Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3074
標題: 可溶性有機半導體合成及其光電材料應用研究
Synthesis of Soluble Organic Semiconductors and Study on It’s Application in Optoelectronic Materials
作者: 陳建勳
Chen, Chien-Hsun
關鍵字: 可溶性有機半導體材料
Soluble organic semiconductor
光電設備
彩色光阻
有機分散式異質接合
三元系分散式異質接合
有機太陽能電池
Optoelectronic
Color resist Bulk-heterojunction
Ternary solution blend
Organic solar cell
出版社: 化學工程學系所
引用: 1-5本章參考文獻 (1) S. R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nat. Mater, 2004, 428, 911-918. (2) Z. Bao; A. J. Lovinger; A. Dodabalapur, Organic field‐effect transistors with high mobility based on copper phthalocyanine, Appl. Phys. Lett, 1996, 69, 3066-3068. (3) F. Yang; M. Shtein; S. R. Forrest, Controlled growth of a molecular bulk heterojunction photovoltaic cell, Nat. Mater, 2005, 4, 37-41. (4) J. Xue; B. P. Rand; S. Uchida; S. R. Forrest, A Hybrid planar–mixed molecular heterojunction photovoltaic cell, Adv. Mater, 2005, 17, 66-71. (5) S. Uchida; J. Xue; B. P. Rand; S. R. Forrest, Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer, Appl. Phys.Lett, 2004, 84, 4218-4221. (6) E. Becquerel, Memoire surles effets electriques produits sousl influence des rayons solaires C. R. Acad, Sci. Paris, 1839, 9, 561-567. (7) http://www.pvpower.com/pvhistory.html. (8) D. Wohrle; D. Meissner, Organic solar cell, Adv. Mater, 1991, 3, 129-138. (9) M. Hiramoto; H. Fujiwara; M. Yokoyama, P-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments. J. Appl. Phys. 1992, 72, 4203-4208. (10) http://www californiasolarcenter.org. / history_pv.html. (11) W. Shockley; H. J. Queisser, Detailed balance limit of efficiency of p‐n junction solar cells, J. Appl .Phys, 1961, 32, 510-520. 2-11 本章參考文獻 (1) J. A. Rogers.; Z. N. Bao; V. R. Raju, Nonphotolithographic fabrication of organic transistors with micron feature sizes, Appl. Phys. Lett, 1998, 72, 2716-2718. (2) H. Sirringhaus; T. Kawase; R. H. Friend; T. Shimoda; M. Inbasekaran; W. Wu; E. P. Woo, High-resolution inkjet printing of all-polymer transistor circuits, Science, 2000, 290, 2123-2126. (3) Z. N. Bao; J. A. Rogers; H. E.Katz, Printable organic and polymeric semiconducting materials and devices, J. Mater. Chem, 1999, 9, 1895-1904. (4) Gerwin H. Gelinck; H. Edzer A. Huitema; Erik van Veenendaal; Eugenio Cantatore; Laurens Schrijnemakers; Jan B. P. H. van der Putten; Tom C. T. Geuns; Monique Beenhakkers; Jacobus B. Giesbers; Bart-Hendrik Huisman; Eduard J. Meijer; Estrella Mena Benito; Fred J. Touwslager; Albert W. Marsman; Bas J. E. van Rens and Dago M. de Leeuw, Flexible active-matrix displays and shift registers based on solution-processed organic transistors, Nat. Mater, 2004, 3, 106-110. (5) L. S. Zhou; A. Wanga; S. C. Wu; J. Sun; S. Park; T. N. Jackson , All-organic active matrix flexible display, Appl. Phys. Lett. 2006, 88, 083502-083505. (6) H. Wolleb; A. Wolleb; B. Schmidhalter; J. L Budry, Metallocenyl Phthalocyanine. U.S. Patent 6,399,768, June 4, 2002. (7) Z. Chen; C. Xia; Y. Wu; X. Zuo; Y. Song, Synthesis characterization