Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30955
標題: 辣椒種原 PBC81 (Capsicum baccatum) 及 PBC932 (C. chinense) 對辣椒炭疽病菌 (Colletotrichum acutatum) 之抗病性初探
Preliminary studies on the resistance of hot pepper accessions PBC81 (Capsicum baccatum) and PBC932 (C. chinense) to anthracnose caused by Colletotrichum acutatum
作者: 陳盈如
Chen, Ying-Ru
關鍵字: 辣椒
hot pepper
炭疽病
炭疽病菌
抗病性
水楊酸
病程相關基因
防禦相關基因
chili pepper
Capsicum spp.
anthracnose
Colletotrichum spp.
disease resistance
salicylic acid
pathogenesis-related genes
defense-related genes
出版社: 植物病理學系所
引用: 黃振文、孫守恭。1998。植物病害彩色圖鑑。世維出版社。台中市,160頁。 行政院農業委員會會計室編著。2004。農業統計年報。行政院農業委員會。295頁。 Abad, L. R., Paino D’Urzo, M., Liu, D., Narasimhan, M. L., Reuveni, M., Zhu, J. K., Niu X., Singh N. K., Hasegawa, P. M., and Bressan, R. A. 1996. Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci. 118: 11-23. Abeles, F. B., Morgan, P. W., Saltveit, M. E. Jr. 1992. Ethylene in Plant Biology. Academic Press, San Diego, CA Adikaram, N. K. B., Brown, A. E., and Swinburne, T. R. 1982. Phytoalexin involvement in latent infection of Capsicum annuum L. fruit by Glomerella cingulata (Stonem.). Physiol. Plant Pathol. 21: 161-170. Adikaram, N.K.B., Brown, A.E., and Swinburne, T.R. 1983. Observations on infection of Capsicum annuum fruit by Glomerella cingulata and Colletotrichum capsici. Transactions of the British Mycological Soc. 80: 395-401. Agrios, G. N. 2005. How pathogens attack plants. In: Plant Pathology. 5th ed. p.175-248. Academic press. San Diego, CA., USA. Alexander, D., Goodman, R. M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Wad, E., and Ryals, J. 1993. Increased tolerance to two Oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein Ia. Proc. Natl. Acad. Sci. USA 90, 7327-7331. AVRDC. 2003. Progress Report 2002. Shanhua, Tainan, Taiwan, AVRDC - the World Vegetable Center. 29-30. Bailey, J. A., O’Connell, R. J., Pring, R. J., and Nash, C. 1992. Infection strategies of Colletotrichum species. In: Bailey, J. A. and Jeger, M. J. (eds.), Colletotrichum: Biology, Pathology and Control. p.88-120. CAB International. Wallingford, UK. Bosland, P. W., and Votava, E. J. 2000. Peppers: Vegetable and Spice Capsicums. Crop Production Science in Horticulture 12. 204. CAB International., Wallingford, England, UK. Cao, H., Li, X., and Dong, X. 1998. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 95, 6531-6536. Chang, P. F. L., Cheah, K. T., Narasimhan, M. L., Hasegawa, P. M., and Bressan, R. A. 1995. Osmotin gene expression is controlled by elicitor synergism. Physiol. Plant. 95: 620-626. Cheong, N. A., Choi, Y. D., Kim, W. Y., Bae, I. S., Cho, M. J., Hwang, I., Kim, J. W., and Lee, S. Y. 1997. Purification and characterization of an antifungal PR-5 protein from pumpkin leaves. Mol. Cell 7: 214-219. Chern, M.S., Fitzgerald, H. A., Yadav, R. C., Canlas, P. E., Dong, X., and Ronald, P. C. 2001. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J. 27: 101-113. Chern, M. S, Fitzgerald, H. A., Canlas, P. E., Navarre, D. A., and Ronald, P. C. 2005. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol. Plant Microbe. Interact. 