Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30939
標題: 土壤添加蝦蟹殼粉防治番茄萎凋病之效果
Effect of Amendment of Soil with Shrimp and Crab Shell Powder on Control of Tomato Fusarium Wilt
作者: 陳純葳
Chen, Chun-Wei
關鍵字: 蝦蟹殼粉
chitin
有機添加物
番茄萎凋病
幾丁質
Fusarium oxysporum f. sp. lycopersici
Fusarium wilt
organic amendment
shrimp and crab shell powder
tomato
出版社: 植物病理學系所
引用: 台中區農業改良場. 2001. 番茄台中亞蔬10號番茄命名資料. 彰化,台灣 台南區農業改良場. 2002. 番茄台南亞蔬11號命名資料. 台南,台灣 台灣省農試所. 1982. 台灣地區現有作物栽培品種名錄(茄科篇). 台灣省農業試驗所特刊第38號. 台灣省農試所編印. 台北. 146 pp。 台灣農家便覽. 1944. 農作物病害. 台灣總督府農業試驗所. 1109 pp。 行政院農業委員會. 2005. 民國94年農業統計年報. 行政院農委會出版. 296 pp。 花蓮區農業改良場. 2003. 番茄花蓮亞蔬13號命名資料. 花蓮,台灣 邱少華. 1997. 利用綠膿桿菌K-187發酵SCS廢棄物生產幾丁質酶之應用及量產條件之研究.大葉大學食品工程研究所碩士論文. 140 pp. 孫守恭、黃振文. 1996. 台灣植物鐮胞菌病害. 世維出版社. 170 pp。 陳正次. 1995. 番茄. p.326-337. 台灣農家要覽:農作篇(二). 農業委員會台灣農家要覽增修訂再版策劃委員會編. 財團法人豐年社出版. 台北. 698 pp。 陳澄河. 2003. 蝦蟹殼傳奇. 科學發展 369:62-67。 黃振文、孫守恭. 1982. 台灣番茄萎凋病. 植保會刊 24:265-270。 黃振文、孫守恭. 2001. 蔬菜有機栽培非農藥病害防治專輯. 財團法人台北市瑠公產銷基金會編印. 台北市. 153 pp。 黃涵、洪立. 1988. 台灣蔬菜彩色圖說. 國立台灣大學園藝系編印. 台北. 210 pp。 黃逸喬. 2004. 螢光假單胞菌Pseudomonas fluorescens FP45對番茄Fusarium萎凋病與青枯病之影響. 國立中興大學植物病理學系第三十四屆碩士畢業論文. 台中. 57 pp。 種苗改良繁殖場. 1999. 番茄種苗8號命名資料. 台中,台灣 鄭安秀、王仕賢、黃山內. 2001. 番茄嫁接茄子根砧防治土傳病害. 台南區農業專訊 35:1-3。 蕭芳蘭、黃振文、高清文. 1994. 番茄萎凋病抑病介質的抑菌特性. 植保學會刊 36:271-279。 Agrios, G. N. 1997. Plant Pathology. 4th ed. Academic Press. U.S.A. 635 pp. Alexander, L. J., and Tucker, C. M. 1945. Physiological specialization in the tomato wilt fungus Fusarium oxysporum f. lycopersici. J. Agric. Res. 70:303-313. Bell, A. A., H. M., and Subbarao, K. V. 1998. ubbard, J. C., Liu, L., Davis, REffect of chitin and chitosan on the incidence and severity of Fusarium yellows in celery. Plant Dis. 82:322-328. Bohn, G. W., and Tucker, C. M. 1939. Immunity to Fusarium wilt in the tomato. Science 89:603-604. Bremner, J. M. 1965. Inorganic forms of nitrogen. p.1179-1227 in: Methods of Soil Analysis, Part 2. Black, C. A., Evans, D. D., Ensminger, L. E., White, J. L., and Clark, F. E., eds. American Society of Agronomy. Madison, Wisconsin, U.S.A. Chen, W., Hoitink, H. A. J., Schmitthenner, A. F., and Tuovinen, H. 1988. The role of microbial activity in suppression of damping-off caused by Pythium ultimum. Phytopathology 78:314-322. Ciccarone, A. 1955. Control tests on Fusarium disease of tomato with particular reference to the use of methyl bromide as a soil fumigant. (Trans. titles, in Italian). Tecn. Agric. 1955:11-12. Cotxarrera, L., Trillas-Gay M. I., Steinbery, C., and Alabouvete, C. 2002. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol. Biochem. 34:467–476. De Jin, R., Suh, J. W., Park, R. D., Kim, Y. W., Krishnan, H. B., and Kim, K. Y. 2005. Effect of chitin compost and broth on biological control of Meloidogyne incognita on tomato (Lycopersicon esculentum Mill.). Nematology 7:125-132. Dwived, R. S., and Pathak, S. P. 1981. Effect of certain chemicals on the population dynamics of Fusarium oxysporum f. sp. lycopersici in tomato field soil. Proc. Indian Natl. Sci. Acad., Part B 47:751-755. Foster, R. E. 1946. The first symptom of tomato Fusarium wilt: clearing of the ultimate veinlets in the leaf. Phytopathology 36:691-694. Gooday. 