請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/30731
標題: Characteristics of fat body and transcriptional regulation of arylphorin receptor gene and yolk protein gene 1 in the adult oriental fruit fly, Bactrocera dorsalis
東方果實蠅成蟲脂肪體之特性與芳基蛋白受器基因及卵黃蛋白基因1之轉錄調節
作者: 左雨涵
Zuo, Yu-Han
關鍵字: http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-0608200913280500
脂肪體
芳基蛋白受器
cDNA篩減法
激素
出版社: 昆蟲學系所
引用: 邱煇宗。1978。東方果實蠅大量飼育法之改進試驗。植保會刊20:87-92。 Aguila, J. R., J. Suszko, A. G. Gibbs, and D. K. Hoshizaki. 2007. The role of larval fat body in adult Drosophila melanogaster. J. Exp. Biol. 210: 956-963. Arif, A., K. Scheller, and A. Dutta-Gupta. 2003. Tyrosine kinase mediated phosphorylation of the hexamerin receptor in the rice moth Corcyra cephalonica by ecdysteroids. Insect Biochem. Mol. Biol. 33: 921-928. Arif, A., D. Manohar, D. Gullipallia, and A. Dutta-Gupta. 2008. Regulation of hexamerin receptor phosphorylation by hemolymph protein HP19 and 20-hydroxyecdysone directs hexamerin uptake in the rice moth Corcyra cephalonica. Insect Biochem. Mol. Biol. 38: 307-319. Arif, A., P. Vasanthi, I. A. Hansen, K. Scheller, and A. Dutta-Gupta. 2004. The insect haemolymph protein HP19 mediates the nongenomic effect of ecdysteroids on acid phosphatase activity. J. Biol. Chem. 279: 28000-28008. Arrese, E. L., L. E. Canavoso, Z. E. Jouni, J. E. Pennington, K. Tsuchida, and M. A. Wells. 2001. Lipid storage and mobilization in insects: current status and future directions. Insect Biochem. Mol. Biol. 31: 7-17. Bowers, W. S., T. Ohta, J. S. Cleere, and P. A. Marsella. 1976. Discovery of insect anti-juvenile hormones in plants. Science 193: 542-547. Britton, J. S., W. K. Lockwood, L. Li, S. M. Cohen, and B. A. Edgar. 2002. Drosophila’s insulin/ PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2: 239-249. Burmester, T., and K. Scheller. l995a. Ecdysterone-mediated uptake of arylphorin by larval fat bodies of Calliphora vicina: involvement and developmental regulation of arylphorin binding proteins. Insect Biochem. Mol. Biol. 25: 799-806. Burmester, T., and K. Scheller. 1995b. Complete cDNA-sequence of the receptor responsible for arylphorin uptake by the larval fat body of the blowfly, Calliphora viciiiu. Insect Biochem. Mol. Biol. 25: 981-989. Burmester, T., and K. Scheller. 1996. Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor. J. Mol. Evol. 42: 713-728. Burmester, T., and K. Scheller. 1997a. Conservation of hexamerin endocytosis in Diptera. Eur. J. Biochem. 244: 713-720. Burmester, T., and K. Scheller. 1997b. Developmentally controlled cleavage of the Calliphora arylphorin receptor and posttranslational action of the steroid hormone 20-hydroxyecysone. Eur. J. Biochem. 247: 695-702. Burmester, T., C. Antoniewski, and J. A. Lepesant. 1999. Ecdysone- regulation of synthesis and processing of Fat Body Protein 1, the larval serum protein receptor of Drosophila melanogaster. Eur. J. Biochem. 262: 49-55. Butterworth, F. M., and E.M. Rasch. 1986. Adipose tissue of Drosophila melanogaster. VII. Distribution of nuclear DNA amount along the anterior-posterior axis in the larval fat body. J. Exp. Zool. 239: 77-85. Butterworth F. M., L. Emerson, and E. M. Rasch. 