18: 511-520. Cipollini, M. L., and Stiles, E. W. 1992a. Antifungal activity of ripe ericaceous fruits-phenolic-acid interactions and palatability for dispersers. Biochem. Syst. and Ecol. 20: 501-514. Cipollini, M. L., and Stiles, E. W. 1992b. Relative risks of fungal rot for temperate ericaceous fruits-effects of seasonal-variation on selection for chemical defense. Canadian J of Bot. 70: 1868-1877. Cipollini, M. L., and Stiles, E. W. 1993. Fruit rot, antifungal defense, and palatability of fleshy fruits for frugivorous birds. Ecology 74: 751-762. Clendennen, S. K., and May, G. D. 1997. Differential gene expression in ripening banana fruit. Plant Physiol. 115: 463–469. Cramer, C. L., Bell, J. N., Ryder, T. B., Bailey, J. A., Schuch, W., Bolwell, G. P., Robbins, M. P., Dixon, R. A., and Lamb, C. J. 1985. Co-ordinated synthesis of phytoalexin biosynthetic enzymes in biologically-stessed cells of bean (Phaseolus vuglaris L.) EMBO J. 4: 285-289. Datta, K., Velazhahan, R., Oliva, N., Ona, I., Mew, T., Khush, G. S., Muthukrishnan, S., and Datta, S. K. 1999. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solanli causing sheath blight disease. Theor. Appl. Genet. 98: 1138-1145. Daugrois, J. H., Lafitte, C., Barthe, J. P., and Touze, A. 1990. Induction of β-1,3-glucanase and chitinase activity in compatible and imcompatible interactions between Colletotrichum lindemuthianum and bean cultivars. J. Phytopathol. 130: 225-234. Daugrois, J. H., Lafitte, C., Barthe, J. P., Faucher, C., Touze, A., and Esquerre-Tugaye, M. -T. 1992. Purification and characterization of two basic β-1,3-glucanases induced in Colletotrichum lindemuthianum infected bean seedlings. Arch. Biochem. Biophys. 292: 468-474. Delaney, T. P., Friedrich, L., and Ryals, J. A. 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA 92: 6602-6606. Diéguez-Uribeondo, J., Förster H., and Adaskaveg, J. E. 2003. Subcuticular and intracellular hemibiotrophic development of Colletotrichum acutatum on almond. Phytopathology 93, S21. Duthie, J.A. 1997. Models of the response of foliar parasites to the combined effects of temperature and duration of wetness. Phytopathology 87: 1088-1095. Enyedi, A. J., Yalpani, N., Paul, S., and Raskin, I. 1992. Signal molecules in systemic plant resistance to pathogen and pest. Cell 70: 879-886. Eshbaugh, W. H. 1983. The genus Capsicum in Africa. Bothalia 14: 845-848. Eshbaugh, W. H., 1993. Peppers: History and exploitation of a serendipitous new crop discovery. In: J. Janick and J. E. Simon (eds.), New Crops. p.132-139. John Wiley and Sons, New York. Esquerre-Tugaye, M. -T., Mazau, D., Barthe, J. -P., Lafitte, C., and Touze, C. 1992. Mechanisms of resistance to Colletotrichum species. In: Bailey, J. A. and Jeger, M. J. (eds.), Colletotrichum: Biology, Pathology and Control. p.121-133. CAB International. Wallingford, UK. Eyal, Y., Meller, Y., Lev-Yadun, S., and Fluhr, R. 1993. A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J. 4: 225-234. Fagoaga, C., Rodrigo, I., Conejero, V., Hinarejos, C., Tuest, J. J, Arnau, J., Pina, J. A., Navarro, L., and Pena, L. 2001. Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol. Breed. 