1990. The ecology of chitin degradation. Adv. Microb. Ecol. 11:387-419. Hampson, M. C., and Coombes, J. W. 1995. Reduction of potato wart disease by crushed crabshell: suppression or eradication? Can. J. Plant Pathol. 17:69-74. Hoitink, H. A. J., and Fahy, P. C. 1986. Basis for the control of soilborne plant pathogens with composts. Annu. Rev. Phytopathol. 24:93-114. Johnson, L. F., and Curl, E. A. 1972. Methods for Research on the Ecology of Soilborne Plant Pathogens. Burgess Publishing Co., St. Paul, MN, U.S.A. 247 pp. Jones, J. P., and Woltz, S. S. 1981. Fusarium-incited diseases of tomato and potato and their control. p.157-165 in: Fusarium: Diseases, Biology, and Taxonomy. Nelson, P. E., Toussoun, T. A., and Cook, R. J., eds. The Pennsylvania State University Press. University Park and London, U.S.A. 457 pp. Keeney, D. R., and Nelson, D. W. 1982. Nitrogen: Inorganic forms. p.643-698 in: Methods of Soil Analysis. Part 2. 2nd ed. A. L. Page et al.(eds.). Academic Press. New York, U.S.A. Kim, K. D., Nemec, S., and Musson, G. 1997. Effects of composts and soil amendments on soil microflora and Phytophthora root and crown rot of bell pepper. Crop Prot. 16:165-172. Larkin, R. P., and Fravel, D. R. 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis. 82:1022-1028. Lingappa, Y., and Lockwood, J. L. 1962. Chitin media for selective isolation and culture of actinomycetes. Phytopathology 52:317-323. Löffler, H. J., Coher, E. B., Oolbekkin, G. T., and Schippers, B. 1986. Nitrite as a factor in the decline of Fusarium oxysporum f. sp. dianthi in soil supplemented with urea or ammonium. Neth. J. Plant Pathol. 92:153-162. Masee, G. 1895. The “sleepy disease” of tomatoes. Gard. Chron. Ser. 3, 17:707-708. Maurer, C. L., and Burker, R. 1965. Ecology of plant pathogens in soil. Phytopathology 55:69-72. Mitchell, R., and Alexander, M. 1961. Chitin and the biological control of Fusarium diseases. Plant Dis. Rep. 45:487-490. Nash, S. N., and Snyder, W. C. 1962. Quantitative estimation by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 52:567-572. Nasir, N., Pittaway, P. A., and Pegg, K. G. 2003. Effect of organic amendments and solarization on Fusarium wilt in susceptible banana plantlets, transplanted into naturally infested soil. Aust. J. Agric. Res. 54:251-257. Nirwanto, H. 1994. Study on the use of soil amendment with leguminous foliage and liming in effect to control Fusarium wilt disease of tomato. ISHS Acta. Horticulturae 369:155-162. Sarathchandra, S. U., Watson, R. N., Cox, N. R., Di Menna, M. E., Brown, J. A., Burch, G., and Neville, F. J. 1996. Effects of chitin amendment of soil on microorganisms, nematodes, and growth of white clover(Trifolium repens L.) and perennial ryegrass(Lolium perenne L.). Biol. Fertil. Soils 22:221-226. Schnürer, J., and Rosewall, T. 1982. Fluorecein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbial. 46:1256-1261. Serra-Witting, C., Houot, S., and Alabouvette, C. 1996. Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal solid waste compost. Soil Biol. Biochem. 28:1207-1214. Shishido, M., Miwa, C., Usami, T., Amemiya, Y., and Johnson, K. B. 2005. Biological control efficiency of Fusarium wilt of tomato by nonpathogenic Fusarium oxysporum Fo-B2 in different environments. Phytopathology 95:1072-1080. Sikora, R. A. 1992. Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu. Rev. Microbiol. 30:245-269. Smolińska, U. 2000. Survival of Sclerotium cepivorum sclerotia and Fusarium oxysporum chlamydospores in soil amended with cruciferous residues. J. Phytopathol. 148:343-349. Stoffella, P. J., and Graetz, D. A. 2000. Utilization of sugarcane composts as a soil amendment in a tomato production system. Compost Sci. Util. 8:210-214. Stoll, V. S., and Blanchard, J. S. 1990. Buffers: principles and practice. p.24-38 in: Methods in Enzymology vol.182: Guide to protein purification. Deutscher, M. P., ed. Academic Press, Inc., San Diego, California, U.S.A. 894 pp. Sun, S. K., and Huang, J. W. 1985. Formulated soil amendment for controlling Fusarium wilt and other soilborne diseases. Plant Dis. 69:917-920. Szczech, M. M. 1999. Suppressiveness of vermicompost against Fusarium wilt of tomato. J. Phytopathol. 147:155-161. Wang, S. L., Yen, Y. H., Tsiao, W. J., Chang, W. T., and Wang, C. L. 2002. Production of antimicrobial compounds by Monascus purpureus CCRC31499 using shrimp and crab shell powder as a carbon source. Enzyme Microb. Technol. 31:337–344. Wang, S. L., Yieh, T. C., and Shih, I. L. 1999. Production of antifungal compounds by Pseudomonas aeruginosa K-187 using shrimp and crab shell powder as a carbon source. Enzyme Microb. Technol. 25:142–148. Zhou, X. G., and Everts, K. L. 2004. Suppression of Fusarium wilt of watermelon by soil amendment with hairy vetch. Plant Dis. 88:1357-1365.
摘要: Fusarium oxysporum f. sp. lycopersici引起之番茄萎凋病是台灣夏季栽培番茄的主要病害之一。本試驗於自然土壤及番茄萎凋病菌土中分別添加0.5%(w/w)魚粉、菜仔粕、花生粕、黃豆粕、牛血粉、蝦蟹殼粉、苦茶粕、海草粉、蚵殼粉和稻殼粉等10種有機添加物,處理七天後種植株齡兩星期的農友301品種之番茄幼苗,觀察其對植株生長與病害發展之影響,結果顯示稻殼粉、蝦蟹殼粉、苦茶粕及蚵殼粉等可顯著增加番茄植株的生長,其中以蝦蟹殼粉的效果最為顯著;此外,蚵殼粉、蝦蟹殼粉、稻殼粉及海藻粉等可有效防治萎凋病的發生,其中亦以蝦蟹殼粉的防治效果最佳,可使罹病度降低38.9%。研究不同濃度之蝦蟹殼粉對病害發生的影響,結果顯示隨著添加物濃度的增加,番茄植株罹病度則有隨之逐漸下降的趨勢,且施用在砂質土中的效果比處理在黏質土壤者佳。在病土中分別添加1%(w/w)蝦蟹殼粉與幾丁質,7天後種植兩星期大的番茄幼苗,結果發現蝦蟹殼粉與幾丁質兩者皆能降低罹病度,其中尤以蝦蟹殼粉比幾丁質效果佳,直到第60天時其處理的罹病度僅達22%。在病菌土中分別添加0.5與1.0%(w/w)之蝦蟹殼粉與幾丁質,均勻混合後於第0、4、7、14、21、28和35天時,分別調查土壤pH值、有效態氮(銨態氮、硝酸態氮、亞硝酸態氮)含量、土中微生物數量以及微生物活性之變化,發現土壤添加蝦蟹殼粉與幾丁質一開始可使其pH值上升至7.0以上,隨後幾丁質處理組之pH值逐漸下降,惟蝦蟹殼粉處理組則仍維持7.0左右。以不同pH值之磷酸緩衝液測試pH值對病原菌分生孢子發芽之影響,亦發現隨著pH上升,病原菌的孢子發芽率隨之下降。採用凱氏法和Griess-Ilosvay法偵測土壤中有效態氮含量,發現蝦蟹殼粉與幾丁質皆可提高硝酸態氮含量,惟蝦蟹殼粉於處理後第0-7天間均產生大量銨態氮,並於第4-7天尚會產生大量亞硝酸態氮,然而其亞硝酸態氮的含量對病原菌的存活影響不顯著。將蝦蟹殼粉與幾丁質施於土中,可發現兩者皆顯著促進土壤微生物的增殖,包括細菌及放線菌的數量,惟幾丁質會大量增加真菌數量,而蝦蟹殼粉則無顯著增加的現象;同時兩者尚可降低土中病原菌的密度。以fluorecein diacetate(FDA)水解反應偵測土壤中添加0.5及1.0%(w/w)的蝦蟹殼粉與幾丁質後土壤微生物活性的變化,結果顯示蝦蟹殼粉與幾丁質均可增加土中微生物之活性。將蝦蟹殼粉與幾丁質添加入熱蒸氣處理過之土壤,經不同天數處理後加入F. oxysporum f. sp. lycopersici菌株 Fol-04之分生孢子懸浮液,12小時後發現未經熱蒸氣處理的土壤中,分生孢子發芽率顯著較熱蒸氣處理過的自然土壤及不添加蝦蟹殼粉與幾丁質之土壤低,且隨著蝦蟹殼粉添加比例增加孢子發芽率明顯下降。顯然利用蝦蟹殼粉抑制本病原菌孢子發芽的效果與土壤中的微生物活性存在有密切的關聯性。
