Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30745
標題: Different susceptibility to carbofuran and chlorpyrifos in Sesamia inferens (Walker)
大螟對加保扶與陶斯松感受性差異之研究
作者: 李承享
Li, Cheng-Xiang
關鍵字: http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-2008200922415900
白穗
枯心
大螟
陶斯松
加保扶
乙醯膽鹼酯酶
出版社: 昆蟲學系所
引用: 農業委員會台灣農家要覽增修訂再版策劃委員會編著。2005。台灣農家要覽農作篇水稻害蟲。豐年社。pp. 270-284。 台灣省政府農林廳。1990。水稻蟲害。植物保護手冊。台灣省政府農林廳。pp. 31-37。 行政院農業委員會農糧署。2007。台灣糧食統計要覽。 何火樹、劉達修。1970。台中地區水稻二化螟蟲之生態研究。台灣農業季刊。6: 1-21。 何火樹、劉達修。1971。水稻二化螟蟲發蛾盛期之推定。台灣農業季刊。7:77-84 沈文凱。2008。南台灣埃及斑紋對合成除蟲菊殺蟲劑抗藥性之研究。國立中興大學昆蟲學系碩士論文。pp. 16-24。 陳哲仁、李長沛、曾東海、吳明哲。2008。稻米品質功能性標誌分析。台灣農業研究。57:317-322。 黃守宏、鄭清煥、楊秀瑛。2005。。台灣中部地區危害水稻螟蟲類之發生調查。pp.18-19。中華植物保護協會(第四十五屆)台灣昆蟲協會(第二十屆)聯合年會手冊。中華植物保護協會、台灣昆蟲學會。 劉達修。1977。二化螟蟲對水稻之為害觀察。科學發展月刊。5:185-188。 劉達修。1990。台中地區水稻螟蟲類發生與為害調查。台中區農業改良場研究彙報。29:39-47。 劉達修、王玉沙、曾阿貴。1991。水稻品種間二化螟蟲為害之感受性差異比較觀察。台中區農業改良場研究彙報。30:15-22。 鄭清煥。1995。人工飼料之篩選及二化螟蟲在人工飼料上發育之溫度需求。植物保護協會會刊。37:29-40。 鄭軒。2008。台灣二化螟對加保扶抗藥性之研究。國立中興大學昆蟲學系碩士論文。pp. 20-30。 Alon, M. F. Alon, R. Nauen, and S. Morin. 2008. Organophosphates’s resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of acrboxylesterase. Insect Mol. Biol. 38: 940-949. Alyokhin, A. V., and D. N. Ferro. 1999. Relative fitness of Colorado potato beetle (Coleoptera: Chrysomelidae) resistant and susceptible to the Bacillus thuringiensis Cry3A toxin. J. Econ. Entomol. 92: 510-515. Ayres, N.M., A. M. McClung, P. D. Larkin, H. F. Bligh, C. A. Jones, and W. D. Park. 1997. Microsatellites and a single-nucleotide polymorphism differentiate apparent amylase classes in an extended pedigree of US rice germ plasm. Theor. Appl. Genet. 94: 773-781. Badiou, A., M. T. Froment, D. Fournier, P. Masson, and L. P. Belzunces. 2008. Hysteresis of insect acetylcholinesterase. Chem. Biol. Interact. 175: 410-412. Brooke, B. D., G. Kloke, R. H. Hunt, L. L. Koekemoer, E. A. Temu, M. E. Taylor, G. Small, J. Hemingway and M. Coetzee. 2001. Bioassay and biochemiscal analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae). Bull. Entomol. Res. 91: 216-272. Byrane, F. J., and N. C. Toscano. 2001. An insensitive acetylcholinesterase confers resistance to methomyl in the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae). J. Econ. Entomol. 94: 524-528. Casida, J.E., and G. B. Quistad. 1998. Golden age insecticide research: past, present and future. Annu. Rev. Entomol. 43: 1-16. Cassanelli, S., M. Reyes, M. Rault, G. C. Manicardi, and B. Sauphanor. 2006. Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.). Insect Biochem. Mol. Biol. 36: 642-653. Chamber, J.E., and H. W. Chamber. 1989. Oxidative desulfuration of chlorpyrifos, chlorpyrifos-methyl, and leptophos by rat brain and liver. Journal of J. Biochem. Mol. Toxicol. 4: 201-203. Chi, H. 1997. Computer program for probit analysis. National Chung Hsing University. Taichung, Taiwan. Coutinho-abreu, I.V., V. Q.Balbino, J. G. Valenzuela, I. V. Sonoda, and J. M. Ramalho–ortigão. 2007. Structural characterization of acetylcholinesterase 1 from the sand fly Lutzomyiz longipalpis (Diptera: Psychodidae). J. Med. Entomol. 44: 639-650. Colletier, J.P., A. Specht, B. Sanson, F. Nachon, P. Masson, G. Zaccai, J.L. Sussman, M. Goeldner, I. Silman, D. Bourgeois,and M. Weik. 2007. Use of a ‘caged’ analog to study traffic of choline within acetylcholinesterase by kinetic crystallography. Acta Crystallogr. 63: 1115-1128. Daaboub, J., R. B. Cheikh, A. Lamari, I. B. Jha, M. Feriani, C. Boubaker, and H. B. Cheikh. 2008. Resistance to pyrethroid insecticides in Culex pipiens pipiens (Diptera: Culicidae) from Tunisia. Acta Trop. 107: 30-36. Dougherty, D. A., and D. A. Stauffer. 1990. Acetylcholine binding by a synthetic receptor: implications for biological recognition. Science. 