and third-order nonlinear optical ropPerties of bromoTri-α-(2,4-dimethyl-3-pentyloxy)subphthalocyanine]boron Complex. Inorg, Chem. Commun, 2006, 9, 187-191. (8) A. R Ozkaya; E Hamuryudan; Z. A.Bayir; O.Bekaroglu, Electrochemical properties of octakis (hydroxyethylthio) substituted phthalocyanines, J. Porphyrins Phthalocyanines, 2000, 4, 689-697. (9) V. Y. Merritt, Organic photovoltaic materials: squarlium and cyanine-tcnq dyes, IBM J.Res.Develop. 1978, 22, 353-371. (10) S. H. Kim; S. H. Hwang, Synthesis and photostability of functional squarylium Dyes, Dyes Pigm. 1997, 35, 111-121. (11) E. Terpetsching; J. R. Lakowicz, Synthesis and characterization of unsymmetrical squaraines: a new class of cyanine dyes, Dyes Pigm, 1993, 21, 227-234. (12) S. H. Kim; S. H. Hwang; N. K. Kim; J. W. Kim, Aggregation and photo fading behaviors of unsymmetrical squarylium dyes containing a quinolylidene moiety, J. Soc. Dyes Color, 2000, 116, 126-131. (13) D. H. Erouiche; J. Bernede; C. J. L’Hyver, Optimization of the properties of bulk heterojunctions obtained by co evaporation of Zn-phthalocyanine/erylene, Dyes .Pigments, 2004, 63, 277-289. (14) Toshimitsu Tsuzuki , Nobuaki Hirota , Naoki PNoma , Yasuhiro Shirota , Photoelectrical conversion of p-n heterojunction devices using thin films oftitanyl phthalocyanine and a peryle.ne pigment, Thin solid films. 1996, 273, 177-180 (15) X. Zhang; Y. Wu; J. Li; F. Li; M. Li, Synthesis and characterization of Perylene tetracarboxylic bisester monoimide derivatives, Dyes Pigm. 2008, 76, 810-816. (16) M. Koppe; H. J. Egelhaaf; G. Dennler; M. C. Scharber; C. J. Brabec; P. Schilinsky; C. N. Hoth, Adv. Funct. Mater, 2010, 20, 338-346. (17) X. Mo; M. M. Shi; J. C. Huang; M. Wang; H. Z. Chen, Synthesis Aggregation and photoconductive properties of alkoxycarbonyl substituted perylene, Dyes Pigm. 2008, 76, 236-242. (18) 林敬二,儀器分析,美亞書版股份有限公司,(1995) (19) S. Asir; A. S. Demir; H. Icil, The Synthesis of nove unsymmetrical substituted chiral naphthalene and perylene diimides: photophysical, electrochemical, chiroptical and intramolecular charge transfer properties, Dyes Pigm. 2010, 84, 1-13. (20) N. Kuramoto; K. Natsukawa; K. Asao, Synthesis and characterization of deep-coloured squarylium dyes for laser optical recording media, Dyes Pigm. 1989, 11, 21-35. 3-11 參考文獻 (1) 簡宗信, 157奈米光阻劑之最新發展, 化工資訊月刊 (2001). (2) J. P. Fouassier, Photoinitiation, photopolymerization, and photocuring: fundamentals and application, Hanser Publishers, Munich Vienna New York (1995). (3) 溫俊祥, 電著微影法彩色濾光板應用, 工業材料 , 1999, 156, 92-106. (4) B. Koji; H. Shigeo, Color filter, method of manufacturing color filter and photosensitive coloring composition, U.S.Patent No. 6,344,300. (5) B. S. Chiou ; A. K. Saad, Real time FTIR and in situ rheological studies on the uv curing kinetic of thiol-ene system, Macromolecules, 1997, 30, 7322-7328. (6) E. Andrzejewska ; M. A. Andrzejewski, Polymerization kinetics of photocurable acrylic resins, J. Polym. Sci., Part A Polym Chem, 1998, 36, 665-673. (7) F. J. Hua; C. P. Hu, Interpenetrating polymer networks of epoxy resin and urethane acrylate resin:Kinetics of network formation, European Polymer Journal, 1999, 35, 103-112. (8) 陳劉旺, 工業塗料與高分子化學, 高立圖書有限公司,(1997)。 (9) G. Bradley; R. S. Davidson, Some aspects of the role of amines in the photoinitiated polymerisation of acrylates in the presence and absence of oxygen, Recl. Trav. Chim. Pays-Bas, 1995, 114, 528-533. (10) C. Decker; K. Zahouily; D. Decker; T. Nguyen; Thi Viet, Performance of acylpphosphine oxides in photoinitiated polymerization, Polymer, 2001, 42, 7551-7560. (11) J. Segurola; N. S. Allen; M. Edge; A. McMahon ; S. Wilson, Photoyellowing and discolouration of UV cured acrylated clear coatings systems: influence of photoinitiator type, Polymer Degradation and Stability, 1999, 64, 39-48. (12) G. Ordian, Principles of polymerization, third edition, John Wiley & Sons Inc., New York (1991). (13) C. Decker, Photoinitiated curing of multifunctional monomers, Acta Polymer. 1994, 45, 333-347. (14) J. Segurola; N. S. Allen; M. Edge; A. Parrondo; I. Roberts, Photochemistry and photoinduced chemical crosslinking activity of several type II commercial photoinitiators in acrylated prepolymers, JPPA, 1999, 122, 115-125. (15) J. Segurola; N. S. Allen; M. Edge; I. Roberts, Photochemistry and photoinduced chemical crosslinking activity of acrylated pre-polymers by several commercial type I far UV photoinitiators, Polymer Degradation and Stability, 1999, 65, 153-160. (16) N. Arsu; R. S. Davidson; R. Holman, Factors affecting the photoyellowing which occurs during the photoinitiated polymerization of acrylates, JPPA, 1995,87, 169-175 (17) N. S. Allen, Photoinitiators for uv and visible curing of coatings: mechanisms and properties, JPPA, 1996, 100, 101-107. (18) J. Segurola; N. S. Allen; M. Edge, A. Parrondo; I. Roberts, Photochemistry and photoinduced chemical crosslinking activity of several type II commercial photoinitiators in acrylated prepolymers, JPPA, 1999, 122, 115-125. (19) G. Ordian, Principles of polymerization, third edition, John Wiley & Sons Inc., New York (1991). (20) D. R. Randell, Radiation curing of polymers II, The Royal Society of .chemistry (1991). (21) C. G. Roffer, Photopolymerization of surface coating, John Wiley & Sons Inc., New York (1982). (22) N. S. Allen; M. S. Johnson; P. K. T. Oldring; S. Salim, Chemistry&technology of uv&eb formulations for coating, ink& paints, SITA Technology gardiner House Broomhill Road London SW18 4JQ England, (1991). (23) 劉唐豪, 國立中興大學化學工程系博士論文,(2009)。 4-15 本章參考文獻 (1) D. M. Chapin; C. S. Fuller.; G. L. Person , A new silicon p-n junction photocell for converting solar radiation into electrical power, J. Appl. Phys, 1954, 25, 676-677. (2) http://www.californiasolarcenter.org/history_pv.html. (3) 游啟聰計劃主持;尤如瑾,洪傳獻,鄒應嶼作,「綠色潮流下我 國太陽光電產業發展策略研究」,工業技術研究院產業經濟與資訊中心出版,2004 (4) W. Shockley; H. J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl .Phys, 1961, 32, 510-517. (5) R. P Gale; R. W McClelland; B. D Dingle; J. V