Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30730
標題: The spectral sensitivity variation of compound eye regions and emerged ages of honeybee
蜜蜂複眼視區與羽化日齡之光譜感度變異探討
作者: 劉秉純
Liou, Bing-Chun
關鍵字: http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-0502201016450400
蜜蜂
光譜感度
視網膜電位圖譜
羽化
出版社: 昆蟲學系所
引用: Alawi, A. A., and W. L. Pak. 1971. On-transient of insect electroretinogram: Its cellular origin. Science 172:1055-1057. Anderson, H. 1978. Postembryonic development of the visual system of the locust, Schistocerca gregaria. I. Patterns of growth and developmental interactions in the retina and optic lobe. J. Embryol. Exp. Morph. 45:55-83. Aréchiga, H., and L. Rodríguez-Sosa. 1998. Circadian clock function in isolated eyestalk tissue of crayfish. Proc. R. Soc. Lond. B. 265:1819-1823. Arikawa, K. 2003. Spectral organization of the eye of a butterfly, Papilio. J. Comp. Physiol. A. 189:791-800. Arikawa, K., S. Mizuno, M. Kinoshita, and D. G. Stavenga. 2003. Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of the butterfly Papilio xuthus. J. Neurosci. 23:4527-4532. Ben-Shahar, Y. 2005. The foraging gene, behavioral plasticity, and honeybee division of labor. J. Comp. Physiol. A. 191:987-994. Ben-Shahar, Y., M. B. Sokolowski, and G. E. Robinson. 2002. Influence of gene action across different time scales on behavior. Science 296:741-744. Bennett, R. R. 1967. Spectral sensitivity studies on the whirligig beetle, Dineutes cilitaus. J. Insect Physiol. 13:621-633. Bennett, R. R., R. H. White, and J. Meadows. 1997. Regional specialization in the eye of the sphingid moth Manduca sexta: Blue sensitivity of the ventral retina. Vis. Neurosci. 14:523-526. Bernard, G. D., and W. H. Miller. 1968. Interference filters in the corneas of Diptera. Invest. Ophthalmol. 7:416-434. Boleli, I. C., M. M. G. Bitondi, V. L. C. Flgueiredo, and Z. L. P. Simőes. 2001. Mispatterning in the ommatidia of Apis mellifera pupae treated with a juvenile hormone analogue. J. Morphol. 249:89-99. Briscoe, A. D., and L. Chittka. 2001. The evolution of color vision in insects. Annu. Rev. Entomol. 46:471-510. Brown, G., D.-M. Chen, J. S. Christianson, R. Lee, and W. S. Stark. 1994. Receptor demise from alteration of glycosylation site in Drosophila opsin: Electrophysiology, microspectrophotometry, and electron microscopy. Vis. Neurosci. 11:619-628. Cameron, M. A., A. R. Barnard, R. A. Hut, X. Bonnefont, G. T. J. van der Horst, M. W. Hankins, and R. J. Lucas. 2008. Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses. J. Biol. Rhythms 23:489-501. Carlson, S. D., and C. Chi. 1979. The functional morphology of the insect photoreceptor. Annu. Rev. Entomol. 24:379-416. Chang, H. W., and H. J. Lee. 2001. Inconsistency in the expression of locomotor and ERG circadian rhythms in the German cockroach, Blattella germanica (L.). Arch. Insect Biochem. Physiol. 48:155-166. Chapman, R. M., and A. B. Lall. 1967. Electroretinogram caracteristics and the spectral mchanisms of the mdian oellus and the lateral eye in Limulus polyphernus. J. Gen. Physiol. 50:2267-2287. Chen, B., I. A. Meinertzhagen, and S. R. Shaw. 1999. Circadian rhythms in light-evoked responses of the fly''s compound eye, and the effects of neuromodulators 5-HT and the peptide PDF. J. Comp. Physiol. A. 185:393-404. Chen, D.-M., and W. S. Stark. 1992. Electrophysiological sensitivity of carotenoid deficient and replaced Drosophila. Vis. Neurosci. 9:461-469. Chen, D.-M., J. S. Christianson, R. J. Sapp, and W. S. Stark. 1992. Visual receptor cycle in normal and period mutant Drosophila: Microspectrophotometry, electrophysiology, and ultrastructural morphometry. Vis. Neurosci. 9:125-135. Chittka, L., and H. Wells. 