250: 1558-1560. Ellman, G. L., K. D. Courtney, V. Andres, and R. M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95. Fan, C., Y. Xing, H. Mao, T. Lu, B. Han, C. Xu, X. Li, and Q. Zhang. 2006. GS3, amajor QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112: 1164-1171. Fang, Q., C. H. Huang, G. Y. Ye, H. W. Yao, J. A. Cheng, and Z. R. Akhtar. 2008. Differential fipronil susceptibility and metabolism in two rice stem borers from China. J. Econ. Entomol. 101: 1415-1420. ffrench-Constant, R. H., T. A. Rocheleau, J. C. Steichen, and A. E. Chalmers. 1993. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature. 363: 449-451. Frank J. B., and N. C. Toscano. 2001. An insensitive acetylcholinesterase confers resistance to methomyl in the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae). J. Econ. Entomol. 94: 524-528. Ghadamyari, M. K. Talebi, H. Mizuno, and Y. Kono. 2008. Oxydemeton-methyl resistance, mechanisms, and associated fitness cost in green peach aphids (Hemiptera: Aphididae). J. Econ. Entomol. 101:1432-1438. Grant, D. F., and B. D. Hammock. 1992. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione Stransferase-2 expression in Aedes aegypti. Mol. Genet. Genomics. 234: 169-176. Grubor, V. D. and D. G. Heckel. 2007. Evaluation of the role of CYP6B cytochrome P450s in pyrethroid resistant Australian Helicoverpa armigera. Insect Mol. Biol. 16: 15-23. Harel, M., G. Kryger, T. L. Rosenberry, W. D. Mallender, T. Lewis, R. J. Fletcher, J. M. Guss, I. Silman, and J. L. Sussman. 2000. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci. 9: 1063-1072. Hsu, J.C., D. S. Haymer, W.J. Wu, and H. T. Feng. 2006. Mutations in the acetylcholinesterase gene og Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem. Mol. Biol. 36: 396-402. Hsu, J., W. Wu, D. S. Haymer, H. Liao, and H. Feng. 2008. Alterations of he acetylcholinesterase enzyme in the oriental fruit fly Bactrocera dorsalis are correlated with resistance to the organophosphate insecticide fenitrothion. Insect Biochem. Mol. Biol. 38: 146-154. Ingles, P. J., P. M. Adams, D. C. Knipple., and D. M. Soderlund. 1996. Characterization of voltage-sensitive sodium channel gene coding sequences from insecticide-susceptible and knockdown-resistant house fly strains. Insect Biochem. Mol. Biol. 26: 319-326. Iwata, T., and H. Hama. 1972. Insensitivity of cholinesterase in Nephotettix cincticeps resistant to carbamate and organophosphorus insecticides. J. Econ. Entomol. 65: 634-545. Jiang, X., M. Qu, I. Denholm, J. Fang, W. Jiang, and Z. Han. 2009. Mutation in acetylcholinesteras1 associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera: Pyradlidae). Biochem. Biophys. Res. Commun. 378: 269-272. Johnson, J.L., J. L. Thomas, S. Emani, B. Cusack, T. L. Rosenberry. 2005. Measuring carbamoylation and decarbamoylation rate constants by continuous assay of AChE. Chem.-Biol. Interact. 157-158: 384-385. Kumar, M., G. P.Gupta, and M. V. Rajam. 2009. Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle. J. Insect Physiol. 55: 273-278. Kousba, A. A., L. G. Sulatos, T. S. Poet, and C. Timchalk. 2004. Comparison of chlorpyrifos-oxon and paraoxon acetylcholinesterase inhibition dynamics: potential role of a peripheral binding site. Toxicol. Sci. 80: 239-248. Lee, D. W., S. S. Kim, S. W. Shin, W. T. Kim, and K. S. Boo. 2006. Molecular characterization of two acetylcholinesterase genes from the oriental tobacco budworm, Helicoverpa assulta (Guenée). Biochim. Biophys. Acta. 1760: 125-133. Lee, D. W., J. Y. Choi, W. T. Kim, Y. H. Je, J. T. Song, B. K. Chung, K. S. Boo, and Y. H. Koh. 2007. Mutations of acetylcholinesterase1 contribute to prothiofos-resistance in Plutella xylostella (L.). Biochem. Biophys. Res. Commun. 353: 591-597. Mazzarri, M. B. and G. P. Georghiou. 