Gormley; R. M Burgess; N. P Kim, R. A. Mickelsen, B. J.Stanbery, High-efficiency GaAs/CuInSe2 and AlGaAs/CuInSe2 thin-film tandemsolar cells, Conference Record of the IEEE Photovoltaic Specialists Conference, 1990, 1, 53-57. (6) H. Kallmann; M. Pope, Preparation of thin anthracene single crystals, Rev. Sci. Instrum, 1958, 29, 993-994. (7) Dipl. Ing. Klaus Petritsch, Organic solar cell architectures, Cambridge andGraz, (2000). (8) 吳奉修, 國立中山大學光電工程學系碩士論文,(2009。) (9) 莊振傑, 國立成功大學航空太空工程學系碩士論文,(2008)。 (10) C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phy. Lett, 1986, 48, 183-185. (11) B. Zimmermann; M. Glatthaar, Electroabsorption studies of organic bulk-heterojunction solar cells, Thin Solid Films , 2005, 493, 170-174. (12) D. Gebeyehu; B. Maennig; J. Drechsel, K. Leo, M. Pfeiffer, Bulk-heterojunction photovoltaic devices based on donor–acceptor organic small molecule blends, Solar Energy Materials & Solar Cells, 2003, 79, 81-92. (13) Claudio Girotto; David Cheyns; Tom Aernouts; Fateme Banishoeib; Laurence Lutsen, Bulk heterojunction organic solar cells based on soluble poly(thienylene vinylene) derivatives, Organic Electronics, 2008, 9, 740-746. (14) Sung Heum Park; Anshuman Roy; Serge Beaupre; Shinuk Cho; Nelson Coates; Ji Sun Moon, Solar energy and photovoltaic, Nature Photonics , 2009, 3, 297-302. (15) Qingjiang Sun ; Liming Dai; Xiaoli Zhou; Lanfang Li; Quan Li , Bilayer- and bulk-heterojunction solar cells using liquid crystalline porphyrins as donors by solution processing, Applied Physics Letters, 2007, 91, 253505-253505 (16) A Fernando. Castro; Antonin Faes; Thomas Geiger; Carlos F.O. Graeff, On the use of cyanine dyes as low-bandgap materials in bulk heterojunction photovoltaic devices, Synthetic Metals , 2006, 156, 973-978. (17) G. Li; V. Shrotriya; J. Huang; Y. Yao; T. Morlarty; K. Emery; Y.Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater, 2005 , 4, 864-868. (18) W. Ma; C. Yang; X. Gong; K. Lee; A.J. Heeger, Thermally stable efficient polymer solar cells with nanoscale control of interpenetratingnetwork morphology, Adv. Funct. Mater, 2005 , 15, 1617-1622. (19) K.M. Coakly; M.D. McGehee , Conjugated polymer photovoltaic cells, Chemistry of Materials, 2004, 16, 4533-4542. (20) L. J. A. Koster; V. D. Mihailetchi; P. W. M. Blom, Ultimate efficiency of polymer/fullrene bulk heterojunction solar cell, Appl, Phys. Lett., 2006,88, 093511-093513. (21) B. C. Thompson; Y. G .Kim; J. R. Reynolds, Spectral broadening in MEH-PPV:PCBM-Based photovoltaic devices via blending with a narrow band gap cyanovinylene−dioxythiophene polymer, Macromolecules, 2005, 38, 5359-5362. (22) P. Suresh; P. Balraju; G. D. Sharma; J A. Mikroyannidis; M. M Stylianakis, ACS, Effect of the incorporation of a low-band-gap small molecule in a conjugated vinylene copolymer: PCBM blend for organic photovoltaic devices, Appl. Mater. Interfaces, 2009, 1, 1370-1374. (23) C. H. Chen; C. H. Hsieh; M. Dubosc; Y. J .Cheng; CS. Hsu, Synthesis and characterization of bridged bithiophene-based