Please use this identifier to cite or link to this item:
標題: 番茄萎凋病之生物防治菌的鑑定與防病潛力評估
Identification for biocontrol agents of tomato Fusarium wilt andevaluation for their potential biocontrol ability.
作者: 丁姵分
Ding, Pen-Fen
關鍵字: tomato
Fusarium oxysporum f. sp. lycopersici
出版社: 植物病理學系所
引用: 王詩雯. 2002. 拮抗性桿菌屬(Bacillus spp.)於水稻白葉枯病防治之應用及其作用機制. 國立中興大學植物病理學系碩士論文. 81 pp。 台灣農家便覽. 1944. 農作物病害. 臺灣總督府農業試驗所. 1109pp。 行政院農委會. 2006. 94年農業統計年報. 行政院農委會出版. 355 pp。 李雅惠. 2002. 拮抗性桿菌屬(Bacillus spp.)之分離、培養與抗生活性之改進以及病害防治之應用. 國立中興大學植物病理學系碩士論文. 79 pp。 倪蕙芳. 1992. 枯草桿菌Bacillus subtilis PB-113菌株所產生抗生物質之理化與生物特性研究. 國立中興大學植物病理學系碩士論文. 91 pp。 孫守恭、黃振文. 1996. 臺灣植物鎌胞菌病害. 世維出版社. 170 pp。 陳正次. 1995. 蕃茄. p.326-337. 台灣農家要覽:農作篇(二). 農業委員會台灣農家要覽增修訂再版策劃委員會編. 財團法人豐年社出版. 698 pp。 黃久菱. 2005. 萵苣萎凋病的生理小種鑑定與防治試驗. 國立中興大學植物病理學系碩士論文. 57 pp。 黃振文、孫守恭. 1982. 台灣番茄萎凋病. 植保會刊. 24:265-270。 黃振文、孫守恭. 1998. 植物病害彩色圖鑑. 世維出版社. 160 pp。 蕭芳蘭. 1993.番茄萎凋病抑病介質的開發與應用. 國立中興大學植物病理學系碩士論文. 67 pp。 謝廷方、黃振文、張志展、彭玉湘. 2001. 碳氮源影響拮抗細菌抗細菌防治百合灰黴病的效應. 植病會刊. 10:79-87。 Alexander, L.J., and Tucker, C. M. 1945. Physiological specialization in the tomato wilt fungus Fusarium oxysporum f. sp. lycopercisi. J. Agric. Res. 70:330-313. Arias, R. S., Sagardoy, M. A., and van Vuurde, J. W. L. 1999. Spatiotemporal distribution of naturally occurring Bacillus spp. and other bacteria on the phylloplane of soybean under field conditions. J. Basic Microbiol. 39:283-292. Baker, K. F., and Cook, R. J. 1974. Biological control of plant pathogens. W. H. Freeman Press, San Francisco. 433pp. Bapat, S. and Shan, A. K. 2000. Biological control of fusarial wilt of pigeon pea by Bacillus brevis. Can. J. Microbiol. 46:125-132. Bargabus, R. L., Zidack, N. K., Sherwood, J. W., and Tacobsen, B. J. 2002. Characterization of systemic resistance in sugar beet elictied by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol. Mol. Plant Pathol. 61:289-298. Bargabus, R. L., Zidack, N. K., Sherwood, J. W., and Tacobsen, B. J. 2004. Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Bio. Control 30:342-350. Chang, Y. H., Shangkuan, T. H., Lin, H. C. and Liu, H. W. 2003. PCR assay of the groEL gene for detection and differentiation of Bacillus cereus group cell. Appl. Environ. Microbiol. 69:4502-4510. Cherif,A., Borin, S., Rizzi,A., Ouzari, H., Boudabous, A. and Daffonchio1, D . 2003. Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S-23S ribosomal DNA intergenic transcribed spacers containing tRNA genes. Appl. Environ. Microbiol. 69:33-40. Claus, D. and Berkeley, R.C.W. 1996. Genus Bacillus. p. 1105-1139. In : Bergey''s Manual of Systematic Bacteriology (Sneath, P.H.A., Mair, N.A., Sharpe, M.E. and Holt, J.G., Eds.),. Williams and Wilkins, Baltimore, MD. Daffonchio, D., Borin, S., Giuseppe, F., Romina, G., Mori, E., Fani, R., and Sorlini, C. 1998. A randomly amplified polymorphic DNA marker specific for the Bacillus cereus group is diagnostic for Bacillus anthracis. Appl. Environ. Microbiol. 