Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30724
標題: Investigation of Carbofuran Resistance of Chilo suppressalis in Taiwan
台灣二化螟對加保扶抗藥性之研究
作者: Cheng, Xuan
鄭軒
關鍵字: 抗藥性
http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-2508200805212600
乙醯膽鹼酯酶協力作用
出版社: 昆蟲學系所
引用: 何火樹、劉達修。1970。臺中地區水稻二化螟蟲之生態研究。臺灣農業季刊 6: 7-14 何火樹、劉達修。1971。水稻二化螟蟲發蛾盛期之推定。臺灣農業季刊 7: 77-84 陳啟吉、劉達修。1994。水稻莖桿特性與其對螟蟲之感受性關係研究。臺中區農業改良場研究彙報 43: 1-6 黃守宏、鄭清煥、楊繡瑛。2005。台灣中部地區危害水稻螟蟲類之發生調查。pp.18-19。中華植物保護協會(第四十五屆)台灣昆蟲協會(第二十六屆)聯合年會手冊。中華植物保護協會、台灣昆蟲學會。 劉達修。1977。二化螟蟲對水稻之危害觀察。科學發展月刊 5:185-188 劉達修。1990。台中地區水稻螟蟲類發生與危害調查。台中區農業改良場研究彙報 29: 39-47 劉達修、王文哲、王玉沙。1991。臺中地區二化螟蟲多發生地區猖厥因子之研究。中華昆蟲 11: 300-309 劉達修。2002。二化螟。pp. 62-69。植物保護圖鑑系列8水稻保護(上冊)。行政院農委會動植物防疫檢疫局。 鄭清煥。1995。人工飼料之篩選及二化螟蟲在人工飼料上發育之溫度需求。植物保護協會會刊 37: 29-40 鄭清煥。2000。應用性費洛蒙於水稻二化螟蛾族群之發生與預測。植物保護學會會刊 臺灣省政府農林廳。1990。水稻蟲害。pp. 31-37。植物保護手冊。臺灣省政府農林廳。 Abernathy, C. O., and J.E. Casida. 1973. Pyrethroid insecticides: esterase cleavage in relation to selective toxicity. Sci. 179: 1235-1236. Ayad, H., and G. P. Georghiou. 1975. Resistance to organophosphates and carbamates in Anopheles albimanus based on reduced sensitivity of acetylcholinesterases. J. Econ. Entomol. 68: 295. Barak, D., A. Ordentlich , A. Bromberg , C. Kronman, D. Marcus, A. Lazar, N. Ariel, B. Velam, and A. Shafferman. 1995. Allosteric modulation of acetylcholinesterase activity by peripheral ligands involves a conformational transition of the anionic subsite. Biochem. 34: 15444-15452. Bergmann, F., I. B. Wilson, and D. Nachmansohn, 1950. The inhibitory effect of stilbamidine, curare and related compounds and its relationship to the active groups of acetylcholine esterase. Action of stilbamidine upon nerve impulse conduction. Biochem. Biophys. Acta 6, 217-224. Bourne, Y., P. Taylor, Z. A. Radi ć, and P. Marchot. 2003. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO. 22: 1-12. Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72: 248-254. Casida, J. E. 1970. Mixed function oxidase involve in the biochemical of insecticide synergists. J. Agr. Food. Chem. 18: 753-771. Cassanelli, S., M. Reyes, M. Rault, G. C. Manicardi, and B. Sauphanor. 2006. Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.). Insect Biochem. Mol. Biol. 36: 642-653. Chakravorty, S. 1979. Damage of rice grains by stem borer attack. IRRN. 4: 1-17. Chamber, J. E., and H. W. Chamber. 1989. Oxidative desulfuration of chlorpyrifos, chlorpyrifos-methyl, and leptophos by rat brain and liver. J. Biochem. Toxicol. 4: 201-203. Chang, T. T. 1976. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rice. Euphytica. 25: 435-441. Chen, C., X. Li, and Z. Han. 2000. Method for monitoring insecticide resistance in rice stem borer Chilo suppressalis Walker and relative susceptible baseline data. J. Nanjing Agric. Univ. 23: 25-28. Dale, D. 1994. Insect pests of rice plants-their biology and ecology. pp. 363-485. In. E. A. Heinrichs, ed. Biology and management of Rice Insects. IRRI. Wiley Eastern Ltd. Ellman, G. L., K.D. Courtney, V. Andres, and R. M. Featherstone. 1961. Anew and rapid colorimeric determination of acetylcholinesterase activity. Biochem. Pharmac. 