1988. Maturation and degeneration of the fat body in the Drosophila larva and pupa as revealed by morphometric analysis. Tiss. Cell 20: 255-268. Cheng, D. J., Q. Y. Xia, P. Zhao, Z. L. Wang , H. F. Xu, G. R. Li, C. Lu, and Z. H. Xiang. 2006. EST-based profiling and comparison of gene expression in the silkworm fat body during metamorphosis. Arch. Insect Biochem. Physiol. 61: 10-23. Chung, S. O., T. Kubo, and S. Natori. 1995. Molecular cloning and sequencing of arylphorin-binding protein in protein granules of Sarcophaga fat body, J. Biol. Chem. 270: 4624-4631. Dean, R. L. 1978. The induction of autophagy in isolated insect fat body by β-ecdysone. J. Insect. Physiol. 24: 439-447. Dean, R. L., M. Locke, and J. V. Collins. 1985. Structure of the fat body. pp. 155-210. In: Kerkut, G. A., and L. I. Gilbert, eds. Comprehensive Insect Physiology, Biochemistry and Pharmacology. vol. 3. Pergamon Press, Oxford. Gies, A., T. Fromm, and R. Ziegler. 1988. Energy metabolism in starving larvae of Manduca sexta. Comp. Biochem. Physiol. 91A: 549-555. Hagedorn, H. H. 1985. The role of ecdysteroids in reproduction. pp. 205-262. In: Kerkut, G. A., and L. I. Gilbert, eds. Comprehensive Insect Physiology, Biochemistry and Pharmacology. vol. 8. Pergamon, Oxford. Hansen, I. A., S. R. Meyer, I. Schäfer, and K. Scheller. 2002. Interaction of the anterior fat body protein with the hexamerin receptor in the blowfly Calliphora vicina. Eur. J. Biochem. 269: 954-960. Haunerland, N. H., and P. D. Shirk. 1995. Regional and functional differentiation in the insect fat body. Annu. Rev. Entomol. 40: 121-145. Haunerland, N. H., K. K. Nair, and W. S. Bowers. 1990. Fat body heterogeneity during development of Heliotltis zea. Insect Biochem. 20: 829-837. Hoshizaki, D. K., R. Lunz, M. Ghosh, and W. Johnson. 1995. Identification of fat-cell enhancer activity in Drosophila melanogaster using P-element enhancer trap. Genome 38: 497-506. Kanost, M. R., J. K. Kawooya, J. H. Law, R. O. Ryan, M. C. Van Heusden, and R. Ziegler. 1990. Insect haemolymph proteins. Adv. Insect Physiol. 22: 299-396. Keeley, L. L. 1985. Physiology and Biochemistry of the Fat Body. pp. 211-248. In: Kerkut, G. A., and L. I. Gilbert, eds. Comprehensive Insect Physiology, Biochemistry and Pharmacology. vol. 3. Pergamon, Oxford. Kishimoto, A., H. Nakato, S. Izumi, and S. Tomino. 1999. Biosynthesis of major plasma proteins in the primary culture of fat body cells from the silkworm, Bombyx mori. Cell Tiss. Res. 297: 329-335. Lepesant, J.-A., J. Kejzlarovh-Lepesant, and A. Garen. 1978. Ecdysone inducible function of larval fat bodies in Drosophila. Proc. Natl. Acad. Sci. USA. 75: 5570-5574. Levenbook L., and A. Bauer. 1984 The fate of the larval storage protein calliphorin during adult development of Calliphora vicina. Insect Biochem. 14: 77-86. Marr II, M. T., J. A. D’Alessio, O. Puig, and R. Tjian. 2007. IRES-mediated functional coupling of transcription and translation amplifies insulin receptor feedback. Genes Dev. 21: 175-183. Maschat, E., M. L. Dubertret, P. ThCrond, J. M. Claverie, and J. A. Lepesant. 1990. Structure of the ecdysone-inducible PI gene of Drosophila melanogaster. J. Mol. Biol. 214: 359-372. Nakajima, Y., and S. Natori. 