conjugated polymers for photovoltaic applications: acceptor strength and ternary blends, Macromolecules, 2010, 43, 697-708. (24) C. H. Che; Y. J. Cheng; M. Dubosc; C.H. Hsieh; C. C. Chu; Hsu, C. S. Chem, Alternating and diblock donor-acceptor conjugated polymers based on diindeno[1,2-b:2'',1''-d]thiophene structure: synthesis, characterization, and photovoltaic applications, Asian J. 2010, 5, 2483-2492. (25) M. Koppe; H. J. Egelhaaf; G. Dennler; M. C. Scharber; C J Brabec; P. Schilinsky; C. N. Hoth, Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the Spectral response of organic solar cells, Adv. Funct. Mater. 2010, 20, 338-346. (26) G.Adam; A .Pivrikas; A. M.Ramil; S. Tadesse;T.Yohannes; N. S Sariciftci; D. Egbe; A. M, Mobility and photovoltaic performance studies on polymer blends: effects of side chains volume fraction, J. Mater. Chem. 2011, 21, 2594-2600. (27) J. A Mikroyannidis; D. V.Tsagkournos; P Balraju; S G. D.harma, Synthesis and photovoltaic properties of an alternating phenylenevinylene copolymer with substituted-triphenylamine units along the backbone for bulk heterojunction and dye-sensitized solar cells, J. Power Sources, 2011, 196, 2364-2372. (28) http://www.globalwarmingart.com/ (29) 張正華,李陵嵐,葉楚平,楊平華,有機與塑膠太陽能電池, 五南圖書出版公司, (2007)。 (30) B. A. Gregg, Excitonic solar cells, J. Phys. Chem. B, 2003, 107, 4688-4698. (31) C. J. Brabec; G. Zerza; G. Cerullo; S. De Silvestri; S. Luzzati; J. C.Hummelen; N. S. Sariciftci, Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time, Chem. Phys. Lett. 2001, 340, 232-236. (32) P. Penumans; S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett. 2001, 79, 126-128. (33) H. Spanggaard; F. C. Krebs, A brief history of the development of organicand polymeric photovoltaics, Solar Energy Materials & Solar Cells. 2004, 83, 125–146, (34) J. Xue; S. Uchida; B.P. Rand; S.R. Forrest, 4.2% efficient organic photovoltaic cells with low series resistances, Appl. Phys. Lett. 2004, 84, 3013-3015. (35) H. Hoppe; N. S. Sariciftci, Organic solar cells: An overview, Journal of Material Research 2004, 19, 1924-1945. (36) C. Brabec; A. Cravino; D. Meissner; N.S. Sariciftci; T. Fromherz; M.T. Rispens; L. Sanchez; J.C. Hummelen, Polymeric Alkoxy PBD [2-(4-Biphenylyl)-5-Phenyl-1,3,4-Oxadiazole] for light-emitting diodes, Advances Functional Materials, 2001, 11, 374-377. (37) G. E. Jabbour;Y. Kawable; S. E. Shaheen; J. F. Wang; M. M. Morrell; B. Kippelen; N. Peyghambarian, Highly efficient and bright organic electroluminescent devices with an aluminum cathode, Appl. Phys. Lett. 1997, 71, 1762-1764. (38) G. M. Lewis; P. M. Smowton; J. D. Thomson; H. D. Summers; P.Blood, Measurement of true spontaneous emission spectra from the facet of diode laser structures, Appl. Phys. Lett. 2002, 80, 1-3. (39) K. Y. Law, Organic photoconductive materials: Recent trends and developments, Chem. Rev. 1993, 93, 449-486, (40) 陳力俊,材料電子顯微鏡學,科儀叢書(1994)。 (41) M.Wojdyła; B. Derkowska; M .Rebarz; A.Bratkowski; W. Bała, Stationary and modulated absorption spectroscopy of copper phthalocyanine (CuPc) layers grown on transparent substrate. J. Opt. A: Pure Appl. Opt. 2005, 7, 463-466. (42) X. H. Li; B. W. Zhang; Y. C Ewald, Aggregation of bis(2,4,6- trihydroxyphenyl) squaraine in different solutions. Dyes Pigm. 2000, 45, 209-217. (43) J. L. Breads; R. Silbery; D. S.Broundreaux; R. R Chance, Dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 1983, 105, 6555-6559 (44) Z. Peng; Z. Bao; M. E. Galvin, Polymers with bipolar carrier transport abilities for light emitting diodes. Chem. Mater. 1998, 10, 2086-2090. (45) X .Mo; H. Z. Chen; Y. Wang; M. M Shi; M. Wang, Fabrication and photoconductivity study copper phthalocyanine/ perylene composite with bulk-heterojunctions obtained by solutionblending, J. Phys. Chem. B, 2005, 109, 7659-7663. (46) J. K. Park; J. Jo; J. H. Seo; J. S. Moon; Y. D. Park; K. Lee; A. J Heeger; G. C. Bazan, End-capping effect of a narrow bandgap conjugated polymer on bulk heterojunction solar Cells, Adv. Mater.2011, 23, 2430-2435. (47) Y. J Chang; T. J. Chow. Dye-sensitized solar cell utilizing organic dyads containing triarylene conjugates, Tetrahedron 2009, 65, 4726-4734. (48) F. A. Castro; H. Benmansour; J. E. Mose; C. F. Q. Graeff; F. Nuesch; R. Hany, Photoinducedhole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yields. Phys. Chem. 2009, 11, 8886-8894. (49) C.Y. Kwong; A.B. Djurišiĉ P.C. Chui; L.S.M.Lam; W. K.Chan, Improvement of the efficiency ofphthalocyanine organic Schottky solar cells with ITO electrode treatment. Appl.Phys.A. 2003, 77, 555-560.
摘要: 近幾年來,銅酞菁(copper phthalocyanine)染料應用於光電和電子設備中備受矚目。例如液晶顯示器 (LCD)中的彩色濾光片,有機太陽能(organic soler cell)電池,有機發光二極體(OLED),有機薄膜晶體管(OTFT),光碟片染料等。銅酞菁有很穩定的化學特性和耐熱性,銅酞菁及其衍生物正是彩色濾光片之組成重要元件RGB(紅綠藍)三原色彩色層,藍色和綠色主要來源。 銅酞菁及其衍生物應用於有機太陽能電池也被大幅度報導,銅酞菁及其衍生物可當成電子施體有機材料,再配合電子受體材料如苝(perylene)利用蒸鍍方法達到雙層異質結構界面,產生光電效益。 本文研究主要為銅酞菁衍生物2,4-二甲基3-戊烷銅酞菁[copper tetra-(2,4-dimethyl-3-pentoxy) phthalocyanine](CuPc-712),2,4-二甲基3-戊烷-壓克力銅酞菁[geminal (acrylate) tetra-(2,4-dimethyl-3-pentoxy) copper phthalocyanine] (CuPcacrylate),和不對稱型方酸化合物{2-[1-ethanol -2methylquinol] -4-[1,2,3,3- tetramethyl-1H-benzo[e]indol] cyclobutadienylium -1,3-diolate} (SQ-700),苝四庚酯[3,4,9,10-tetra-(heptyl acetate)-perylene](Pery-C7)。在銅酞菁的苯環上導入極性或具有立體障礙特性之官能基以增加溶解度,再導入含有壓克力結構官能基,則可應用於彩色濾光片中的彩色光阻。取CuPcacrylate 溶於溶劑丙二醇單甲基醚酯(propylene monomethyl ether acetate, PGMEA)可完全溶解,溶解度為10Wt %。結合CuPcacrylate、黏結劑(binder)、光起始劑(photo-initiator)、反應性單體(reactive monomer)、溶劑,形成彩色光阻,且CuPcacrylate結構因具有反應性單體的特質,不但可以減少反應性單體的添加,當形成光阻時不會影響現有的製程。經曝光顯影則評為優,量測其線寬為20μm。 不對稱型方酸化合物則有利於提高溶解度和調整UV的波長,苝四庚酯有大型平面π電子共振結構,使其具有優異的光電性質及強螢光性,近年來已被應用於有機太陽能電池之研究上,利用有機分散式異質接合(bulk heterojunction, BHJ) 混摻CuPc-712/Pery-C7,SQ-700/Pery-C7,和三元系分散式異質接合原理(ternary blend) 混摻CuPc-712/SQ-700/Pery-C7,依據一定比例互溶,藉由旋轉塗佈的方法製程元件。經由掃描式電子顯微鏡(scanning electron microscope)(SEM)觀察形貌和厚度,太陽光模擬器(Model: 91160A Newport)檢測其光電效率,其中以CuPc-712/SQ-700/Pery-C7 (1:1:4)η=0.18%、Isc=0.603 mA/cm2、Voc=0.70、FF=0.43,的光電效率最好。