2007. Color vision in bees: Mechanisms, ecology, and evolution. pp. 165-219. In F. R. Prete, ed. Complex Worlds from Simpler Nervous Systems. MIT Press, Cambridge, Massachusetts, USA. Dacke, M., P. Nordström, C. H. Scholtz, and E. J. Warrant. 2002. A specialized dorsal rim area for polarized light detection in the compound eye of the scarab beetle Pachysoma striatum. J. Comp. Physiol. A. 188:212-216. de Souza, J., H. Hertel, D. F. Ventura, and R. Menzel. 1992. Response properties of stained monopolar cells in the honeybee lamina. J. Comp. Physiol. A. 170:267-274. de Souza, J. M., and D. F. Ventura. 1989. Comparative study of temporal summation and response form in hymenopteran photoreceptors. J. Comp. Physiol. A. 165:237-245. Douglass, J. K., and N. J. Strausfeld. 2003. Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits. J. Comp. Neurol. 457:326-344. Eichmüller, S., and S. Schäfer. 1995. Sensory neuron development revealed by taurine immunocytochemistry in the honeybee. J. Comp. Neurol. 352: 297-307. Eisen, J. S., and N. N. Youssef. 1980. Fine structural aspects of the developing compound eye of the honey bee, Apis mellifera L. J. Ultrastruct. Res. 71:79-94. Eley, S., and P. M. J. Shelton. 1976. Cell junctions in the developing compound eye of the desert locust Schistocerca gregaria. J. Embryol. Exp. Morph. 36:409-423. Fischbach, K.-F., and P. R. Hiesinger. 2008. Optic lobe development. Adv. Exp. Med. Biol. 628:115-136. Fröhlich, A., and I. A. Meinertzhagen. 1982. Synaptogenesis in the first optic neuropile of the fly''s visual system. J. Neurocytol. 11:159-180. Giger, A. D., and M. V. Srinivasan. 1997. Honeybee vision: Analysis of orientation and colour in the lateral, dorsal and ventral fields of view. J. Exp. Biol. 200:1271-1280. Goldsmith, T. H. 1960. The natural of the retinal action potential, and the spectral sensitivity of ultraviolet and green receptor systems of the compound eye of the worker honeybee. J. Gen. Physiol. 43:775-799. Goldsmith, T. H., and P. R. Ruck. 1958. The spectral sensitivities of the dorsal ocelli of cockroaches and honeybees; an electrophysiological study. J. Gen. Physiol. 41:1171-1185. Goldsmith, T. H., R. J. Barker, and C. F. Cohen. 1964. Sensitivity of visual receptors of carotenoid-depleted flies: A vitamin A deficiency in an invertebrate. Science 146:65-67. Gribakin, F. G. 1969. Cellular basis of colour vision in the honey bee. Nature 223:639-641. Gribakin, F. G. 1979. Cellular mechanisms of insect photoreception. Int. Rev. Cytol. 57:127-184. Gribakin, F. G. 1988. Photoreceptor optics of the honeybee and its eye colour mutants: The effect of screening pigments on the long-wave subsystem of colour vision. J. Comp. Physiol. A. 164:123-140. Hardie, R. C., A. Peretz, J. A. Pollock, and B. Minke. 1993. Ca2+ limits the development of the light response in Drosophila photoreceptors. Proc. R. Soc. B. 252:223-229. Harris, W. A., W. S. Stark, and J. A. Walker. 1976. Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J. Physiol. 256:415-439. Hartfelder, K., and W. Engels. 1998. Social insect polymorphism: hormonal regulation of plasticity in development and reproduction in the honeybee. Curr. Top. Dev. Biol. 40:45-77. Heisenberg, M. 1971. Separation of receptor and lamina potentials in the electroretinogram of normal and mutant Drosophila. J. Exp. Biol. 55:85-100. Hertel, H. 1980. Chromatic properties of identified interneurons in the optic lobes of the bee. J. Comp. Physiol. A. 137:215-231. Hertel, H. 1983. Change of synapse frequency in certain photoreceptors of the honeybee after chromatic deprivation. J. Comp. Physiol. 