65:1289-1303. Driks, A. 2004. The Bacillus spore coat. Phytopathology 94:1249-1251. Drobniewski, F. A. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6:324–338. Elizabeth, A.B.E., and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-)positive perspective. FEMS Microbiol. Lett. 171:1-9. Faria da mota, F., Nobrega, A., Marriel, I. E., Paiva, E., and Seldin, L. 2002. Genetic diversity of Paenibacillus polymyxa populations isolated from the rhizosphere of four cultivars of maize(Zea mays)planted in Cerrado soil. Appl. Soil Ecol. 20:119-132. Farrow, A. C., Dorsch, J.A.E., M., Stackebrandt, E., Collins, M.D., 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41, 343– 346. Franco, C. D., Beccari, E., Santini, T., Pisaneschi, G., and Tecce, G. 2002. Colony shape as a genetic trait in the pattern-forming Bacillus mycoides. BMC Microbiol. 2:33. Fritze, D. 2004. Taxonomy of the genus Bacillus and related genera:the aerobic endospore-forming bacteria. Phytopathology 94:1245-1248. Garbeva, P., van Veen, J. A., and van Elsas, J. D. 2003. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbiol. Ecol. 45:302-316. Gardener, B. B. M. 2004. Ecology of Bacillus and Paenibacillus spp. in adricultural systems. Phytopathology 94:1252-1258. Gardener, B. B. M., and Driks, D. 2004. Overview of the nature and application of biocontrol microbes:Bacillus spp. Phytopathology 94:1244. Garrett, S. D. 1965. Towards biological control of soil-borne plant pathogens. 571p. In:Ecology of Soil-borne Plant Pathogens. Univ. Cali. Press, Berkeley. Gerdeamann, J.W., and Finley, A.M. 1951. The pathogencity of race 1 and 2 of Fusarium oxysporum f. sp. lycopercisi. Phytopathology 41:238-244 Glick, B. R. and Bashan, Y. 1997. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 15:353-378. Granum, P.E. 1997. Bacillus cereus. p327-336. In: Food Microbiology, Fundamentals and Frontiers (Doyle, M.P., Beuchat, L.R. and Montville, T.J. Eds.), ASM Press, Washington, DC. Grattidge, R., and Obrien, R.G. 1982. Occurrence of a third race of Fusarium wilt of tomato in Queensland. Plant Dis. 66:165-166. Grossman, A. D. and Losick, R. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. 85:4369-4373. Guestsky, R., Shtienberg, D., Elad, Y., and Dinoor, A. 2001. Combining biocontrol agents to reduce the virility of biological control. Phytopathology 91:621-627. Hallman, J., Quadt-Hallman, A., Mahafee, W. F., and Kloepper, J. W. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43:895-914. Halverson, L. J., Clayton, M. K., and Handelsman, J. 1993. Population biology of Bacillus cereus UW85 in the rhizosphere of field-grown soybeans. Soil Biol. Biochem. 25:485-493. Hejad, P. and Johnson, P. A. 2000. Endophytic bacteria induce growth promotin and wilt disease suppression in oilseed rape and tomato. Bio. Control 18:208-215. Jackson, S. G., R. B. Goodbrand, R. Ahmed, and S. Kasatiya. 1995. Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett. Appl. Microbiol. 