7: 175-185. Felix, G., and Meins, F. Jr. 1987. Ethylene regulation of b-1,3-glucanase in tobacco. Planta 172: 386-392. Fernando, T. H. P. S., Jayasinghe, C. K., and Wijesundera, R. L. C. 2001. Cell wall degrading enzyme secretion by Colletotrichum acutatum, the causative fungus of secondary leaf fall of Hevea brasiliensis. Mycol. Res. 105: 195-201. Harborne, J. B. 1986. The role of phytoalexins in natural plant resistance. In: Natural resistance of plants to pests-Role of allelochemicals. p.22-35. The American Chemical Society. Washington, D. C., USA. Heiser Jr., C.B. 1985. How many kinds of peppers are there? In: C.B. Heiser Jr., Of Plants and People. p.142-154. University of Oklahoma Press, Norman and London. Heiser Jr., C.B., and Smith, P.G. 1953. The cultivated Capsicum peppers. Econ. Bot. 7: 214-217. Hong, J. K., and Hwang, B. K. 2002. Induction by pathogen, salt and drought of a basic class II chitinase mRNA and its in situ localization in pepper (Capsicum annuum). Physiol. Plant. 114: 549–558. Hong, J. K., Student, G., and Hwang, B. K. 1998. Influence of Inoculum Density, Wetness Duration, Plant Age, Inoculation Method, and Cultivar Resistance on Infection of Pepper Plants by Colletotrichum coccodes. Plant Dis. 82: 1079-1083. Horsfall, J. G., and Dimond, A. E. 1957. Interactions of tissue sugar, growth substances and disease susceptibility. Zietschrift fur Pflanzenkrankheiten und Pflanzenschutz 64: 415-419. IBPGR (International Board for Plant Genetic Resources). 1983. Genetic Resources of Capsicum: A Global Plan of Action. AGPG/IBPGR/82/12. IBPGR, Rome. 49 pp. Jeffries, P., Dodd, J. C., Jeger, M. J., and Plumbey, R. A. 1990. The biology and control of Colletotrichum species on tropical fruit crops. Plant Pathol. 39: 343-366. Jia, Y., and Martin, G. B. 1999. Rapid transcript accumulation of pathogenesis-related genes during an incompatible interaction in bacterial speck disease-resistant tomato plants. Plant Mol. Biol. 40: 455-465. Kim, K. D., Oh, B. J., and Yang, J. 1999. Differential interactions of a Colletotrichum gloeosporioides isolate with green and red pepper fruits. Phytoparasitica 27: 1-10. Kim, Y. J., and Hwang, B. K. 1996. Purification, N-terminal amino acid sequencing and antifungal activity of chitinases from pepper stems treated with mercuric chloride. Physiol. Mol. Plant Pathol. 48: 417-432. Kim, Y. J., and Hwang, B. K. 1997. Isolation of a basic 34 kilo Dalton β-1,3-glucanase with inhibitory activity against Phytophthora capsici from pepper stems. Physiol. Mol. Plant Pathol. 50: 103-115. Kim, Y. J., and Hwang, B. K. 2000. Pepper gene encoding a basic pathogenesis-related 1 protein is pathogen and ethylene inducible. Physiol. Plant. 108: 51-60. Kim, Y. S., Park, J. Y., Kim, K. S., Ko, M. K., Cheong, S. J., and Oh, B. J. 2002. A thaumatin-like gene in nonclimacteric pepper fruits used as a molecular marker in probing ripening, sugar accumulation, and disease resistance. Plant Mol. Biol. 49: 125-135. King, G. J., Turner, V. A., Hussey, C. E., Wurtele, E. S., and Lee, S. M. 1988. Isolation and characterization of a tomato cDNA clone which codes for salt-induced protein. Plant Mol. Biol. 10: 402-412. Latunde-Dada, A. O., O’Connell, R. J., Nash, C., and Lucas, J. A. 1999. Stomatal penetration of cowpea (Vigna unguiculata) leaves by a Colletotrichum species causing latent anthracnose. Plant Pathol. 48: 777-784. Lee, S. W., Nazar, R. N., Powell, D. A., and Robb, J. 1992. Reduced PAL gene suppression in Verticillium-infected resistant tomatoes. Plant Mol. Biol. 18: 345-352. Liang, X., Dron, M., Cramer, C. L., Dixon, R. A., and Lamb, C. J. 1989. Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environmental cues. J. Biol. Chem. 264: 14486-14492. Liu, D., Kashchandra, G., Raghothama, P., Hasegawa, P. M., and Bressan, R. A. 1994. Osmotin overexpression in potato delays development of disease symptoms. Proc. Natl. Acad. Sci. USA 91: 1888-1892. Mazeyrat, F., Mouzeyar, S., Courbou, I., Badaoui, S., Roeckel-Drevet, P., Tourvieille de Labrouhe, D., and Ledoigt, G. 1999. Accumulation of defense related transcripts in sunflower hypocotyls (Helianthus annuus L.) infected with Plasmopara halstedii. Eur. J. Plant Pathol. 105: 333-340. McLeod, M. J., Guttman, S. I., and Eshbaugh, W. H. 1982. Early evolution of chili peppers (Capsicum). Econ. Bot. 36: 361-368. Muto, M. Takahashi, H. Ishihara, K. Yuasa, H., and Huang, J. W. 2005. Antimicrobial activity of medicinal plants used by indigenous people in Taiwan. Plant pathol. Bull. 14: 13-24. Napoli, C., Lemieux, C., and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous gene in trans. Plant Cell 2: 279-289. Niderman, T., Genetet, I., Bruyere, T., Gees, R., Stintzi, A., Legrand, M., Fritig, B., and Mosinger, E. 1995. Pathogenesis-Related PR-1 Proteins Are Antifungal (Isolation and Characterization of Three 14-Kilodalton Proteins of Tomato and of a Basic PR-1 of Tobacco with Inhibitory Activity against Phytophthora infestans) Plant Physiol. 108: 17-27. Niggeweg, R., and Gatz, C. 1997. Isolation of TGA2.1 (Accession No. U90214), a member of a new subclass of the TGA family of bZIP transcription factors in Nicotiana tabacum (PGR97-060). Plant Physiol. 113: 1464. Oh, B. J., Kim, K. D., and Kim, Y. S. 1998. A microscopic characterization of the infection of green and red pepper fruits by an isolate of Colletotrichum gloeosporioides. J. Phytopathol. 146: 301-303. Oh, B. J., Kim, K. D., and Kim, Y. S. 1999. Effect of cuticular wax layers of green and red pepper fruits on infection by Colletotrichum gloeosporioides. J. Phytopathol. 147: 436-441. Oh, B. J., Ko, M. K., Kim, K. S., Kim, Y. S., Lee, H. H., Jeon, W. B., and Im, K. H. 2003. Isolation of defense-related genes differentially expressed in the resistance interaction between pepper fruits and the anthracnose fungus Colletotrichum gloeosporioides. Mol. Cells 15: 349-355. Perfect, S. E., Hughes, H. B., O’Connell, R. J., and Green, J. 1999. Colletotrichum: A model genus for studies on pathology and fungal-plant interactions. Fungal Genetics Biology 27: 186-198. Pickersgill, B. 1989. Cytological and genetical evidence on the domestication and diffusion of crops within the Americas. In: D.R. Harris and G.C. Hillman (eds.), Foraging and farming: The evolution of plant exploitation. 426-439. Unwin Hyman, London. Ponstein, A. S., Bres-Vloemans, S. A., Sela-Buurlage, M. B., Van den Elzen, P. J. M., Melcher, L. S., and Comelissen, B. J. C. 1994. A novel pathogens- and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiol. 104: 109-118. Pressey, R. 1997. Two isoforms of NP24: a thaumatin-like protein in tomato fruit. Phytochemistry 44: 1241-1245. Prusky, D., Gold, S., and Keen, N. T. 1989. Purification and characterization of an endopolygalacturonase produced by Colletotrichum gloeosporioides. Physiol. Mol. Plant Pathol. 