1995. Characterization of resistance to organopjosphate, carbamate, and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. J. Am. Mosq. Control Assoc. 11: 315-322. Millar, S. N. and I. Denholm. 2007. Nciotinic acetylcholine receptors: targets fo commercially important insecticides. Invert. Neurosci. 7: 53-66. Mooser, G. and D. S. Sigman, 1974. Ligand binding properties of acetylcholinesterase determinded with fluorescent probes. Biochemistry. 13: 2299. Mourya, D. T., J. Hemingway, and C. J. Leake. 1993. Changes in enzyme titres with age in four geographical strains of Aedes aefypti and their association with insecticide resistance. Med. Vet. Entomol. 7: 11-16. Mutero, A., M. Pralavorio, J. M. Bride, and D. Fournier. 1994. Resistance-associated point mutations insecticide-insensitive acetylcholinesterase. Proc. Natl. Acad. Sci. U. S. A. 91: 5922-5926. Nakatsugawa, T., and M. A. Morelli. 1976. Microsomal oxidation and insecticide metabolism. pp: 61-114. In: C. F. Wilkinson, ed. Insecticide Biochemistry and Physiology. Plenum Press. New York. Ni, X. Y., T. Tomita, S. Kasai, and Y. Kono. 2003. cDNA and deduced protein sequence of acetylcholinesterase from the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Appl. Entomol. Zoolog. 38: 49-56. Pathak, M. D. 1975. Insect Pests of Rice. IRRI, Philippines. 68pp. Rusell, R. J., C. Claudianos, P. M. Campbell, I. Horne, T. D. Sutherland, J. G. Oakeshott. 2004. Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamte insecticides. Pest. Biochem. Physiol. 79: 84-93. Saelim, V., W. G. Brogdon, J. Rojanapremsuk, S. Suvannadabba, W. Pandii, J. W. Jones, and R. Sithiprasasna. 2005. Bottle and biochemical assays on temephos resistance in Aedes aegypti in Thailand. Southeast Asian J. Trop. Med. Public Health. 36: 417- 425. Silman, I., and J. L. Sussman. 2008. Acetylcholinesterase: How is structure related to function? Chem. Biol. Interact. 175: 3-10. Soderlund D. M. and D. C. Knipple. 2003. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem. Mol. Biol. 33: 563-577. Stojan, J., L. Brochier, C. Alies, J. P. Colletier, D. Fournier. 2004. Inhibition of Drosophila melanogaster acetylcholinesterase by high concentrations of substrate. Eur. J. Biochem. 271: 1364-1371. Sultatos, L. G. and R. Kaushik. 2008. Altered binding of thioflavin t to the peripheral anionic site of acetylcholinesterase after phosphorylation of the active site by chlorpyrifos oxon or dichlovos. Toxicol. Appl. Pharmacol. 230: 390-396. Sussman, J. L., M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, and I. Silman. 1991. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 253: 872-879. Taylor, P., and S. Lappi. 1975. Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biochemistry. 14: 1989-1997. Vais, H., M. S. Williamson, A. L. Devonshire, and P. N. Usherwood. 2001. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag. Sci. 57: 877-888. Vontas, J.G., M. J. Hejazi, N. J. Hawkes, N. Cosmidis, M. Loukas, R. W. Janes, J. Hemingway. 2002. Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Biochem. Mol. Biol. 11: 329-336. Wang, Q. M., H. l. Jiang, J. Z. Chen, K. X. Chen, and R. Y. Ji. 1998. On the possible reaction pathway for the acylation of AChE-catalyzed hydrolysis of ACh: semiempirical quantum chemical study. Int. J. Quantum Chem. 70: 515-525. Wang, Q. M., H. l. Jiang, K. X. Chen, R. Y. Ji, and Y. J. Ye. 1999. Theoretical studies on the possible reaction pathway for the decylation of the AChE-catalyzed reaction. Int. J. Quantum Chem. 74: 315-325. Williamson, M. S., I. Denholm, C. A. Bell, and A. L. Devonshire. 1993. Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica). Mol. Genet. Genomics. 240: 17-22. Zhu, K. Y., S. H. Lee, and J. M. Clark. 1996. A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colordo potato beetle. Pest. Biochem. Physiol. 55: 100-108.
