請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/31004
標題: 建立快速篩檢植物基質中酵母菌多樣性之鑑定資料庫
Establishment of the identification database for the rapid survey of yeast diversity on plant materials
作者: 林利娜
Lin, Li-Na
關鍵字: Yeasts
search system
出版社: 植物病理學系所
引用: 1. Bai, F. Y., Takashima, M. and Nakase, T. 2001. Phylogenetic analysis of strains originally assigned to Bullera variabilis: descriptions of Bullera pseudohuiaensis sp. nov., Bullera komagatae sp. nov. and Bullera pseudoschimicola sp. nov. Int J Syst Evol Microbiol 51: 2177-2187. 2. Bai, F., Liang, H. and Yarrow, D. 2000. Taxonomic relationships among the taxa in the Candida guilliermondii complex, as revealed by comparative electrophoretic karyotyping. Int J Syst Evol Microbiol 50(1): 417-422. 3. Bautista-Munoz, C., Boldo, X. M., Villa-Tanaca, L. and Hernandez-Rodriguez, C. 2003. Identification of Candida spp. by Randomly Amplified Polymorphic DNA Analysis and Differentiation between Candida albicans and Candida dubliniensis by Direct PCR Methods. J. Clin. Microbiol 41(1): 414-420. 4. Bicknell, J. N. and Douglas, H. C. 1970. Nucleic acid homologies among species of Saccharomyces. Bacteriol 101(2): 505-512. 5. Boekhout, T., Fonseca, A. and Batenburg-van der Vegte, W. H.1991. Bulleromyces genus novum (Tremellales), a teleomorph for Bullera alba, and the occurrence of mating in Bullera variabilis. Antonie van Leeuwenhoek 59: 81-93. 6. Boekhout, T., Fonseca, A., Sampaio, J.-P. and Golubev, W. I. 1993. Classification of heterobasidiomycetous yeasts: characteristics and affiliation of genera to higher taxa of Heterobasidiomycetes. Canadian Journal of Microbiology 39: 276-290. 7. Boekhout, T., Renting, M., Alexander Scheffers, W. and Bosboom, R. 1993. The use of karyotyping in the systematics of yeasts. Antonie van Leeuwenhoek 63(2): 157-163. 8. Cadez, N., Poot, G. A., Raspor, P. and Smith, M. T. 2003. Hanseniaspora meyeri sp. nov., Hanseniaspora clermontiae sp. nov., Hanseniaspora lachancei sp. nov. and Hanseniaspora opuntiae sp. nov., novel apiculate yeast species. Int J Syst Evol Microbiol 53: 1671-1680. 9. Cadez, N., Raspor, P. and Smith, M. T. 2006. Phylogenetic placement of Hanseniaspora-Kloeckera species using multigene sequence analysis with taxonomic implications: descriptions of Hanseniaspora pseudoguilliermondii sp. nov. and Hanseniaspora occidentalis var. citrica var. nov. Int J Syst Evol Micr 56: 1157-1165. 10. Calandra, T., Schneider, R., Bille, J., Mosimann, F. and Francioli, P. 1989. Clinical significance of Candida isolated from peritoneum in surgical patients. The Lancet 334(8677): 1437-1440. 11. Carvalho, M., Rocha, A., Estevinho L. and Choupina, A. 2005. Identification of honey yeast species based on RELP analysis of the ITS region, Cienc Tecnol Aliment 5(1):11-17. 12. Catley, B. J. 1980. The extracellular polysaccharide, pullulan, produced by Aureobasidium pullulans: A relationship between elaboration rate and morphology. J Gen Microbiol 120(1): 265-268. 13. Daniel, H. M., Sorrell, T. C. and Meyer, W. 2001. Partial sequence analysis of the actin gene and its potential for studying the phylogeny of Candida species and their teleomorphs. Int J Syst Evol Micr 51(4): 1593-1606. 14. David P. L. 1990. Isolation of biotechnological organisms from nature. New York: McGraw-Hill. 15. de Hoog, G. S. and Smith, M. T. 1998. Hyalodendron Diddens. In The Yeasts, a Taxonomic Study, 4th edn. Edit by C. P. Kurtzman and J. W. Fell. Amsterdam, Elsevier: 773-774. 16. Di Maro, E., Ercolini, D. and Coppola, S. 2007. Yeast dynamics during spontaneous wine fermentation of the Catalanesca grape. International Journal of Food Microbiology 117(2): 201-210. 17. Droby, S., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E. and Porat, R. 2002. Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology 92(4): 393-399. 18. Eck, R. V. and Dayhoff, M. O. 1966. Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Silver Springs, Maryland. 19. Endoh, R., Suzuki, M., and Benno, Y. 2008. Ambrosiozyma kamigamensis sp. nov. and A. neoplatypodis sp. nov., two new ascomycetous yeasts from ambrosia beetle galleries. Antonie van Leeuwenhoek 94: 365-376. 20. Eriksson, O. E., Svedskog, A. and Landvik, S. 1993. Molecular evidence for the evolutionary hiatus between Saccharomyces cerevisiae and Schizosaccharomyces pombe. Ascomycetum 11: 119-162. 