21:103–105. Jacobsen, B. J., Zidack, N. K., and Larson, B. J. 2004. The role of Bacillus-based biological control agents in integrated pest management systems:Plant diseases. Phytopathology 94:1272-1275. Jones, J. P., Jones, J. B., and Miller, J.W. 1982. Fusarium wilt of tomato.Annu. Rep. Agric.Educ. Cent.Univ. Fla., Bradenton. Kloepper, J. W., Ryu, C. M., and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. Larkin, R. P. and Fravel, D. R. 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium Wilt of tomato. Plant Dis. 82:1022-1028. Manzano, M., Cocolin ,L., Cantoni C., and Comi,G. 2003. Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides differentiation using a PCR-RE technique. Intern. J. Food Microbiol. 81:249– 254 Mayr, R., I. Eppert, and S. Scherer. 1999. Incidence and identification of psychrotrophic (7 °C-tolerant) Bacillus spp. in German HTST pasteurized milk. Milchwissenschaft 54:26–30. Petersen, D. J., M. Shishido, F. B. Holl, and C. P. Chanway. 1995. Use of species- and strain-specific PCR primers for identification of conifer root associated Bacillus spp. FEMS Microbiol. Lett. 133:71–76. Russell, P. E. 1995. Fungicide resistance: occurrence and management. J. Sci.124, 317-323. Schisler, D. A., Slininger, P. J., Behle, R. W., and Jackson, M. A. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267-1271. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775–806. Seldin, L., Soares Rosado, A., da Cruz, D. W., Nobrega A., van Elsas, J. D., and Paiva, E. 1998. Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere and non-root-associated soil from maize planted in two different Brazilian soils. Appl. Environ. Microbiol. 64:3860-3868. Swofford, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony(* and other methods). Version 4. Sinauer Associates, Sunderland, MA. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. 1997. The Clusral X windows interface:Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. Turnbull, P. C., Hutson, R. A., Ward, M. J., Jones, M. N., Quinn, C. P., Finnie, N. J., Duggleby, C. J., Kramer, J. M., and Melling, J. 1992. Bacillus anthracis but not always anthrax. J. Appl. Bacteriol. 72:21–28. Vargas-Ayala, R., Rogriguez-Kaban, R., Morgan-Jones, G., McInroy, J. A., and Kloepper, J. W. 2000. Shifts in soil microflora induced by velvetbean(Mucuna deeringiana)in cropping systems to control root-knot nematodes. Bio. Control. 17:11-22. Whipps. J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487-511. Wintzingerode,F. V., Rainey, F. A., Kroppenstedt, R. M. and Stackebrandt, E. 1997. Identification of environmental strains of Bacillus mycoides by fatty acid analysis and species-specific 16S rDNA oligonucleotide probe. FEMS Microbiol. Ecol. 24:201-209 Yamada, S., Ohashi, E., Agata, N., Venkateswaran, K., 1999. Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice. Appl. Environ. Microbiol. 65:1483– 1490.