In recent years, the application of copper phthalocyanine in optoelectronic and electronic devices has been very conspicuous, such as color filters of liquid crystal display (LCD), organic solar cells, organic light-emitting diodes (OLEDs), organic thin film transistor and CD-R. Copper phthalocyanine has stable chemical property and high thermostablity. Additionally, it is an important and major for blue and green component of the color filters. Besides, the application of copper phthalocyanine and its derivatives in organic solar cells has also been extensively reported. Copper phthalocyanine and its derivatives can be use for electron-donor. After being coupled with the electron acceptor material such as perylene by the evaporation method to achieve dual layer heterostructure, and they can produce photovoltaic efficiency. In this paper, we aim for the study of copper tetra-(2,4-dimethyl-3-pentoxy) phthalocyanine (CuPc-712), geminal (acrylate,) tetra-(2,4-dimethyl-3-pentoxy) copper phthalocyanine] (CuPcacrylate), and {2 - [1-ethanol-2methylquinol] -4 - [1,2,3,3 - tetramethyl-1H-benzo [e] indol] cyclobutadienylium -1,3-diolate} (SQ-700), and [3,4,9,10-tetra-(heptyl acetate)-perylene] (Pery-C7). Efforts have been made by introducing dendritic structures into the by-positions benzene ring to increase the solubility of copper phthalocyanine derivatives, thereby improving their performance (CuPc-712) .Then acrylic functional groups are added to CuPc-712 form CuPcacrylate. Take CuPcacrylol in the solvent propylene monomethyl ether acetate (PGMEA) to make it completely dissolved. The solubility about 10 wt%。Finally, combine CuPcacrylate with photo-initiator, reactive monomer, and solvent to form a photo-resist. As a result of the structure of CuPcacrylate, which has the characteristics of reactive monomers, not only the amount of reactive monomers and dispersant can be reduced, but also the formation of the photoresist would not affect the existing process. It is shown that lithography is evaluated as excellent, and the measured line width is 20μm. Types of asymmetric squaraine compound can help improve the solubility and the UV wavelength. The large planar π electron resonance structure of Pery-C7 has brilliant optical and electrical properties of Merit and fluorescent, hence recently Pery-C7 has been used in organic solar cell. We mix CuPc-712/Pery-C7 and SQ-700/Pery-C7, followed by building CuPc-712/SQ-700/Pery-C7 structure at a certain ratio for ternary bulk heterojunction through the spin coating process. Morphology, thickness and the photoelectric efficiency observed and measured respectively by scanning electron microscope (SEM) and solar simulator (Model: 91160A Newport). In particular, the organic solar cell of CuPc-712/SQ-700/Pery-C7 (1:1:4), η = 0.18%, Isc = 0.603 mA/cm2 and Voc = 0.70, FF = 0.43, which is the best photoelectric efficiency in this study.
URI: http://hdl.handle.net/11455/3074
其他識別: U0005-0108201214070800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0108201214070800
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.