35: 121-133. Prusky, D., Keen, N. T., Sims, J. J., and Midland, S. L. 1982. Possible involvement of an anti-fungal diene in the latency of Colletotrichum gloeosporioides on unripe avocado fruits. Phytopathology 72: 1578-1582. Prusky, D., Kobiler, I., and Jacoby, B. 1988. Involvement of epicatechin in cultivar susceptibility of avocado fruits to Colletotrichum gloeosporioides after harvest. Journal of Phytopathology -Phytopathologische Zeitschrift 123: 140-146. Prusky, D., Kobiler, I., Ardi, R., Beno-Moalem, D., Yakoby, N., and Keen, N. T. 2000. Resistance mechanisms of subtropical fruits to Colletotrichum gloeosporioides. In: Prusky, D., Freeman, S. and Dickman, M. B. (eds.), Colletotrichum: Host Specificity, Pathology, and Host-Pathogen Interaction. p.232-244. The American Phytopathological Society, St. Paul, MN, USA. Prusky, D., Kobiler, I., Jacoby, B., Sims, J. J., and Midland, S. L. 1985. Effect of inhibitors of lipoxygenase activity and its possible relation to latency of Colletotrichum gloeosporioides on avocado fruits. Physiol. Mol. Plant Pathol. 27: 269-279. Prusky, D., Plumbley, R. A., and Kobiler, I. 1991. Effect of CO2 treatment on the induction of antifungal diene in unripe avocado fruits. Physiol. Mol. Plant Pathol. 39: 325-334. Roberts, W. K., and Selitrennikoff, C. P. 1990. Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J. Gen. Microbiol. 136: 1771-1778. Roby, D., and Esquerre-Tugaye, M. -T. 1987. Purification and some properties of chitinase from melon plants infected by Colletotrichum lagenarium. Carbohydrate Res. 165: 93-104. Roby, D., Toppan, A., and Esquerre-Tugaye, M. T. 1986. Cell surfaces in plant-microorganism interactions. VI. Elicitors of ethylene from Colletotrichum lagenarium trigger chitinase activity in melon plants. Plant Physiol 81: 228-233. Rodrigo, I., Vera, P., Tornero, P., Hernández-Yago, J., and Conejero, V. 1993. cDNA cloning of viroid-induced tomato pathogenesis-related protein P23. Characterization as a vacuolar antifungal factor. Plant Physiol. 102: 939-945. Ruiz-Medrano, R., Jimenez-Moraila, B., Herrera-Estrella, L., and Rivera-Bustamante, R. F. 1992. Nucleotide sequence of an osmotin-like cDNA induced in tomato during viroid infection. Plant Mol. Biol. 20: 1199-1202. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., and Hunt M. D. 1996. Systemic Acquired Resistance. Plant Cell. 8: 1809-1819. Salzman, R. A., Tikhonova, I., Bordelon, B. P., Hasegawa, P. M., and Bressan, R. A. 1998. Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. Plant Physiol. 117: 465-472. Sambrook, J., and Russell, D. W. 2001. Plasmid and their usefulness in molecular cloning. In Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, New York, USA. Sarowar, S., Kim, Y. J., Kim, E. N., Kim, K. D., Hwang, B. K., Islam, R., and Shin, J. S. 2005. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep. 24: 216-224. Schlumbaum, A., Mauch, A., Vogeli, U., and Boller, T. 1986. Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365-367. Sela-Burrlage, M. B., Ponstein, A. S., Bres-Vloemans, S. A., Melcher, L. S., Van den Elzen, P. J. M., and Comelissen, B. J. C. 1993. Only specific tobacco (Nicotiana tabacum) chitinase and β-1,3-glucanase exhibit antifungal activity. Plant Physiol. 