151:477-482. Horridge, G. A. 1978. The separation of visual axes in apposition compound eyes. Phil. Trans. R. Soc. Lond. B. 285:1-59. Horridge, G. A. 2005. The spatial resolutions of the apposition compound eye and its neuro-sensory feature detectors: Observation versus theory. J. Insect Physiol. 51:243-266. Horridge, G. A. 2007. The preferences of the honeybee(Apis mellifera) for different visual cues during the learning precess. J. Insect Physiol. 53:877-889. Horridge, G. A., and D. Blest, 1980. The compound eye: Insect Biology in the Future. Academic Press, Inc. Horridge, G. A., B. Walcott, and A. C. Ioannides. 1970. The tiered retina of Dytiscus: A new type of compound eye. Proc. R. Soc. Lond., B, Biol. Sci. 175:83-94. Huang, Z.-Y., and G. E. Robinson. 1992. Honeybee colony integration: Worker-worker interactions mediate hormonally regulated plasticity in division of labor. Proc. Natl. Acad. Sci. U.S.A. 89:11726-11729. Huang, Z.-Y., G. E. Robinson, S. S. Tobe, K. J. Yagi, C. Strambi, A. Strambi, and B. Stay. 1991. Hormonal regulation of behavioural development in the honey bee is based on changes in the rate of juvenile hormone biosynthesis J. Insect Physiol. 37:733-741. Imafuku, M., and K. Tsuji. 2008. Spectral sensitivity and wing colors of Narathura and Panchala species. J. Insect Physiol. 54:1511-1515. Kien, J., and R. Menzel. 1977a. Chromatic properties of interneurons in the optic lobes of the bees. I. Broand band neurons. J. Comp. Physiol. A. 113:17-34. Kein, J., and R. Menzel. 1977b. Chromatic properties of interneurons in the optic lobes of the bees. II. Narrow band and colour opponent neurons. J. Comp. Physiol. A. 113:35-53. Kelber, A. 2006. Invertebrate colour vision. pp. 250-290. In E. Warrant and D.-E. Nilsson, eds. Invertebrate Vision. Cambridge University Press, New York. Kelber, A., M. Vorobyev, and D. Osorio. 2003. Animal colour vision-behavioural tests and physiological concepts. Biol. Rev. Camb. Phiols. Soc. 78:81-118. Kelly, L. E. 1983. An altered electroretinogram transient associated with an unusual jump response in a mutant of Drosophila. Cell. Mol. Neurobiol. 3:143-149. Kirchner, S. M., T. F. Döring, and H. Saucke. 2005. Evidence for trichromacy in the green peach aphid, Myzus persicae (Sulz.) (Hemiptera: Aphididae). J. Insect Physiol. 51:1255-1260. Kitamoto, J., K. Sakamoto, K. Ozaki, Y. Mishina, and K. Arikawa. 1998. Two visual pigments in a single photoreceptor cell: Identification and histological localization of three mRNAs encoding visual pigment opsins in the retina of the butterfly Papilio xuthus. J. Exp. Biol. 201:1255-1261. Klowden, M. J., 2007, Physiology Systems in Insects. Elsevier Inc., London. pp. 565-578. Kong, K.-L., Y. M. Fung, and G. S. Wasserman. 1980. Filter-mediated color vision with one visual pigment. Science 207:783-786. Koopowitz, H., G. Stone, and D. Martinez. 1974. Components of the ERG of the moth, Galleria mellonella. J. Insect Physiol. 20:9-20. Kral, K., and I. A. Meinertzhagen. 1989. Anatomical plasticity of synapses in the lamina of the optic lobe of the fly. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 323:155-183. Kurtz, R. 2007. Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism. Neuroscience 146:573-583. Labhart, T., and E. P. Meyer. 1999. Detectors for polarized skylight in insects: A survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc. Res. Tech. 47:368-379. Labhart, T., and D.-E. Nilsson. 1995. The dorsal eye of the dragonfly Sympetrum: Specializations for prey detection against the blue sky J. Comp. Physiol. A. 176. Lall, A. B., and J. E. Lloyd. 1989. Spectral sensitivity of the compound eyes in two day-active fireflies (Coleoptera: Lampyridae: Lucidota). J. Comp. Physiol. A. 166:257-260. Lall, A. B., E. T. Lord, and C. O. Trouth. 1985. Electrophysiology of the visual system in the cricket Gryllus firmus (Orthoptera: Gryllidae): Spectral sensitivity of the compound eyes. J. Insect Physiol. 