摘要: Fusarium oxysporum f. sp. lycopersici引起的番茄萎凋病,是台灣夏季番茄生產的主要限制因子之一。從農作物植株體內及根圈土壤分離到140株菌株,分別導入栽培介質中培育番茄幼苗,結果總共有17% 的菌株可促進植株生長;15% 的菌株可以有效防治番茄萎凋病。選出CHT2401、CHT2402與 CHR001三菌株進行生理生化測試、培養形態觀察、Biolog 快速鑑定系統測試及gyrB 基因序列、ITS序列分別與GenBank資料庫比對,結果鑑定三菌株為Bacillus mycoides Flügge。三菌株適合生長溫度為28-36 ℃,在pH 4-8均生長良好。研究不同碳氮素源對菌株生長的影響,發現半纖維糖、蔗糖及硫酸銨可促進B. mycoides CHT2401菌株的生長;澱粉、葡萄糖、核醣、丙胺酸、穀氨酸、穀氨醯酸可促進B. mycoides CHT2402菌株的生長;而澱粉、葡萄糖、核醣、麥芽糖、精氨酸、穀氨酸、穀氨醯酸、賴胺酸及鳥胺酸則可促進B. mycoides CHR001菌株生長。在不同基質的培養基上測試三菌株對Fusarium oxysporum f. sp. lycopersici的拮抗作用,結果發現適合細菌生長的培養基NA(nutrient agar)及SA〔soy agar:5%(w/v)soy powder,2%(w/v)agar〕可使三菌株表現有較佳的拮抗作用。至於三菌株在PDA(potato dextrose agar)、CMA(corn meal agar)及MEA(malt extract agar)等平板上對番茄萎凋病菌的拮抗效果不佳。以不同濃度黃豆粉與玉米粉培養CHT2402菌株用以防治番茄萎凋病,發現5%玉米粉與5%黃豆粉培養的菌液,具有最佳的防病效果。近ㄧ步將番茄幼苗分別浸根處理於NB、PDB、5%(w/v)soybean meal(SM)及5%(w/v)corn meal(CM)培養的菌液後,比較它們防治番茄委凋病的效果,結果發現PDB培養的菌液有加速病害發生的現象;NB培養之菌液的處理可降低罹病度36.3 - 72.67%;5% SM培養的菌液可降低罹病度54.5- 63.67%,綜合結果顯示營養液會影響本生物防治菌的防病功效。
Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici has become one of the most severe diseases of tomato in Taiwan during summer. One hundred and forty bacterial isolates were isolated from tomato crop and its rhizosphere soil. Their abilities of controlling disease and promoting the growth of tomato seedling were evaluated. Three isolates CHT2401, CHT2402 and CHR001 with the best efficacy on control of tomato Fusarium wilt were obtained. They were identified as Bacillus mycoides by morphological and physiological characteristics, and Biolog system, and comparing the gene sequence of gyrB and ITS region with isolates available in the GenBank data bank. Temperatures ranged from 28- 36 ℃ were optimal for the growth of the three isolates. There was no difference in the growth of isolates among pH4~pH8. Cellobiose, sucrose and (NH4)2SO4 were effective in enhancing the growth of Bacillus mycoides isolate CHT2401. Starch, glucose, ribose, alinine, glutamic acid and glutamine were able to increase the growth of Bacillus mycoides isolate CHT2402. Starch, glucose, ribose, maltose, arginine, glutamic acid, glutamine, lysine and ornithine could marked by stimulate the growth of Bacillus mycoides isolate CHR001. The antagonism of B. mycoides isolates CHT2401, CHT2402 and CHR001 against Fusarium oxysporum f. sp. lycopersici was affected by different regimes. The antagonistic ability of the bacteria cultured in NA(nutrient agar)and SA〔5%(w/v)soy powder, 2%(w/v)agar〕 were stronger than ones in other media such as PDA:potato dextrose agar, CMA:corn meal agar and MEA:malt extract agar. The concentration of soybean meal and corn meal did also affect efficacy of the bacteria on controlling tomato Fusarium wilt. B. mycoides CHT2402 cultured with 5%(w/v)soybean meal or 5%(w/v)corn meal could reduce 67% disease severity. The tomato seedlings were respectively dipped into culture solutions of B. mycoides CHT2401, CHT2402 and CHR001 grown in NB, PDB, 5%(w/v)soybean meal, 5%(w/v)corn meal and bacterial cell suspension to control tomato Fusarium wilt. The seedlings that were dipped in PDB culture solutions of three bacterial isolates could be enhanced the disease severity. However, the seedlings that were dipped in NB and 5%(w/v)soybean meal culture solutions of three bacterial isolates were most effective in reducing disease severity of 36-73% and 55-64% respectively as compared to nontreatment as a control. The results indicated that B. mycoides isolates CHT2401, CHT2402 and CHR001 were potential biocontrol agents in controlling tomato Fusarium wilt.
其他識別: U0005-2508200615142300
Appears in Collections:植物病理學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.