 38:1682-1689.
摘要: 中文摘要 走私作物引進的病蟲害對台灣農業造成不少衝擊。外來種的中國梨木蝨即為一例,梨木蝨刺吸芽、葉與嫩梢的汁液造成果樹落葉,若蟲分泌大量蜜露而誘發煤汙病,其傳播梨衰弱病,更進一步造成果樹死亡。建立一個判別此類走私作物的方法以利保護我國農業為一個重要課題。植物生長時環境及元素之來源為影響植物體內相關元素的同位素成分的主要因素,故可利用作物的穩定性同位素成分應反映產地的特點,作為調查其來源之依據。本研究主要目的為嘗試利用碳及氮穩定性同位素方法判定農產品來源地區。實驗材料為有走私問題的梨接穗、馬鈴薯和薑。實驗結果顯示,來自六個族群40個的台灣產梨接穗樣品之δ13C集中於-30至-25.5‰間,δ15N為0~5‰;合法進口的日本梨接穗63樣品,δ13C集中於-26.5~-23‰,δ15N集中於-2~6;走私的中國梨接穗樣品共有36個,δ13C約集中於-26至-24‰之間,δ15N約-2~3‰。就產地判別方面,由穩定性同位素碳和氮值的整體範圍和族群變異特性,大致可以辨識出來自台灣、日本或中國的梨接穗,但仍有部分數值重疊現象;進一步就同產地,不同季節生產的梨接穗進行分析,發現季節因素對植物的同位素組成造成影響。分析代表來自不同產地的六個品系的馬鈴薯,結果顯示,δ13C範圍為-24.6~-29.3‰,δ15N為-1.2~9.7‰,各品系樣品大多在碳值有明顯區辨,僅有台灣原種馬鈴薯與Cal red品系在碳值重疊,但兩者在氮值數值差異大,因此綜合碳氮穩定性同位素值,可以清楚區辨產地來源。初步測試4個薑的樣品,其中來自台灣金門產的薑δ13C為-22.7‰,δ15N為5.6‰;3個中國產薑分別來自兩地區,δ13C範圍為-25~-26.6‰,δ15N為8.5~0.3‰。顯示此技術在馬鈴薯和薑的生產國家辨識上,多有區辨能力,唯少數品種仍有數據重疊現象,未來仍需增加樣品與進一步測試,以取得較明確的結果。此外,本實驗利用穩定性同位素技術,嘗試分析取食梨樹的昆蟲及其寄主之間的營養流向,發現果實蠅卵無論在穩定性同位素碳或氮的含量均遠高於其他生長時期,亦高於寄主植物各部位。卵孵化後,幼蟲取食梨果,因此果實蠅的δ13C隨生長時間逐漸升高,δ15N依各生長時期而有變化。營養流實驗尚有一些數值在解讀上有困難,還須更進一步探討。綜合研究結果顯示,穩定性同位素技術可以分辨多種農作物的出口國甚至是產地,但辨識能力隨選定之元素和植物而有所差別,若能建立不同作物的各類穩定性同位素之完整基礎數據,應可藉此提供國家檢疫之參考與應用。 關鍵字:梨接穂、穩定性同位素、檢疫、馬鈴薯、薑、產地辨別、營養流
Abstract The smuggling of the crops makes a huge strike to the Taiwanese agriculture. The invasive alien species Cacopsylla chinensis from China is an example. The pear psyllids incept the sap of pear buds and leaves cause the defoliation of pear trees. The abundance of honey dew secreted by pear psyllids' larvae also causes the disease “pear sooty blotch”. Besides, pear psyllids can transmit phytoplasmic disease called pear decline which weaken, and eventually kill, pear trees. To build a method to identify the smuggling agricultural products to protect Taiwanese agricultural industry is an important lesson. The environmental condition and the elemental resources are major factors that influence the contents of isotopes in plants. Consequently, the stable isotopes of plants will reflect the habitat's characteristics and may be applied to examine the origins of the products. My thesis is aim to test the practicability of using the stable isotope technique to identify the source of agricultural products. Pear twigs, potatoes and gingers are chosen for the analyses since are they often smuggled from other countries. The δ13C range of Taiwanese pear twigs from 6 populations is -30 to -25.5‰ and the δ15N range is 0~5‰ (n=40). The legal Japanese pear twigs' δ13C range is -26.5~23‰ and δ15N range is -2~6‰ (n=63). The smuggled Chinese pear twigs' δ13C range is -26~-24‰ while δ15N range is -2~3‰ (n=36). The results showed that stable isotope value of δ13C and δ15N can basically identify the source of the pear twigs, but some values still overlap. Further analysis for the samples collected in different time at the same locality discovered that seasonal factor contributes to the differences of stable isotopes in pear twigs. Analysis of 6 potato cultivars, each represent different source localities, suggested that that range of δ13C is -24.6~-29.3‰ and that of δ15N is -1.2~9.7‰. There are obvious differences among carbon stable isotope in different cultivars from most samples. The only exception is the overlap between Taiwanese breeding cultivar and Cal red; however, they are able to be distinguished by nitrogen stable isotope. Preliminary test of 4 ginger specimens revealed that, ginger specimen from Taiwan (Kinmen), has the δ13C valus as -22.7‰, and δ15N 5.6‰. Chinese ginger from two areas has their δ13C range -25~-26.6‰ while their δ15N range is 8.5~0.3‰ (n=3). The results suggest that stable isotope is an useful technique to identify the sources of most potato and ginger cultivars, but few cultivars' values still overlapping. Further tests with larger samples size are desirable to confirm the results. In additions, I applied the technique to test the nutrition flow between pear trees and the insects infestating pear trees for nutrition resources. It shows that the fruit flies' eggs have the highest δ15N and δ13C values compared to all the other flies' life stages and all pear tree's parts. After the eggs hatched, the larvae eat the pears and the δ13C increase progressively with their life stages. The δ15N also changes with different life stages. However, some results are difficult to interpret. Further discussion and analysis are necessary. In conclusion, the stable isotope technique can be applied to identify the source locality, in other words the imported country, of various agricultural products. The identification ability is different among the sample materials and the stable isotope elements. Constructing a basic data for various agricultural products and stable isotope elements will facilitate the applicability of stable isotope technique and, henceforth, become useful tool for the national quarantine. Key words: quarantine, pear twigs, stable isotope, potato, ginger, geographical origin identification, nutrition flow
URI: http://hdl.handle.net/11455/30721
其他識別: U0005-2407200811480700
Appears in Collections:昆蟲學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.