31:353-357. Lall, A. B., G. K. Strother, T. W. Cronin, and H. H. Seliger. 1988. Modification of spectral sensitivities by screening pigments in the compound eyes of twilight-active fireflies (Coleoptera: Lampyridae). J. Comp. Physiol. A. 162:23-33. Land, M. F. 1980. Compound eyes: Old and new optical mechanisms. Nature 287:681-686. Laughlin, S. B. 1989. The role of sensory adaption in the retina. J. Exp. Biol. 146:39-62. Laughlin, S. B., and R. C. Hardie. 1978. Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly. J. Comp. Physiol. A. 128:319-340. Lehrer, M. 1998. Looking all around: Honeybees use different cues in different eye regions. J. Exp. Biol. 201:3275-3292. Lehrer, M., M. V. Srinivasan, and S. W. Zhang. 1990. Visual edge detection in the honeybee and its chromatic properties. Proc. R. Soc. Lond. B. 238:321-330. Lo, M.-V. C., and W. L. Pak. 1981. Light-induced pigment granule migration in the retinular cells of Drosophila melanogaster. Comparison of wild type with ERG-defective mutants. J. Gen. Physiol. 77:155-175. Loew, E. R. 1975. CO2 -induced changes in the ERG of the fly, Sarcophage bullata. A component analysis. J. Insect Physiol. 21:181-197. Loewenstein, W. R. 1966. Permeability of membrane junctions. Ann. N. Y. Acad. Sci. 137:441-472. Matić, T., and S. B. Laughlin. 1981. Changes in the intensity-response function of an insect''s photoreceptors due to light adaptation. J. Comp. Physiol. 145:169-177. Menzel, J. G., H. Wunderer, and D. G. Stavenga. 1991. Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera). Tissue Cell. 23:525-535. Menzel, R. 1974. Spectral sensitivity of monopolar cells in the bee lamina. J. Comp. Physiol. A. 93:337-346. Menzel, R. 1975. Colour receptors in insects. pp. 121-153. In G. A. Horridge, ed. The Compound Eye and Vision of Insects. Oxford University, London. Menzel, R., and W. Backhaus. 1989. Color vision honey bees: Phenomena and physiological mechanisms. pp. 281-297. In D. G. Stavenga and R. C. Hardie, eds. Facets of vision. Sprivger-Verlag, Berlin Heidelberg. Menzel, R., and W. Backhaus. 1991. Colour vision in insects. pp. 262-293. In P. Gouras, ed. The perception of colour. Macmillan Press, London. Menzel, R., and M. Blakers. 1976. Colour receptors in the bee eye-morphology and spectral sensitivity. J. Comp. Physiol. A. 108:11-33. Menzel, R., and A. W. Snyder. 1974. Polarised light detection in the bee, Apis mellifera. J. Comp. Physiol. 88:247-270. Menzel, R., D. F. Ventura, H. Hertel, J. M. de Souza, and U. Greggers. 1986. Spectral sensitivity of photoreceptors in insect compound eyes: Comparison of species and methods. J. Comp. Physiol. A. 158:165-177. Minke, B., and K. Kirschfeld. 1979. The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin. J. Gen. Physiol. 73:517-540. Morante, J., and C. Desplan. 2008. The color-vision circuit in the medulla of Drosophila. Curr. Biol. 18:533-565. Muri, R. B., and G. J. Jones. 1983. Microspectrophotometry of single rhabdoms in the retina of the honeybee drone. J. Gen. Physiol. 82:469-496. Naka, K. I., and W. A. H. Rushton. 1966. S-potentials from colour units in the retina of fish (Cyprinidae). J. Physiol. 185:536-556. Ni, L., K. Reddig, M. Mitra, and H.-S. Li. 2008. Mutation of a TADR protein leads to rhodopsin and Gq-dependent retinal degeneration in Drosophila. J. Neurosci. 28:13478-13487. O''Carroll, D. 1993. Feature-detecting neurons in dargonflies. Nature 362:541-543. Okamura, J.-Y., and N. J. Strausfeld. 2007. Visual system of calliphorid flies: Motion- and orientation-sensitive visual interneurons supplying dorsal optic glomeruli. J. Comp. Neurol. 500:189-208. Osorio, D., and M. Vorobyev. 