Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorYen, Pei-Xien_US
dc.identifier.citationAdelman, Z.N., Jasinskiene, N., Vally, K.J.M., Peek, C., Travanty, E.A., Olson, K.E., Brown, S.E., Stephens, J.L., Knudson, D.L., Coates, C.J., and James, A.A. (2004). Formation and loss of large, unstable tandem arrays of the piggyBac transposable element in the yellow fever mosquito, Aedes aegypti. Transgenic Res 13, 411-425. Atkinson, P.W., Warren, W.D., and O''Brochta, D.A. (1993). The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc Natl Acad Sci U S A 90, 9693-9697. Balu, B., Chauhan, C., Maher, S.P., Shoue, D.A., Kissinger, J.C., Fraser, M.J., and Adams, J.H. (2009). piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome. Bmc Microbiol 9, Doi 10.1186/1471-2180-9-83. Berghman, L., Darras, V.M., Huybrechts, L.M., Decuypere, E., Vandesande, F., and Kuhn, E.R. (1989). Evidence for chicken GH as the only hypophyseal factor responsible for the stimulation of hepatic 5''-monodeiodination activity in the chick embryo. Reprod Nutr Dev 29, 197-202. Best, C.H., and Scott, D.A. (1923). The preparation of insulin. J Biol Chem 57, 709-723. Bingham, P.M., Kidwell, M.G., and Rubin, G.M. (1982). The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell 29, 995-1004. Brennan, M.D., Rowan, R.G., and Dickinson, W.J. (1984). Introduction of a functional P element into the germ-line of Drosophila hawaiiensis. Cell 38, 147-151. Buckholz, R.G., and Gleeson, M.A. (1991). Yeast systems for the commercial production of heterologous proteins. Biotechnology (N Y) 9, 1067-1072. Cadinanos, J., and Bradley, A. (2007). Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 35, Doi 10.1093/nar/gkm446. Cary, L.C., Goebel, M., Corsaro, B.G., Wang, H.G., Rosen, E., and Fraser, M.J. (1989). Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172, 156-169. Caspari, E., and Nawa, S. (1965). A method to demonstrate transformation in Ephestia. Z Naturforsch 206, 281-284. Catteruccia, F., Benton, J.P., and Crisanti, A. (2005). An Anopheles transgenic sexing strain for vector control. Nat Biotechnol 23, 1414-1417. Catteruccia, F., Godfray, H.C., and Crisanti, A. (2003). Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 299, 1225-1227. Catteruccia, F., Nolan, T., Blass, C., Muller, H.M., Crisanti, A., Kafatos, F.C., and Loukeris, T.G. (2000). Toward Anopheles transformation: Minos element activity in anopheline cells and embryos. Proc Natl Acad Sci U S A 97, 2157-2162. Chen, S.L., Chang, C., Hwang, S.Y., and Lu, K.H. (2010). Germline transformation of the Oriental fruit fly Bactrocera dorsalis (Hendel) using a piggyBac-derived vector. Formosan Entomol 30, 27-40. Coates, C.J., Jasinskiene, N., Miyashiro, L., and James, A.A. (1998). Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 95, 3748-3751. Condon, K.C., Condon, G.C., Dafa''alla, T.H., Forrester, O.T., Phillips, C.E., Scaife, S., and Alphey, L. (2007). Germ-line transformation of the Mexican fruit fly. Insect Mol Biol 16, 573-580. Cuesta, R., Laroia, G., and Schneider, R.J. (2000). Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev 14, 1460-1470. Dai, H., Ma, L., Wang, J., Jiang, R., Wang, Z., and Fei, J. (2008). Knockdown of ecdysis-triggering hormone gene with a binary UAS/GAL4 RNA interference system leads to lethal ecdysis deficiency in silkworm. Acta Biochim Biophys Sin (Shanghai) 40, 790-795. Damasceno, J.D., Beverley, S.M., and Tosi, L.R.O. (2010). A transposon toolkit for gene transfer and mutagenesis in protozoan parasites. Genetica 138, 301-311. Demain, A.L., and Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27, 297-306. Dyck, M.K., Lacroix, D., Pothier, F., and Sirard, M.A. (2003). Making recombinant proteins in animals--different systems, different