7: 99-95. Food and Agriculture Organization of the United Nations (FAO). 2004. Rice and food security. pp. 30-31. In: The state of food in security in the world. 6th ed. FAO. Rome, Italy. Fournier, D, F. Karch, J. M. Bride, L. M. C. Hall, J. B. Berge, and P. Spierer. 1989. Drosophila melanogaster acetylcholinesterase gene: structure. evolution and mutation. J Mol Biol 210: 15-22. Froede, H. C., and I. B. Wilson. 1971. Acetylcholinesterase. pp. 87-114. In: P. D. Boyer, ed. The Enzymes, 3rd ed., vol. 5. Academic Press, New York. Fournier, D., J. M. Bride, F. Hoffmann and F. Karch 1992. Acetylcholinesterase: Two types of modifications confer resistance to insecticide. J. Biol. Chem. 267: 14270-14274. Gaughan, L. C., J. L. Engel, and J. E. Casida. 1981. Two classes of pyrethroid action in the cockroach. Pestic. Biochem. Physiol. 15: 181-191. Habig, W. H., M. J. Pabst, and W. B. Jakoby. 1974. Glutathion S-transferase isozymes in Aedes aegypti: purification, characterization, and isozyme-specific regulation. Insect. Biochem. 21:421-433. Hou, F. H., and M. A. Brooks. 1975. Continuous rearing of the aster leafhopper, Macrosteles fascifrons, on a chemically defined diet. J. Insect Physiol. 21: 1481-1483. http://140.120.197.173/Ecology/prod02.htm Iwata, T., and H. Hama, 1972. Insensitivity of cholinesterase in Nephotettix cincticeps resistant to carbamate and organophosphorus insecticides. J. Econ. Entomol. 65:643-545. Johnson, J. L., B. Cusack, M. P. Davies, A. Fauq, and T.L. Rosenberry, 2003. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with cationic acetanilide substrate. Biochem. 42: 5438-5452. Kamano, S. 1974. On the successive rearing of rice stem borer on the artificial diets under aseptic condition. Bull. Nat. Inst. Agr. Sci. Ser. C. 27:1-51. Kiritani, K. 1990. Recent population trends of Chilo suppressalis in temperate and subtropical Asia. Insect Sci. Appl. 11: 555 -562. Konno, Y., and T. Shishido. 1985. Resistance mechanism of the rice stem borer to organophosphorus insecticides. J. Pestic. Sci. 10: 285-287. Konno, Y. 1996. Carboxylesterase of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: pyralidae), responsible for feniteothion resistance as sequesting protein. J. Pestic. Sci. 21:425-429. Lee, D. W., J. Y. Choi, W. T. Kim, Y. H. Je, J. T. Song, B. K. Chung, K. S. Boo, and Y. H. Koh. 2007. Mutations of acetylcholinesterase1 contribute to prothiofos-resistance in Plutella xylostella (L.). Biochem. Biophys. Res. Commun. 353: 591-597. Lee, D. W., S. S. Kim, S. W. Shin, W. T. Kim, and K. S. Boo. 2006. Molecular characterization of two acetylcholinesterase genes from the oriental tobacco budworm, Helicoverpa assulta (Guene’e). Biochim. Biophys. Acta. 1760 125-133. Li, F., and Z. Han. 2002. Purification and characterization of acetylcholinesterase from cotton aphid, Aphis gossypii glover. Arch. Insect Biochem. Physiol. 51: 37-45. Li, X., Z. Han, C. Chen, G. Li, and Y. Wang. 2001. Monitoring for resistance of rice stem borer to 4 conventional insecticides. J. of Nanjing Agric. Univ. 24: 41-46. Lineweaver, H. and D. Burk, 1934. The determination of enzyme dissociation constants. J. Amer. Chem. Soc. 56: 658-666. MacPhee-Quigley, K., P. Taylor, and S. Taylor. 