2008. A review of the evolution of animal colour vision and visual commication signals. Vision Res. 48:2042-2051. Pak, W. L., and K. J. Lidington. 1974. Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment. J. Gen. Physiol. 63:740-756. Pak, W., L., J. Grossfield, and N. V. White. 1969. Nonphototactic mutants in a study of vision Drosophila. Nature 222:351-354. Patterson, J., and L. J. Goodman. 1975. Componental analysis of the ocellar electroretinogram of the locust, Schistocerca gregaria. J. Insect Physiol. 21:287-298. Paulk, A. C., J. Phillops-Portillo, A. M. Dacks, J.-M. Fellous, and W. Gronenberg. 2008. The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. J. Neurosci. 28:6319-6332. Peitsch, D., A. Fietz, H. Hertel, J. de Souza, D. F. Ventura, and R. Menzel. 1992. The spectral input systems of hymenoptera insects and their receptor-based colour vision. J. Comp. Physiol. A. 170:23-40. Ribi, W. A. 1975. The first optic ganglion of the bee. I. Correlation between visual cell types and their terminals in the lamina and medulla. Cell Tissure Res. 165:103-111. Ribi, W. A. 1981. The first optic ganglion of the bee. IV. Synaptic fine structure and connectivity patterns of receptor cell axons and first order interneurones. Cell Tissue Res. 215:443-464. Ribi, W. A., and M. Scheel. 1981. The second and third optic ganglia of the worker bee: Golgi studies of the neuronal elements in the medulla and lobula. Cell Tissue Res. 221:17-43. Robinson, G. E. 1987. Regulation of honey bee age polyethism by juvenile hormone. Behav. Ecol. Sociobiol. 20:329-338. Rubinstein, C. T., S. Bar-Nachum, Z. Selignger, and B. Minke. 1989. Light-induced retinal degeneration in rdgB (retinal degeneration B) mutant of Drosophila: Electrophysiological and morphological manifestations of degeneration. Vis. Neurosci. 2:529-539. Ruck, P. 1961a. Electrophysiology of the insect dorsal ocellus. I. Origin of the components. J. Gen. Physiol. 44:605-627. Ruck, P. 1961b. Electrophysiology of the insect dorsal ocellus II. mechanisms of generation and inhibition of inpulses in the ocellar nerve of dragonflies. J. Gen. Physiol. 44:629-639. Ruck, P. 1961c. Electrophysiology of the insect dorsal ocellus III. response to flickering light of the dragonflies ocellus. J. Gen. Physiol. 44:641-657. Schillo, S., G. Belusic, K. Hartmann, C. Franz, B. Kühl, G. Brenner-Weiss, R. Paulsen, and A. Huber. 2004. Targeted mutagenesis of the farnesylation site of Drosophila Gge disrupts membrane association of the G Protein βγ complex and affects the light sensitivity of the visual system. J. Biol. Chem. 279:36309-36316. Schlecht, P., K. Hamdorf, and H. Langer. 1978. The arrangement of colour receptors in a fused rhabdom of an insect. J. Comp. Physiol. A. 123:239-243. Seeley, T. D. 1982. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11:287-293. Seidl, R. 1982. Die Sehfelder und Ommatidien Divergenzwinkel von Arbeiterin, Königin und Drohne der Honigbiene (Apis mellifera). Ph. D. Thesis, Darmstadt Technische Hochschule, Darmstadt. Seidl, R., and W. Kaiser. 1981. Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bee. J. Comp. Physiol. A. 143:17-26. Shaw, S. R. 1969. Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res. 9:999-1029. Shaw, S. R. 1975. Retinal resistance barriers and electrical lateral inhibition. Nature 255. Sheridan, J. D. 1966. Electrophysiological study of special connections between cells in the early chick embryo. J. Cell Biol. 311:C1-5. Snyder, A. W. 1973. Structure and function of the fused rhabdom. J. Comp. Physiol. 87:99-135. Sontag, C. 1971. Spectral sensitivity studies on the visual system of the praying mantis, Tenodera sinensis. J. Gen. Physiol. 57:93-112. Srinivasan, M. V., S. W. Zhang, and B. Rolfe. 