摘要: Rice is the main crop of Taiwan. Although the cultivated areas of rice decreased gradually in recent years, it is still very important for rice pest control. There are three major stem borers in Taiwan which cause dead heart and white head of rice. They are Sesamia inferens (Walker) of Noctuidae, Chilo suppressalis (Walker) and Scirpophaga incertulas (Walker) of Pyralidae. During the past two years, the distribution of rice stem borers in the first and the secondary crops from Tainan, Chiayi, Changhua, Taichung, Miaoli, Hsinchu and Taoyuan of Taiwan was surveyed in our laboratory. Increase of S. inferens number in central and southern counties was observed and this situation is getting obvious over each cropping period. The lack of chemical controlling data to S. inferens had urged us to understand the susceptibility of S. inferens to insecticides used for C. suppressalis control. Chlorpyrifos, carbofuran, cartap, permethrin, and spinosad belonging to three modes of action were evaluated. The results showed that S. inferens in Chiayi has developed 17-fold resistance against spinosad. Although there was no significant difference in susceptibility among S. inferens populations to other tested insecticides, differential susceptibilities of chlorpyrifos and carbofuran were observed in S. inferens and C. suppressalis which share the same habitat. Carbofuran, which had lost its activity on the C. suppressalis of Changhua and Chiayi, still possessed more than 1000-fold activity on all tested populations of S. inferens. On the contrary, chlorpyrifos which was highly toxic to C. suppressalis took much higher dosage (200~600-fold) to control S. inferens. The enzyme kinetic assays of S. inferens and C. suppressalis acetylcholinesterases (AChE) showed that an increasing in Km of S. inferens AChE and variations in inhibition patterns of carbofuran and chlorpyrifos oxon on S. inferens and C. suppressalis AChE might result in differential susceptibilities of both stem borers to chlorpyrifos and carbofuran.
水稻是台灣最主要的糧食作物,雖然近年來的耕種面積逐漸減少,但是防治水稻害蟲仍然相當重要。在台灣會造成水稻枯心或是白穗的蛀心蟲主要有三種,分別為屬於夜蛾科的大螟(Sesamia inferens (Walker)),以及屬於螟蛾科的二化螟(Chilo suppressalis (Walker))和三化螟(Scirpophaga incertulas (Walker))。根據本實驗室近兩年來,由南往北對台南、嘉義、彰化、台中、苗栗、新竹、桃園等地之一、二期水稻進行採集調查的結果發現,大螟在中南部地區發生數量增加,有日趨嚴重的現象。由於目前在水稻針對大螟的防治資料並不多,因此本實驗是以陶斯松、加保扶、培丹、百滅寧、賜諾殺等三種不同作用機制的五種常用藥劑,對各地區的大螟進行藥劑測試,以瞭解大螟目前對常用藥劑的感受性。結果顯示,除了嘉義地區大螟對於賜諾殺有較高的抗性比之外,其他各地區大螟對藥劑的感受性差異並不多。然而在比較相同地區大螟及二化螟對藥劑的感受性時,發現二者對陶斯松與加保扶的感受性不同。加保扶對彰化、嘉義的二化螟幾乎沒有防治效果,對大螟仍然有效。對二化螟的防治效果極佳的陶斯松,對大螟卻需要較高的劑量。進一步檢測大螟與二化螟的乙醯膽鹼酯酶,以及加保扶與陶斯松對這兩種水稻蛀心蟲的乙醯膽鹼酯酶之抑制形式發現,大螟乙醯膽鹼酯酶對碘化硫代乙醯膽鹼有較高的Km。除此之外,陶斯松與加保扶對這兩種水稻蛀心蟲乙醯膽鹼酯酶的抑制方式,也顯示出不同抑制模式。Km的差異與不同的抑制方式可能是造成這兩種水稻蛀心蟲對陶斯松和加保扶的感受性不一樣的原因。
URI: http://hdl.handle.net/11455/30745
其他識別: U0005-2008200922415900
Appears in Collections:昆蟲學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.