101: 857-863. Shin, R., Lee, G. J., Park, C. J., Kim, T. Y., You, J. S., Nam, Y. W., and Paek, K. H. 2001. Isolation of pepper mRNAs differentially expressed during the hypersensitive response to tobacco mosaic virus and characterization of a proteinase inhibitor gene. Plant Sci. 161: 727-737. Singh, J.P., and Sharma, S.K. 1981. Screening and chemical basis of resistance in guava varieties to anthracnose (Glomerella cingulata). Haryana J. Hort. Sci. 10:155-157. Smith, P.G., and Heiser Jr., C.B. 1957. Taxonomy of Capsicum sinense Jacq. and the geographic distribution of the cultivated Capsicum species. Bulletin of the Torrey Botanical Club 84: 413-420. Spooner, D. M., Peralta, I. E., and Knapp, S. 2005. Comparison of AFLPs with other markers for phytogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.] TAXON 54: 43-61. Tattersall, D. B., van Heeswijck, R., and Hoj, P. B. 1997. Identification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiol. 114: 759-769. van Loon, L. C., and van Strien, E. A. 1999. The families of pathogenesis related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55: 85-97. van Loon, L. C., Pierpoint, W. S., Boller, T., and Conjero, V. 1994. Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Rep. 12: 245-265. Vidhyasekaran, P. 1988. Physiology of disease resistance in plants. p.1-149. CRC, Boca Raton, USA. Vogeli, U., Meins, J. Jr., Boller, T. 1988. Co-ordinated regulation of chitinase and b-1,3-glucanase in bean leaves. Planta 174: 364-372. Woloshuk, C. P., Meulenhoff, J. S., Sela-Buurlage, M., Van den Elzen, P. J., and Cornelissen, B. J. 1991. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3: 619-628. Xu, Y., Chang, P. F. L., Liu, D., Narasimhan, M. L., Raghothama, K. G., Hasegawa, P. M., and Bressan, R. A. 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6: 1077-1085. Yi, S. Y., Kim, J. H., Joung, Y. H. Lee, S., Kim, W. T., Yu, S. H., and Choi, D. 2004. The pepper transcription factor CaPF1 Confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol. 136: 2862-2874. Zhang, Y., Fan, W., Kinkena, M. Li, X., and Dong, X. 1999. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. USA 96: 6523-6528. Zhu, B., Chen, T. H. H., and Li, P. H. 1993. Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii. Plant Mol. Biol. 21: 729-735. Zulfiqar, M., Brlansky, R. H., and Timmer, L. W. 1996. Infection of flower and vegetative tissues of citrus by Colletotrichum acutatum and C. gloeosporioides. Mycologia 88: 121-128.
摘要: 辣椒 (Capsicum annuum) 為國內主要香辛作物之一。目前台灣地區之辣椒栽培受到炭疽病 (Anthracnose) 之危害嚴重,它是由 Colletotrichum acutatum 、 Co. gloeosporioides 、 Co. capsici 及 Co. coccodes 所引起,其中又以 Co. acutatum 發生頻率最高。本病害為辣椒生產的重要病害之一,至今尚無經濟、有效的方法來防治此病害,也無抗病的商業品種可供利用。世界蔬菜中心 [The World Vegetable Center,原亞洲蔬菜研究及發展中心 (Asian Vegetable Research and Development Center, AVRDC)] 經由三種辣椒炭疽病菌 Co. acutatum 、 Co. gloeosporioides 、 Co. capsici 之接種測試篩選出PBC81 (Ca. baccatum) 及 PBC932 (Ca. chinense) 兩個抗病種原,而為釐清這兩個種原抗炭疽病之機制,以裨益未來辣椒抗病品種選育工作之進行。本研究利用感病之辣椒品種-群香 (Ca. annuum) 與上述兩個抗病性野生辣椒種原為材料,建立 Co. acutatum與辣椒果實間交互作用之系統,來探討辣椒抗炭疽病之防禦相關機制。首先分析辣椒果實汁液對炭疽病菌菌落生長及孢子發芽之影響之情形,結果顯示抗、感病辣椒果實汁液對於炭疽病菌菌絲生長並無抑制之現象,反而發現果實汁液能促進孢子發芽,初步推測抗病辣椒果實之抗病反應並非由先天既存的水溶性物質所造成,而可能是其他因子所造成。接下來進行分子層次分析,由於在植物體內持續表現各種「病程相關」 (pathogenesis-related, PRs) 或「 NPR1 之作用因子 (NPR1-interacting factor, NIF1) 」 等其他防禦相關基因 (defense-related genes) ,可增進植物對各種病原菌之抗性或耐性,因此本研究分析對炭疽病具不同抗(PBC932)、感(群香)性之辣椒於接種前後,植物體內上述不同防禦相關基因之表現情形,首先針對基因庫中已發表的茄科植物中各 PRs 及 NIF1 基因之高度保留性區域設計各別之專一性引子對,並以 RT-PCR 技術自 SA 處理之群香品種 cDNA 中增幅且選殖出 PR1 、 PR5 與 NIF1 等防禦相關基因之部分序列,經核酸序列比對後,確定各選殖片段為辣椒中之 PR-1 (CaPR1) 、PR-5 (CaPR5) 或 NIF1 (CaNIF1) 基因片段無誤。