1985. Primary structures of the catalytic subunits from two molecular forms of acetylcholinesterase. A comparison of NH2-terminal and active center sequences. J. Biol. Chem. 260: 12185. Main, A.R., and F. Iverson. 1966. Measurement of the affinity and phosphorylation constants governing irreversible inhibition of cholinesterases by di-isopropyl phosphorofluoridate. Biochem. J. 100: 525-531. Matsumura, F. 1975. 503 pp. In: Toxicology of Insecticides. Plenum Press. N. Y. and London. Miller, T. 1976. Distinguishing between carbamate and organophosphate insecticide poisoning in house flies by symptomology. Pestic. Biochem. Physiol. 6: 307-319. Mirer, F. E., Levine, B.S., and Murphy, S.D. 1977. Parathion and methylparathion toxicity and metabolism in. piperonyl butoxide and diethyl maleate pretreated mice. Chem. Biol. Interact. 17: 99-102. Mooser, G. and D. S. Sigman, 1974. Ligand binding properties of acetylcholinesterase determined with fluorescent probes. Biochem. 13: 2299. Nachmansohn, D. and I. B. Wilson, in Advances in Enzymology. Intersci. Pub. New York. 12: 259. Nakatsugawa, T. and M. A. Morelli. 1976. Microsomal Oxidation and Insecticide Metabolism. pp. 61-114. In: C.F. Wilkinson, Editor, Insecticide Biochemistry and Physiology, Plenum Press, New York. O’Brien, R. D. 1961. 332 pp. In: Insecticides: Action and Metabolism. Academic Press. N.Y. and London. O’Brien, R. D. 1976. Acetylcholinesterase and its inhibition. pp. 271-296 In C. F. Wilkinson, ed. Insecticides Biochemistry and Physiology. Plenum Press, New York. Pathak, M.D. 1975. Insect Pests of Rice. IRRI, Philippines. 68 pp. Peng, Y., C. Chen, Z. Han, and Y. Wang. 2001. Resistance measurement of Chilo suppressalis from Jiangsu province and its resistance mechanism to methamidophos, Acta. Phytophylacica. Sin. 28: 173-177. Portères, R. 1956. Taxonomie Agrobotanique des riz cultivés O. sativa Linne et O. glaberrima Steudel. J. Agric. Trop. Bot. Appl. 3:341-856. Qu M., Z. Han, X. Xu, and L. Yue. 2003. Triazophos resistance mechanisms in the rice stem borer (Chilo suppressalis Walker). Pestic. Biochem. Physiol. 77: 99-105 Rosenberry, T.L. Acetylcholinesterase. Adv. Enzymol. Relat. Areas Mol. Biol., 43: 103-218 (1975) Sawicki, R. M. 1962. Insecticidal activity of pyrethrum extract and its four insecticidal constituents against house flies. V knock-down activity of the four constituents with piperonyl butoxide. J. Sci. Food Agr. 13:591-605. Seele, R. W. and B. N. Smallman, 1976. Organophosphate toxicity: Kenetic differences between acetylcholinesterase of the housefly thorax and head. Life Sci. 19:1937-1941. Silman I., and J.L. Sussman. 2005. Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr. Opin. Pharmacol. 5: 293-302. Smissaert, H. R. 1964. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Sci. 143: 129. Srivastava, S. K., R. Biswas, D. K. Garg, B. K. Gyawali, N. M. M. Haque, P. Ijaj, S. Jaipal, N. Q. Kamal, P. Kumar, M. Pathak, P. K. Pathak, C. S. Prasad, M. Ramzan, A. Rehman, M. Rurmzan, M. Salim, A. Singh, U. S. Singh and S. N. Tiwari. 