2000. Identification and characterization of an anterior fat body protein in an insect. J. Biochem. 127: 901-908. Nation, J. L. 2002. Insect Physiology and Biochemistry. pp. 132-140. CRC Press LLC, Boca Ration, Florida, USA. Pelt-Verkuil, E. 1979. Hormone mediated induction of acid phosphatase activity in the fat body of Calliphora erythrocephala prior to metamorphosis. J. Insect Physiol. 25: 965-973. Rustan, T. E., K. Lindmo, G. Juhász, M. Sass, P. O. Seglen, A. Brech, and H. Stenmark. 2004. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev. Cell 7: 179-192. Sass, M., and J. Kovacs. 1977. The effect of ecdysone on the fat body cell of the penultimate larvae of Mamestra brassicae. Cell Tiss. Res. 180: 403-409. Scott, R. C., O. Schuldiner, and T. P. Neafeld. 2004. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell 7: 167-178. Shinbo, H., K. Konno, and C. Hirayama. 1997. The pathway of ammonia assimilation in the silkworm, Bombyx mori. J. Insect Physiol. 43: 959-964. Shirras, A. D., and M. Bownes. 1989. Cricklet: A locus regulating a number of adult functions of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 86: 4559-4563. Tahara, T., Y. Maeda, A. Kuroiwa, K. Ueno, M. Obinata, and S. Natori. 1982. Identification of storage-protein messenger RNA of the fleshfly Sarcophaga peregrina. Biochem. J. 203: 571-575. Telfer, W. H., and J. G. Kunkel. 1991. The function and evolution of insect storage hexamers. Annu. Rev. Entomol. 36: 205-228. Telfer, W. H., P. S. Keim, and J. H. Law. 1983. Arylphorin, a new protein from Hyalophora cecropia: comparison with calliphorin and manducin. Insect Biochem. 13: 205-228. Thompson, S. N. 1979. Effect of dietary glucose on in vitro fatty acid metabolism and in vitro synthetase activity in the insect parasite, Exeristes roborator (Fabricius). Insect Biochem. 9: 645-651. Tojo, S., T. Betechaku, V. Ziccardi, and G. R. Wyatt. 1978. Fat body protein granules and storage proteins in the silkmoth, Hyalophora cecropia. J. Cell Biol. 78: 823-838. Tysell, B., and F.M. Butterworth. 1978. Different rate of protein granule formation in the larval fat body of Drosophila melanogaster. J. Insect Physiol. 24: 201-206. Ueno, K., F. Ohsaea, and S. Natori. 1983. Identification and activation of storage protein receptor of Sarcophaga peregrina fat body by 20-hydroxyecdysone. J. Biol. Chem.258: 12210-12214. Unnithan, G. C., K. K. Nair, and W. S. Bowers. 1977. Precocene-induced degeneration of the corpus allatum of adult females of the bug Oncopeltus fasciatus. J. Insect Physiol. 23: 1081-1094. Wang, Z. X., and N. H. Haunerland. 1993. Storage protein uptake in Helicoverpa zea- Purification of the very high-density lipoprotein receptor from perivisceral fat body. J. Biol. Chem. 268:16673-16678. Wang, Z., and N. Haunerland. 1994a. Receptor-mediated endocytosis of storage proteins by the fat body of Helicoverpa zea. Cell Tiss. Res. 278: 107-115. Wang, Z., and N. Haunerland. 1994b. Storage protein uptake in Helicoverpa zea: Arylphorin and VHDL share a single receptor, Arch. Insect Biochem. Physiol. 26: 15-26. Wyatt, G. R., and M. L. Pan. 1978. Insect plasma proteins Annu. Rev. Biochem. 47: 779-817.