1993. Is pattern vision in insects mediated by ''cortical'' processing? Nature 362:539-540. Stark, R. J., and M. I. Mote. 1981. Postembryonic development of the visual system of Periplaneta americana. I. Patterns of growth and differentiation. J. Embryol. Exp. Morph. 66:235-255. Stark, W. S. 1973. The effect of eye colour pigments on the action spectrum of Drosophila. J. Insect Physiol. 19:999-1006. Stark, W. S., and G. S. Wasserman. 1972. Transient and receptor potentials in the electroretinogram of Drosophila. Vision Res. 12:1771-1775. Stark, W. S., and S. D. Carlson. 1982. Ultrastructural pathology of the compound eye and optic neuropiles of the retinal degeneration mutant (w rdg BKS222) Drosophila melanogaster. Cell Tissue Res. 225:11-22. Stark, W. S., A. M. Ivanyshyn, and K. G. Hu. 1976. Spectral sensitivities and photopigments in adaptation of fly visual receptors. Naturwissenschaften. 63:513-518. Stavenga, D. G. 1992. Eye regionalization and spedral tuning of retinal pigments in insects. Trends Neurosci. 15:213-218. Stavenga, D. G. 2002. Colour in the eyes of insects. J. Comp. Physiol. A. 188:337-348. Stavenga, D. G., M. Kinoshita, E.-C. Yang, and K. Arikawa. 2001. Retinal regionalization and heterogeneity of butterfly eyes. Naturwissenschaften 88:477-481. Stephenson, R. S., and W. L. Pak. 1980. Heterogenic components of a fast electrical potential in Drosophila compound eye and their relation to visual pigment photoconversion. J. Gen. Physiol. 75:353-379. Stone, G. C., and H. Koopowitz. 1974. Mechanisms of action of CO2 on the visual response of Galleria mellonella. J. Insect Physiol. 20:485-496. Sullivan, J. P., O. Jassim, S. E. Fahrbach, and G. E. Robinson. 2000. Juvenile hormone paces behavioral development in the adult worker honey bee. Horm. Behav. 37:1-14. Toh, Y., and F. Yokohari. 1988. Postembryonic development of the dorsal ocellus of the American cockroach. J. Comp. Neurol. 269:157-167. Tomlinson, A. 1988. Cellular interactions in the developing Drosophila eye. Development 104:183-193. Townson, S. M., B. S. W. Chang, E. Salcedo, L. V. Chadwell, N. E. Pierce, and S. G. Britt. 1998. Honeybee blue- and ultraviolet-sensitive opsins: Cloning, heterologous expression in Drosophila, and physiological characterization. J. Neurosci. 18:2412-2422. von Frisch, K. 1914. Der farbensinn und formensinn der biene. Zoologische Fahrbücher. Abteilung für allgemeine Zoologie und Physiologie der Tiere. 35:1-188. von Frisch, K., 1967, The dance language and orientation of bees. Cambridge University Press, Cambridge. Wakakuwa, M., D. G. Stavenga, and K. Arikawa. 2007. Spectral organization of ommatidia in flower-visiting insects. Photochem. Photobiol. 83:27-34. Wakakuwa, M., M. Kurasawa, M. Giurfa, and K. Arikawa. 2005. Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften 92:464-467. Wang, T., and C. Montell. 2005. Rhodopsin formation in Drosophila is dependent on the PINTA retinoid-binding protein. J. Neurosci. 25:5187-5194. White, R. H., H. Xu, T. A. Münch, R. R. Bennett, and E. A. Grable. 2003. The retina of Manduca sexta: Rhodopsin expression, the mosaic of green-, blue- and UV-sensitive photoreceptors, and regional specialization. J. Exp. Biol. 206:3337-3348. Wong, P. T., W. D. Kaplan, W. E. Trout, and B. Hanstein. 1972. Carbon dioxide induced changes in the electroretinogram of Drosophila unaccompanied by altered phototactic behaviour. J. Insect Physiol. 18:1493-1500. Wu, C.-F., and F. Wong. 1977. Frequency characteristics in the visual system of Drosophila: Genetic dissection of electroretinogram components. J. Gen. Physiol. 69:705-724. Wu, W.