applications. Trends Biotechnol 21, 394-399. Elick, T.A., Lobo, N., and Fraser, M.J., Jr. (1997). Analysis of the cis-acting DNA elements required for piggyBac transposable element excision. Mol Gen Genet 255, 605-610. Falk, T., Strazdas, L.A., Borders, R.S., Kilani, R.K., Yool, A.J., and Sherman, S.J. (2001). A herpes simplex viral vector expressing green fluorescent protein can be used to visualize morphological changes in high-density neuronal culture. Electron J Biotechnol 4, 20-21. Ferguson, H.J., Neven, L.G., Thibault, S.T., Mohammed, A., and Fraser, M. (2011). Genetic transformation of the codling moth, Cydia pomonella L., with piggyBac EGFP. Transgenic Res 20, 201-214. Fox, A.S., Duggleby, W.F., Gelbart, W.M., and Yoon, S.B. (1970). DNA-induced transformation in Drosophila: evidence for transmission without integration. Proc Natl Acad Sci U S A 67, 1834-1838. Franz, A.W.E., Sanchez-Vargas, I., Adelman, Z.N., Blair, C.D., Beaty, B.J., James, A.A., and Olson, K.E. (2006). Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. P Natl Acad Sci USA 103, 4198-4203. Garcia-Casado, G., Sanchez-Monge, R., Chrispeels, M.J., Armentia, A., Salcedo, G., and Gomez, L. (1996). Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins. Glycobiology 6, 471-477. Ghaderi, D., Taylor, R.E., Padler-Karavani, V., Diaz, S., and Varki, A. (2010). Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28, 863-867. Handler, A.M. (2002). Use of the piggyBac transposon for germ-line transformation of insects. Insect Biochem Mol Biol 32, 1211-1220. Handler, A.M., and Harrell, R.A., 2nd (2001). Transformation of the Caribbean fruit fly, Anastrepha suspensa, with a piggyBac vector marked with polyubiquitin-regulated GFP. Insect Biochem Mol Biol 31, 199-205. Handler, A.M., and McCombs, S.D. (2000). The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome. Insect Mol Biol 9, 605-612. Handler, A.M., McCombs, S.D., Fraser, M.J., and Saul, S.H. (1998). The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc Natl Acad Sci U S A 95, 7520-7525. Harrison, R.L., and Jarvis, D.L. (2006). Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce "mammalianized" recombinant glycoproteins. Adv Virus Res 68, 159-191. Harvey, S., Johnson, C.D., and Sanders, E.J. (2001). Growth hormone in neural tissues of the chick embryo. J Endocrinol 169, 487-498. Hatakeyama, M., and Sumitani, M. (2005). Preservation of a transgenic strain of the sawfly, Athalia rosae (Hymenoptera) by artificial fertilization using cryopreserved sperm. Insect Mol Biol 14, 105-109. Hazelrigg, T., Levis, R., and Rubin, G.M. (1984). Transformation of white locus DNA in drosophila: dosage compensation, zeste interaction, and position effects. Cell 36, 469-481. Hedlund, M., Padler-Karavani, V., Varki, N.M., and Varki, A. (2008). Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc Natl Acad Sci U S A 105, 18936-18941. Hooker, A.D., Green, N.H., Baines, A.J., Bull, A.T., Jenkins, N., Strange, P.G., and James, D.C. (1999). Constraints on the transport and glycosylation of recombinant IFN-gamma in Chinese hamster ovary and insect cells. Biotechnol Bioeng 63, 559-572. Houdebine, L.M. (2009). Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32, 107-121. Imamura, M., Nakahara, Y., Kanda, T., Tamura, T., and Taniai, K. (2006). A transgenic silkworm expressing the immune-inducible cecropin B-GFP reporter gene. Insect Biochem Molec 36, 429-434. Ito, J., Ghosh, A., Moreira, L.A., Wimmer, E.A., and Jacobs-Lorena, M. (2002). Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417, 452-455. Jasinskiene, N., Coates, C.J., Benedict, M.Q., Cornel, A.J., Rafferty, C.S., James, A.A., and Collins, F.H. (1998). Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci U S A 95, 3743-3747. Jenkins, N., and Curling, E.M. (1994). Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb Technol 16, 354-364. Jinwal, U.K., Zakharkin, S.O., Litvinova, O.V., Jain, S., and Benes, H. (2006). Sex-, stage- and tissue-specific regulation by a mosquito hexamerin promoter. Insect Mol Biol 15, 301-311. Kahlig, K.M., Saridey, S.K., Kaja, A., Daniels, M.A., George, A.L., Jr., and Wilson, M.H. (2010). Multiplexed transposon-mediated stable gene transfer in human cells. Proc Natl Acad Sci U S A 107, 1343-1348. Kalosaka, K., Chrysanthis, G., Rojas-Gill, A.P., Theodoraki, M., Gourzi, P., Kyriakopoulos, A., Tatari, M., Zacharopoulou, A., and Mintzas, A.C. (2006). Evaluation of the activities of the medfly and Drosophila hsp70 promoters in vivo in germ-line transformed medflies. Insect Mol Biol 15, 373-382. Knipling, E.F. (1955). Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol 48, 459-462. Kurihara, H., Sezutsu, H., Tamura, T., and Yamada, K. (2007). Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem Biophys Res Commun 355, 976-980. Kuwayama, H., Yaginuma, T., Yamashita, O., and Niimi, T. (2006). Germ-line transformation and RNAi of the ladybird beetle, Harmonia axyridis. Insect Mol Biol 15, 507-512. Lamb, I.C., Galehouse, D.M., and Foster, D.N. (1988). Chicken growth hormone cDNA sequence. Nucleic Acids Res 16, 9339. Larrick, J.W., and Thomas, D.W. (2001). Producing proteins in transgenic plants and animals. Curr Opin Biotechnol 12, 411-418. Lavoie, J.N., Gingras-Breton, G., Tanguay, R.M., and Landry, J. (1993). Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J Biol Chem 268, 3420-3429. Leaman, D., Chen, P.Y., Fak, J., Yalcin, A., Pearce, M., Unnerstall, U., Marks, D.S., Sander, C., Tuschl, T., and Gaul, U. (2005). Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121, 1097-1108. Lee, H.S., Simon, J.A., and Lis, J.T. (1988). Structure and expression of ubiquitin genes of Drosophila melanogaster. Mol Cell Biol 8, 4727-4735. Lengyel, J.A., and Graham, M.L. (1984). Transcription, export and turnover of Hsp70 and alpha beta, two Drosophila heat shock genes sharing a 400 nucleotide 5'' upstream region. Nucleic Acids Res 12, 5719-5735. Li, X., Harrell, R.A., Handler, A.M., Beam, T., Hennessy, K., and Fraser, M.J. (2005). piggyBac internal sequences are necessary for efficient transformation of target genomes. Insect Mol Biol 14, 17-30. Li, X., Heinrich, J.C., and Scott, M.J. (2001a). piggyBac-mediated transposition in Drosophila melanogaster: an evaluation of the use of constitutive promoters to control transposase gene expression. Insect Mol Biol 10, 447-455. Li, X., Lobo, N., Bauser, C.A., and Fraser, M.J., Jr. (2001b). The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggyBac. Mol Genet Genomics 266, 190-198. Lindquist, S. (1984). Heat shock--a comparison of Drosophila and yeast. J Embryol Exp Morphol 83 Suppl, 147-161. Liu, H.S., Jan, M.S., Chou, C.K., Chen, P.H., and Ke, N.J. (1999). Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260, 712-717. Liu, T., Zhang, Y.Z., and Wu, X.F. (2005). High level expression of functionally active human lactoferrin in silkworm larvae. J Biotechnol 118, 246-256. Lorenzen, M.D., Berghammer, A.J., Brown, S.J., Denell, R.E., Klingler, M., and Beeman, R.W. (2003). piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol Biol 12, 433-440. Loukeris, T.G., Arca, B., Livadaras, I., Dialektaki, G., and Savakis, C. (1995). Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc Natl Acad Sci U S A 92, 9485-9489. Lukacsovich, T., Hamada, N., Miyazaki, S., Kimpara, A., and Yamamoto, D. (2008). A new versatile gene-trap vector for insect transgenics. Arch Insect Biochem Physiol 69, 168-175. Lycett, G.J., Kafatos, F.C., and Loukeris, T.G. (2004). Conditional expression in the malaria mosquito Anopheles stephensi with Tet-On and Tet-Off systems. Genetics 167, 1781-1790. Marcus, J.M., Ramos, D.M., and Monteiro, A. (2004). Germline transformation of the butterfly Bicyclus anynana. P Roy Soc Lond B Bio 271, S263-S265. Markaki, M., Drabek, D., Livadaras, I., Craig, R.K., Grosveld, F., and Savakis, C. (2007). Stable expression of human growth hormone over 50 generations in transgenic insect larvae. Transgenic Res 16, 99-107. Marrelli, M.T., Moreira, C.K., Kelly, D., Alphey, L., and Jacobs-Lorena, M. (2006). Mosquito transgenesis: what is the fitness cost? Trends Parasitol 22, 197-202. Mathi, S.K., Walker, V.K., and Wyatt, G.R. (1991). Expression from two Drosophila promoters in embryos of the migratory locust. Insect Biochemistry 21, 623-629. McInnis, D.O., Haymer, D.S., Tam, S.Y.T., and Thanaphum, S. (1990). Ceratitis capitata (Diptera: Tephritidae): Transient expression of a heterologous gene for resistance to the antibiotic geneticin. Ann Entomol Soc Am 83, 982-986. Michel, K., Stamenova, A., Pinkerton, A.C., Franz, G., Robinson, A.S., Gariou-Papalexiou, A., Zacharopoulou, A., O''Brochta, D.A., and Atkinson, P.W. (2001). Hermes-mediated germ-line transformation of the Mediterranean fruit fly Ceratitis capitata. Insect Mol Biol 10, 155-162. Miller, L.H., Sakai, R.K., Romans, P., Gwadz, R.W., Kantoff, P., and Coon, H.G. (1987). Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science 237, 779-781. Mitra, R., Fain-Thornton, J., and Craig, N.L. (2008). piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J 27, 1097-1109. Morimoto, R.I. (1998). Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12, 3788-3796. Morris, A.C., Eggleston, P., and Crampton, J.M. (1989). Genetic transformation of the mosquito Aedes aegypti by micro-injection of DNA. Med Vet Entomol 3, 1-7. Moseley, P.L. (1997). Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol 83, 1413-1417. Moto, K., Abdel Salam, S.E., Sakurai, S., and Iwami, M. (1999). Gene transfer into insect brain and cell-specific expression of bombyxin gene. Dev Genes Evol 209, 447-450. Nairz, K., Rottig, C., Rintelen, F., Zdobnov, E., Moser, M., and Hafen, E. (2006). Overgrowth caused by misexpression of a microRNA with dispensable wild-type function. Dev Biol 291, 314-324. Nakanishi, H., Higuchi, Y., Kawakami, S., Yamashita, F., and Hashida, M. (2010). piggyBac transposon-mediated long-term gene expression in mice. Mol Ther 18, 707-714. O''Hare, K., and Rubin, G.M. (1983). Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34, 25-35. Ogawa, S., Tomita, M., Shimizu, K., and Yoshizato, K. (2007). Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. J Biotechnol 128, 531-544. Okada, T., Ihara, H., Ito, R., Nakano, M., Matsumoto, K., Yamaguchi, Y., Taniguchi, N., and Ikeda, Y. (2010). N-Glycosylation engineering of lepidopteran insect cells by the introduction of the beta1,4-N-acetylglucosaminyltransferase III gene. Glycobiology 20, 1147-1159. Pandey, A., Selvakumar, P., Soccol, C.R., and Nigam, P. (1999). Solid state fermentation for the production of industrial enzymes. Curr Sci 77, 149-162. Pauli, D., Arrigo, A.P., and Tissieres, A. (1992). Heat shock response in Drosophila. Experientia 48, 623-629. Pinkerton, A.C., Whyard, S., Mende, H.A., Coates, C.J., O''Brochta, D.A., and Atkinson, P.W. (1999). The Queensland fruit fly, Bactrocera tryoni, contains multiple members of the hAT family of transposable elements. Insect Mol Biol 8, 423-434. Raben, M.S. (1958). Treatment of a pituitary dwarf with human growth hormone. J Clin Endocrinol Metab 18, 901-903. Reichelt, P., Schwarz, C., and Donzeau, M. (2006). Single step protocol to purify recombinant proteins with low endotoxin contents. Protein Expr Purif 46, 483-488. Rice, P.A., and