Tomato Fusarium wilt is an important disease during summer season in Taiwan. Tomato seedlings were planted in nature soil and infested soil respectively treated with ten different organic amendments for seven days. Amendments of soil with rice husk, shrimp and crab shell powder, and oyster shell powder were able to enhance tomato growth and reduced disease severity of tomato Fusarium wilt. Application of shrimp and crab shell powder was significantly effective in reducing disease severity of tomato Fusarium wilt in greenhouse tests. The disease severity of tomato Fusarium wilt was significantly reduced 38.9%. In addition, the disease severity was reduced with increasing the concentration of shrimp and crab shell powder. The high pH values were observed in soil amended with 0.5、1.0%(w/w) shrimp and crab shell powder and chitin at day 0. However, the pH value of soil amended with chitin 14 days after treatment was lower than control, and the pH value of soil amended with shrimp and crab shell powder was still maintained higher 35 days after treatment. Concentration of ammonium increased rapidly, reached a peak in soil amended with shrimp and crab shell powder at 4th day or in soil amended with chitin at 7th day, and then decreased. Concentration of nitrite only increased in soil amended with shrimp and crab shell powder. After 4th day, concentration of nitrate in both treatments increased rapidly. Shrimp and crab shell powder and chitin stimulated proliferation of beneficial microorganisms including fungi, bacteria, and actinomycetes, and reduced population density of the pathogen. Fungal populations were significantly higher in soil amended with chitin than one with shrimp and crab shell powder. Soil amended with shrimp and crab shell powder and chitin also showed a high microbial activity detected by hydrolysis of fluorecein diacetate (FDA). The inhibitory effect of soil amended with shrimp and crab shell powder and chitin on conidial germination was nullified when soil was pre-treated by heat for 20 min at 100℃. The results suggest that the presence of microorganisms in soil may play an important role in suppression of tomato Fusarium wilt with shrimp and shell powder or chitin. It was concluded that soil amended with shrimp and crab shell powder could increase soil pH, microbial ability, also enhanced tomato seedling growth and reduced disease severity of tomato Fusarium wilt.
URI: http://hdl.handle.net/11455/30939
其他識別: U0005-2508200615294600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200615294600
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.