-Y. 2003. Development and application of a rapid spectral sensation measurement system: The spectral efficiency of photoreceptors in Bactrocera dorsalis (Diptera: Tephritidae). Master thesis from Dept. of Entomology, National Chung Hsing University. 76pp. Wu, W.-Y., Y.-P. Chen, and E.-C. Yang. 2007. The chromatic cues to trap the oriental fruit fly, Bactrocera dorsalis. J. Insect Physiol. 53:509-516. Yang, E.-C., and T. Maddess. 1997. Orientation-sensitive neurons in the brain of the honey bee (Apis mellifera). J. Insect Physiol. 43:329-336. Yang, E.-C., and D. Osorio. 1991. Spectral sensitivieies of photoreceptors and lamina monopolar cells in the dragonfly, Hemicordulia tau. J. Comp. Physiol. A. 169:663-669. Yang, E.-C., and D. Osorio. 1996. Spectral responses and chromatic processing in the dragonfly lamina. J. Comp. Physiol. A. 178:543-550. Yang, E.-C., H.-C. Lin, and Y.-S. Hung. 2004. Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J. Insect Physiol. 50:913-925. Yinon, U. 1969. Spectral efficiency as function of latency in the visual mechanism of insect (Tenebrio molitor L.). Experientia 25:711. Yinon, U. 1970. Similarity of the electroretinogram in insects. J. Insect Physiol. 16:221-225. Yusein, S., N. Velikova, P. Kepanova, R. Hardie, A. Wolstenholme, and E. Semenov. 2008. Altered ivermectin pharmacology and defective visual system in Drosophila mutants for histamine receptor HCLB. Invert. Neurosci. 8:211-222. Zinkl, G. M., L. Maier, K. Studer, R. Sapp, D.-M. Chen, and W. S. Stark. 1990. Microphotometric, ultrastructural, and electrophysiological analyses of light-dependent processes on visual receptors in white-eyed wild-type and norpA (no receptor potential) mutant Drosophila. Vis. Neurosci. 5:429-439. Zufall, F., M. Schmitt, and R. Menzel. 1989. Spectral and polarized light sensitivity of photoreceptors in the compound eye of the cricket (Gryllus bimaculatus). J. Comp. Physiol. A. 164:597-608.
摘要: 昆蟲的複眼為接受外界視覺刺激的主要器官,研究複眼如何接受外來的視覺刺激在視覺生理學上是很重要的項目。複眼中光感受器對於不同光波長的敏感程度稱為光譜感度 (spectral sensitivity)。本研究利用不同於以往會破壞昆蟲複眼的侵入方法,改以非侵入式電極測量蜜蜂工蜂複眼視網膜電位圖譜 (electroretionogram, ERG),並進一步量測工蜂羽化後不同日齡及複眼不同區域的光譜感度。結果顯示,在不同複眼區域的光譜感度中,外勤蜂複眼的腹區相較於其他區域對於紫外光及藍光波長的刺激敏感度較低;但也證實前人研究中所示,在複眼腹區中確實存在較多的綠光感受器(green-receptor)。在工蜂日齡的研究中亦發現,複眼視網膜電位圖譜及光譜感度會隨著羽化後日齡有所變動。視網膜電位圖譜的電位反應會依日齡的增加而逐漸變大,推測此與光感受器的羽化後發育有所關聯。而工蜂光譜感度則是在零日齡時變動的程度最大,並且對紫外光波長的感受度最高,之後隨著日齡增加光譜感度趨於平穩,而對紫外光波長的感受度則隨日齡降低。
Compound eye is a major organ to receive the visual stimuli from surroundings in insects. Measuring spectral sensitivity is a way to understand the visual sensation ability of compound eye. Previous behavioral studies showed that an insect compound eye can divided to several functional regions. Besides, honeybee workers live in a dark environment and do not receive light stimulus during the first 14 days after emergency. In order to know the spectral sensitivity of different eye regions and ages performed in honeybee's compound eye, the non-invasive electroretinogram (ERG) method was applied in this study. The spectral sensitivity in the ventral part of forager's compound eye was less sensitive to ultraviolet (UV) and blue light than other parts. This also confirms that a larger number of green-photoreceptor in the ventral region, according to previous in situ hybridization study. The ERG response amplitude increased gradually with grown age. At 0-day-old worker honeybee, the spectral sensitivity was different from others. Furthermore, the sensitivity to UV light was decreased with age. The detection of UV light was meaningful to honeybee's behaviors, suggesting that the changes of UV sensitivity might be resulted from some ecological reasons.
URI: http://hdl.handle.net/11455/30730
其他識別: U0005-0502201016450400
Appears in Collections:昆蟲學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.