2005. Identification features of stem borers. In: Management of Stem Borers of Rice and Wheat in Rice-wheat System of Pakistan, Nepal, India and Bangladesh. Rice-Wheat Consortium for the Indo-Gangetic Plains, New Delhi, India. Su, J., H. Liu, J. Xu, X. Xu, Q. Liu, C. Zhang, B. Zhu, and Y. Wang. 1996. Monitoring for insecticide-resistance of the rice stem borer, Chilo suppressalis Walker, in Lixiahe region. J. Nanjing Agric. Univ. 19 (Suppl.): 28-33. Sussman J. L., M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, and I. Silman. 1991. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Sci. 253: 872-879. Tang, Z. H., R. J. Wood, and S. L. Cammack. 1990. Acetylcholinesterase activity in organophosphorus and carbamate resistant and susceptible strains of the Culex pipiens complex. Pestic. Biochem. Physiol. 37:192-199. Taylor, P., and S. Lappi. 1975. Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biocchem. 14: 1989-1997. Tripathi, R. K., and R. D. O’Brien. 1973. Effect of organophosphates in vivo upon acetylcholinesterase isozymes from housefly head and thorax. Pestic. Biochem. Physiol. 2: 418. Walsh, S.B., T.A. Dolden, G.D. Moores, M. Kristensen, T. Lewis, A.l. Devonshire, and M.S. William. 2001. Indentification and characterization of mutation in the housefly (Musca domestica) acetycholinesterase involved in insecticide resistance. J. Biochem. 359: 175-181. Wang, Q. M., H. L. Jiang, J. Z. Chen, K. X. Chen, and R. Y. Ji. 1998. On the possible reaction pathway for the acylation of AChE-catalyzed hydrolysis of ACh: semiempirical quantum chemical study. Int. J. Quantum Chem. 70: 515-525. Wang, Q. M., H. L. Jiang, K. X. Chen, R. Y. Ji, and Y. J. Ye. 1999. Theoretical studies on the possible reaction pathway for the deacylation of the AChE-catalyzed reaction. Int. J. Quantum Chem. 74: 315-325. Weiden, M. H. J. 1971. Toxicity of carbamates to insects. Bull. W.H.O. 44: 203-213. Welling, W., A. W. de Vries, and S. Voerman. 1974. Oxidative cleavage of a carboxyleaster bond as a mechanism of resistance to malaoxon in houseflies. Pestic. Biochem. Physiol. 4: 31-43. Wilson, I. B. and C. Quan. 1958. Acetylcholinesterase studies on molecular complementariness. Arch. Biochem. Biophy. 73:131-143. Zhao, X., J. Z. Yeh, V. L. Salgado, and T. Narahashi. 2004. Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons. Pharmacol. Exp. Ther. 310: 192-201. Zhu, Bo, J. Su, and J. Zhu. 1987, Studies on insecticide resistance of the rice stem borer, Chilo suppressalis Walker, in Yangzhou. J. Nanjing Agric. Univ. 10 (Suppl.): 56-63. Zhu, K. Y., and J. M. Clark. 1995a. Cloning and sequencing of a cDNA encoding acetylcholinesterase in Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Biochem. Mol. Biol. 25: 1129-1138. Zhu, K. Y., and J. M. Clark. 1995b. Comparisons of kinetic properties of acetylcholinesterase purifed from azinphosmethyl-susceptible and -resistant strains of Colorado potato beetle. Pestic. Biochem. Physiol. 51: 57-67. Zhu, K.Y., S. H. Lee, and J. M. Clark. 1996. A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pestic.Biochem. Physiol. 55: 100-108.