Baker, T.A. (2001). Comparative architecture of transposase and integrase complexes. Nat Struct Biol 8, 302-307. Rio, D.C., and Rubin, G.M. (1988). Identification and purification of a Drosophila protein that binds to the terminal 31-base-pair inverted repeats of the P transposable element. Proc Natl Acad Sci U S A 85, 8929-8933. Rubin, G.M., and Spradling, A.C. (1982). Genetic transformation of Drosophila with transposable element vectors. Science 218, 348-353. Sarkar, A., Atapattu, A., Belikoff, E.J., Heinrich, J.C., Li, X., Horn, C., Wimmer, E.A., and Scott, M.J. (2006). Insulated piggyBac vectors for insect transgenesis. BMC Biotechnol 6, Doi 10.1186/1472-6750-6-27. Scavarda, N.J., and Hartl, D.L. (1984). Interspecific DNA transformation in Drosophila. Proc Natl Acad Sci U S A 81, 7515-7519. Shinmyo, Y., Mito, T., Matsushita, T., Sarashina, I., Miyawaki, K., Ohuchi, H., and Noji, S. (2004). piggyBac-mediated somatic transformation of the two-spotted cricket, Gryllus bimaculatus. Dev Growth Differ 46, 343-349. Stollar, V., Stollar, B.D., Koo, R., Harrap, K.A., and Schlesinger, R.W. (1976). Sialic acid contents of sindbis virus from vertebrate and mosquito cells. Equivalence of biological and immunological viral properties. Virology 69, 104-115. Sumathy, S., Palhan, V.B., and Gopinathan, K.P. (1996). Expression of human growth hormone in silkworm larvae through recombinant Bombyx mori nuclear polyhedrosis virus. Protein Expr Purif 7, 262-268. Sumitani, M., Yamamoto, D.S., Oishi, K., Lee, J.M., and Hatakeyama, M. (2003). Germline transformation of the sawfly, Athalia rosae (Hymenoptera: Symphyta), mediated by a piggyBac-derived vector. Insect Biochem Mol Biol 33, 449-458. Suzuki, T., Kanaya, T., Okazaki, H., Ogawa, K., Usami, A., Watanabe, H., Kadono-Okuda, K., Yamakawa, M., Sato, H., Mori, H., Takahashi, S., and Oda, K. (1997). Efficient protein production using a Bombyx mori nuclear polyhedrosis virus lacking the cysteine proteinase gene. J Gen Virol 78 ( Pt 12), 3073-3080. Tan, A., Tanaka, H., Tamura, T., and Shiotsuki, T. (2005). Precocious metamorphosis in transgenic silkworms overexpressing juvenile hormone esterase. Proc Natl Acad Sci U S A 102, 11751-11756. Terenius, O., Marinotti, O., Sieglaff, D., and James, A.A. (2008). Molecular genetic manipulation of vector mosquitoes. Cell Host Microbe 4, 417-423. Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72, 211-222. Thomas, D.D., Donnelly, C.A., Wood, R.J., and Alphey, L.S. (2000). Insect population control using a dominant, repressible, lethal genetic system. Science 287, 2474-2476. Tomita, M., Munetsuna, H., Sato, T., Adachi, T., Hino, R., Hayashi, M., Shimizu, K., Nakamura, N., Tamura, T., and Yoshizato, K. (2003). Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21, 52-56. Tomiya, N., Narang, S., Lee, Y.C., and Betenbaugh, M.J. (2004). Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconjugate J 21, 343-360. Uchino, K., Sezutsu, H., Imamura, M., Kobayashi, I., Tatematsu, K., Iizuka, T., Yonemura, N., Mita, K., and Tamura, T. (2008). Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori. Insect Biochem Mol Biol 38, 1165-1173. Uemori, T., Ishino, Y., and Kato, I. (2002) "DNA polymerase", 6395526. Vasilatos-Younken, R., Zhou, Y., Wang, X., McMurtry, J.P., Rosebrough, R.W., Decuypere, E., Buys, N., Darras, V.M., Van Der Geyten, S., and Tomas, F. (2000). Altered chicken thyroid hormone metabolism with chronic GH enhancement in vivo: consequences for skeletal muscle growth. J Endocrinol 166, 609-620. Vazquez, J., Pauli, D., and Tissieres, A. (1993). Transcriptional regulation in Drosophila during heat shock: a nuclear run-on analysis. Chromosoma 102, 233-248. Venken, K.J., and Bellen, H.J. (2007). Transgenesis upgrades for Drosophila melanogaster. Development 134, 3571-3584. Walker, J.M., and Rapley, R. (2009). Molecular biology and biotechnology (Cambridge, Springer Verlag). Warren, W.D., Atkinson, P.W., and O''Brochta, D.A. (1994). The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genet Res 64, 87-97. Weis, J.H., and Salstrom, J.S. (1987) "Production of reverse transcriptase", 4663290. Wen, H., Lan, X., Zhang, Y., Zhao, T., Wang, Y., Kajiura, Z., and Nakagaki, M. (2010). Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37, 1815-1821. Wimmer, E.A. (2003). Innovations: applications of insect transgenesis. Nat Rev Genet 4, 225-232. Wurtele, H., Little, K.C., and Chartrand, P. (2003). Illegitimate DNA integration in mammalian cells. Gene Ther 10, 1791-1799. Yang, J., and Tower, J. (2009). Expression of hsp22 and hsp70 transgenes is partially predictive of drosophila survival under normal and stress conditions. J Gerontol A Biol Sci Med Sci 64, 828-838. Yoshida, S., and Watanabe, H. (2006). Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito. Insect Mol Biol 15, 403-410. Yost, H.J., and Lindquist, S. (1986). RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45, 185-193.en_US
dc.description.abstractIn this study, the transposon, piggyBac, was used as the transgenic vector, to transform the oriental fruit fly Bactrocera dorsalis (Hendel). The target protein, recombinant chicken growth hormone (cGH), is under the control of Drosophila melanogaster heat shock protein 70 (hsp70) promoter. Total of 1,861 embryos were microinjected, and finally one G0 male was obtained with DsRed (reporter gene) expressing in the G1 progeny, resulting a transformation efficiency of 4 %. The piggyBac-mediated integration was confirmed by Southern blotting and inverse PCR analysis. At least four copies of transgenic expression cassettes were integrated into the transformed B. dorsalis genome, and the results of inverse PCR further revealed that three of four expression cassettes were integrated on the non-coding sequences. Moreover, the cGH expression was further detected by RT-PCR and Western blotting analysis. The results of RT-PCR revealed the tight regulatory of hsp70 promoter expression. The RNA expression of cGH as detected at 2-, 12-, 24-, 36-, and 48-h after heat shock induction at both 35 and 37oC, while the protein was only detected at 48 h. The differences in expression profiles between protein and mRNA might be cause by heat shock response that blocks Cap-polyA dependent translation.en_US
dc.description.tableofcontents中文摘要 i English abstract v Introduction - 1 - Literature Review - 4 - Protein production by different biological systems - 4 - The P element and insect transgenesis - 6 - The piggyBac transposon - 8 - Applications of insect transgenesis - 10 - Chicken growth hormone - 13 - Materials and Methods - 14 - Experimental insects - 14 - Vector construction for transgenesis - 14 - Embryonic microinjection - 16 - Generation of transgenic fruit fly - 17 - DNA isolation - 18 - RNA isolation - 18 - Reverse transcription-polymerase chain reaction (RT-PCR) - 19 - Western blotting - 20 - Induction of chicken growth hormone expression - 22 - Inverse PCR - 22 - Southern blotting - 23 - Results - 25 - Generation of transgenic oriental fruit fly for the chicken growth hormone expression - 25 - Southern blot and inverse PCR analysis of transgenic fruit fly strain… - 25 - Expression of recombinant chicken growth hormone in Bactrocera dorsalis larvae - 26 - Discussion - 26 - References - 31 - Table - 47 - Figures - 48 - Appendices - 57 -zh_TW
dc.titleProduction of chicken growth hormone in the oriental fruit fly Bactrocera dorsalis (Hendel)en_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:昆蟲學系


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.