摘要: Insect fat body is responsible for storing nutrients, providing energy and metabolizing materials. Dissection and histological observation revealed that there were two forms of fat body in the adult abdomen of Bactrocera dorsalis (Hendel), i.e., white nodule-like “larval fat body” and thin sheet-like “adult fat body”. The amount of larval fat body was decreasing while adult fat body was increasing following adult growth. We further attempted to screen stage specific-expressed genes from the abdominal fat body of 0-day-old and 9-day-old adults using cDNA subtraction. The subtracted results showed that arylphorin receptor (ArR) gene expressed most abundantly in the 0-day-old adult fat body, about 15%; yet yolk protein gene 1 (yp1) was the major gene expressed in 9-day-old adult fat body. RT-PCR analysis demonstrated that ArR expressed greatly in larval fat body; in contrast, yp1 did not express in larval fat body, but specifically expressed in adult fat body of adult females. The transcriptional expression of ArR was decreasing, but yp1 was increasing with normal adult growth. In adult fat body, ArR and yp1 expressed less in starved females than that of control females. The duration of transcriptional expression of ArR was extended but that of yp1 was similar to the control after 20-hydroxyecdysone (20E) treatment. The expression of ArR was little lower after juvenile hormone analog, pyriproxyfen, treatment than control, but yp1 expressed earlier in the adult females at 16 h after pyriproxyfen treatment. ArR expressed higher, but yp1 expressed lower after an anit-juvenile hormone agent, precocene II, treatment than control. ArR expressed higher after precocene II and pyriproxyfen treatment than control, but the expression of yp1 after was similar to control. 20E and precocene II induced ArR expression that was inhibited by pyriproxyfen. There was no obvious effect of 20E on the expression of yp1 which could be induced by pyriproxyfen, but precocene II inhibited the expression of yp1.
脂肪體於昆蟲體內負責儲存營養、提供能量及代謝物質。於實體解剖與組織切片結果顯示,東方果實蠅(Bactrocera dorsalis (Hendel))成蟲腹部具有兩種形式之脂肪體,一為白色顆粒球狀的幼蟲形式脂肪體(larval fat body),另一為扁平片狀的成蟲形式脂肪體(adult fat body)。隨著成蟲的成長,幼蟲形式脂肪體所佔比例逐漸遞減,而成蟲形式脂肪體則逐日增加。利用cDNA篩減法(cDNA subtraction)篩減第0日齡及第9日齡成蟲腹部脂肪體各自專一表現之基因,其結果顯示第0日齡成蟲腹部脂肪體表現之基因中,以芳基蛋白受器基因(arylphorin receptor gene, ArR)所佔比例最高,達15%;而第9日齡者,則以卵黃蛋白基因1(yolk protein gene 1, yp1)最多。以RT-PCR分析,芳基蛋白受器基因大量表現於幼蟲形式脂肪體;相對地,卵黃蛋白基因1於幼蟲形式脂肪體不表現,僅表現於雌成蟲的成蟲形式脂肪體。 正常情況下,隨著東方果實蠅成蟲成長,芳基蛋白受器基因表現量逐漸降低,而卵黃蛋白基因1表現量則為增加。以飢餓處理,芳基蛋白受器基因及卵黃蛋白基因1的表現量較正常飼育少。以青春激素類似物-百利普芬(pyriproxyfen)處理,芳基蛋白受器基因的表現量略少於對照組;但卵黃蛋白基因1於百利普芬處理後的第16小時即開始表現。以蛻皮激素(20-hydroxyecdysone, 20E)處理,可延長芳基蛋白受器基因的表現時間;但於卵黃蛋白基因1表現量則無顯著影響。以早熟素(precocene II)抑制青春激素,芳基蛋白受器基因表現量較對照組高;卵黃蛋白基因1表現量則較對照組略低。若先以早熟素處理,再以百利普芬處理後,芳基蛋白受器的基因表現量較對照組略高;但卵黃蛋白基因1表現量與對照組無明顯差異。 蛻皮激素及早熟素可刺激芳基蛋白受器基因表現,但百利普芬卻會抑制芳基蛋白受器基因的表現;蛻皮激素不影響卵黃蛋白基因1表現,而百利普芬可刺激卵黃蛋白基因1的表現,但早熟素會降低芳基蛋白受器基因的表現量。
URI: http://hdl.handle.net/11455/30731
其他識別: U0005-0608200913280500
顯示於類別:昆蟲學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。