摘要: 本研究主要針對台灣各地二化螟對常用防治藥劑之感受性進行調查研究,並探討二化螟的抗藥機制。在採集的過程中發現台中以南的粳稻栽培區中,大螟佔壓倒性的多數而二化螟數量較少。然而在秈稻的栽培區二化螟的比例則有明顯增加,以二化螟為主,大螟較少。這可能和作物品種、耕作環境、防治藥劑、各地溫度及日照長短有密切關係。將各縣市所採集到的二化螟分別飼養繁殖後,以加保扶、陶斯松、培丹、百滅寧、芬普尼五種藥劑進行生物檢定,比較其感受性。結果發現嘉義、彰化、臺中所採集到的二化螟對五種藥劑的感受性明顯較北部的苗栗、新竹、桃園品系低;其中以新竹品系的感受性最高。若以新竹品系二化螟為相對感性品系,則可發現嘉義品系二化螟對加保扶的抗藥性最高,彰化次之;然而對與加保扶有相同作用機制的陶斯松卻無明顯的抗藥性。因此,進ㄧ步探討乙醯膽鹼酯酶不敏感和解毒酵素活性與二化螟對加保扶產生抗藥性的關係。結果顯示加保扶對新竹、彰化、嘉義三品系二化螟乙醯膽鹼酯酶的抑制效果都比陶斯松差,其中嘉義品系和新竹品系二化螟的乙醯膽鹼酯酶對碘化硫代乙醯膽鹼的活性並無顯著差異,但彰化品系的乙醯膽鹼酯酶對此受質的親和力降低(Km增加)而最大反應速率(Vmax)則提升,使其在加保扶和陶斯松的抑制下仍有較高的活性。此外,由加保扶與chlorpyrifos-oxon對乙醯膽鹼酯酶的抑制方式可發現,加保扶對新竹、嘉義、彰化二化螟乙醯膽鹼酯酶的抑制方式均為非競爭性抑制。然而chlorpyrifos-oxon對新竹、嘉義二化螟乙醯膽鹼酯酶的抑制方式均為混合性抑制,對彰化二化螟乙醯膽鹼酯酶的抑制方式卻是非競爭性抑制,顯示彰化品系的乙醯膽鹼酯酶已經改變。以多功能氧化酶、酯酶與麩胱甘肽轉基酶的抑制劑測試加保扶對嘉義二化螟的毒性,發現同時使用三種抑制劑可使嘉義二化螟的抗藥性降低,暗示嘉義品系二化螟對加保扶的抗藥性是由於代謝功能增加所致,而彰化品系二化螟對加保扶的抗藥性則是出於作用部位不敏感。
There are three species of rice stem borers in Taiwan: Chilo suppressalis (Walker), Scirpophaga incertulas (Walker) and Sesamia inferens (Walker), which feed on rice and cause ‘dead heart' during vegetative phase and ‘white head' during reproductive phase of rice. In Japonica rice production regions of southern counties, Sesamia inferens was an overwhelming majority and Chilo suppressalis was a minority, but Scirpophaga incertulas was not discovered. In the north counties (Miaoli, Hsinchu, Taoyuan and Taipei), Chilo suppressalis was a majority and Sesamia inferens was a minority. Besides these two stem borers, Scirpophaga incertulas was also discovered in north of Miaoli County. However in the Indica rice production regions, such as Changhua and Chiayi, Chilo suppressalis increased significantly and Sesamia inferens became a minority. Chilo suppressalis collected from different counties were tested for their susceptibility to carbofuran, chlorpyrifos, cartap, permethrin and fipronil. The results showed that the Chilo suppressalis collected from southern and central counties (such as Chiayi, Changhua and Taichung) were less susceptible to five tested insecticides than those of northern counties (Miaoli, Hsinchu and Taoyuan). Chilo suppressalis of Chiayi and Changhua strains had very high resistance to carbofuran, while did not show significant resistance to chlorpyrifos, an acetylcholinesterase (AChE) inhibitor like carbofuran. Therefore, carbofuran and chlorpyrifos-oxon were used to study the association of AChE insensitivity and carbofuran resistance in Chiayi and Changhua Chilo suppressalis. The result showed that carbofuran was a less potent inhibitor to AChE of these Chilo suppressalis. Compared to the AChE of Hsinchu strains, the AChE of Changhua strain had higher activity under inhibition of carbofuran and chlorpyrifos-oxon, but the AChE of Chiayi strain had same activity with Hsinchu strain. The synergistic effect of piperonyl butoxide (PBO), s,s,s-tributyl phosphorotrithioate (DEF) and diethyl maleate (DEM) to carbofuran has decreased resistance of Chiayi Chilo suppressalis up to 105-fold. These results implied that the resistance of Changhua Chilo suppressalis was due to the insensitive AChE and the resistance of Chiayi Chilo suppressalis was due to increase of detoxification.
URI: http://hdl.handle.net/11455/30724
其他識別: U0005-2508200805212600
Appears in Collections:昆蟲學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.