接下來利用北方雜合法 (northern hybridization analysis) 分別以辣椒之各個防禦相關基因 CaPR1、CaPR5 與 CaNIF1 及番茄防禦相關基因 PR2、 PR3 與 PAL 等片段分析不同防禦相關基因之表現情形。而由本研究之北方雜合分析結果顯示在抗病辣椒 PBC932 健康果實中 PR3 與 PAL 基因表現量維持一定,雖然在綠果中 PR3 因接種而表現減少,但在 PBC932 紅果中兩者皆因病原菌接種而誘導產生較高之表現。而由抗病辣椒 PBC932 的接種結果亦顯示, PBC932 即使以傷口接種亦不發病,其為本研究中最抗病之辣椒種原,因此推測其抗病因子可能與防禦相關基因表現有關。另外,在所有供試辣椒果實中, PR5 基因表現較為明顯,但 PR5 基因在抗、感病辣椒果實中之表現情況不同,故目前尚無法推斷在辣椒果實中PR5基因之表現是否與抗病機制有關,但可推測抗、感病辣椒材料對於炭疽病菌有不同反應,其抗病機制可能也有差異。
Hot pepper (Capsicum annuum L.) is one of the important spice crops in Taiwan. Pepper anthracnose, which is one of the most damaging diseases in hot pepper production, can be incited by Colletotrichum acutatum, Co. gloeosporioides, Co. capsici and Co. coccodes. So far, no resistant cultivar is introduced against pepper anthracnose and no effective and economic strategy is available for the control of anthracnose. In this study, two anthracnose-resistant pepper accessions PBC81 (Ca. baccatum) and PBC932 (Ca. chinense), provided by AVRDC (Asian Vegetable Research and Development Center, The World Vegetable Center) together with a susceptible cultivar Chiun-Shiang (Ca. annuum) were used to investigate the resistance mechanism of hot pepper fruits to Co. acutatum. Analysis of antifungal activity of both lines (Chiun-Shiang, PBC81 and PBC932) indicated that the conidia germination in pepper fruits juice increased in contrast to the control conidia in water. In addition, no difference was found on the growth of pathogen on PDA (less sugar), water, and fruit juice treatments. We hence suggest that the resistance mechanism maybe not due to the preformed water-soluble compounds, but the other compounds. Many defense-related genes play important roles in plant defense response. For this reason, we have isolated the partial sequences of some defense-related genes, namely CaPR (pathogenesis-related) 1, CaPR5, and CaNIF1 (NPR1-interacting factor) from hot pepper. The expression of these genes together with the PR2, PR3, and PAL (Phenylalanine ammonia lyase) genes in fruits of the control and Co. acutatum-inoculated resistant (PBC932) and susceptible (Chiun-Shiang) hot pepper has been analyzed by northern hybridization analysis to help elucidating the factors affecting anthracnose resistance. The results showed that the expression level of these genes in fruits of hot pepper increased or decreased to some extent individually after inoculation with the pathogen. PR5 was strongly expressed during Co. acutatum-infection in ripe pepper fruits. Furthermore, the expression of PR3 and PAL in PBC932, the most anthracnose-resistant accession tested in this study, is higher than that in another pepper entry. These results suggest that these genes play important roles in disease resistance. Because the expression of these defense-related genes in the fruits of resistant and susceptible hot pepper was slightly different, it suggests that the resistance mechanism to Co. acutatum in the resistant hot pepper entries are different.
URI: http://hdl.handle.net/11455/30955
其他識別: U0005-2708200610432500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2708200610432500
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.