21. Esteve-Zarzoso, B., Manzanares, P., Ramon, D. and Querol, A. 1998. The role of non-Saccharomyces yeasts in industrial winemaking. International Microbiology 1: 143-148. 22. Fell, J. W., Boekhout, T., Fonseca, A., Scorzetti, G. and Statzell-Tallman, A. 2000. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. International Journal of Systematic and Evolutionary Microbiology 50: 1351-1371. 23. Fell, J. W. and Kreger-van Rij, N. J. W. 1984. Classification of the basidiosporogenous yeasts. Elsevier, Amsterdam. 24. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791. 25. Fernandez, M., Ubeda, J. F. and Briones, A. I. 2000. Typing of non-Saccharomyces yeasts with enzymatic activities of interest in winemaking. International Journal of Food Microbiology 59: 29-36. 26. Glushakova A. M., Iurkov A. M., and Chernov I., 2007. Massive isolation of anamorphous ascomycete yeasts Candida oleophila from plant phyllosphere. Mikrobiologiia 7(6): 896-901. 27. Golubev, W. I., Gadanho, M., Sampaio, J. P. and Golubev, N. W. 2003. Cryptococcus nemorosus sp. nov. and Cryptococcus perniciosus sp. nov., related to Papiliotrema Sampaio et al. (Tremellales). Int. J. Syst Evol. Microbiol. 53: 905-911. 28. Granados, D. P. and Castañeda, E. 2005. Isolation and characterization of Cryptococcus neoformans; varieties recovered from natural sources in Bogotá, Colombia, and study of ecological conditions in the Area. Microbial Ecology 49(2): 282-290. 29. Guého, E., de Hoog, G. S. and Smith, M. T. 1992. Neotypification of the genus Trichosporon. Antonie van Leeuwenhoek 61(4): 285-288. 30. Gue' ho, E., Kurtzman, C. P. and Peterson, S. W. 1989. Evolutionary affinities of heterobasidiomycetous yeasts estimated from 18S and 25S ribosomal RNA sequence divergence. Syst Appl Microbiol 12: 230-236. 31. Gue' ho, E., Smith, M. T. and de Hoog, G. S. 1998. Trichosporon Behrend, In The Yeasts, a Taxonomic Study, 4th edn. Edit by C. P. Kurtzman and Fell. J. W. Amsterdam, Elsevier: 854-872. 32. Guillamón, J. M., Sabaté, J., Barrio, E., Cano, J. and Querol, A. 1998. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Archives of Microbiology 169(5): 387-392. 33. Guo, X., Zhu, H. and Bai, F. 2011. Candida cellulosicola sp. nov., a novel xylose utilizing anamorphic yeast species from rotten wood. International Journal of Systematic and Evolutionary Microbiology. In Press. doi:10.1099/ijs.0.031351-0. 34. Heard, G. M. and Fleet, G. H. 1988. The effects of temperature and pH on the growth of yeast species during the fermentation of grape juice. Journal of Applied Microbiology 65(1): 23-28. 35. Hierro, N., Esteve-Zarzoso, B., Mas, A. and Guillamón, J. M. 2007. Monitoring of Saccharomyces and Hanseniaspora populations during alcoholic fermentation by real-time quantitative PCR. FEMS Yeast Research 7(8): 1340-1349. 36. Jindamorakot, S. Ninomiya, S. Limtong, S. Yongmanitchai, W. Tuntirungkij, M. Potacharoen, W. Tanaka, K. Kawasaki, H. Nakase, T. 2009.Three new species of bipolar budding yeasts of the genus Hanseniaspora and its anamorph Kloeckera isolated in Thailand. FEMS Yeast Res. 9(8):1327-37. 37. Khan, Z. P., Ahmad, S., Hagen, F., Fell, J. W., Kowshik, T., Chandy, R. and Boekhout, T. 2010. Cryptococcus randhawai sp. nov., a novel anamorphic basidiomycetous yeast isolated from tree trunk hollow of Ficus religiosa (peepal tree) from New Delhi, India. Antonie Leeuwenhoek 97: 253-259. 38. Kim S. H., Uzunovic A. and Breuil C. 1999. Rapid detection of Ophiostoma piceae and O. quercus in stained wood by PCR. Appl Environ Microbiol. 65(1): 287-290. 39. Kobayashi, M. and Hayashi, S. 1998. Supplementation of NaCl to Starter Culture of the Soy Yeast Zygosaccharomyces rouxii. Journal of Fermentation and Bioengineering 85(6): 642-644 40. Kurtzman, C. P. 1987. Prediction of biological relatedness among yeasts from comparisons of nuclear DNA complementarity. Mycology 30: 459-468. 41. Kurtzman, C. P. 1991. DNA relatedness among saturn-spored yeasts assigned to the genera Williopsis and Pichia. Antonie van Leeuwenhoek 60(1): 13-19. 42. Kurtzman, C. P. 1993. Systematics of the ascomycetous yeasts assessed from ribosomal RNA sequence divergence. Anronie van Leeuwenhoek 63: 165-174. 43. Kurtzman, C. P. and Fell, J. W. 1998. The Yeasts, A Taxonomic Study , 4th edn. Amsterdam: Elsevier. 44. Kurtzman, C. P. and Fell, J. W. 2006. Yeast systematics and phylogeny: implications of molecular identification methods for studies in ecology. Biodiversity and Ecophysiology of Yeasts: the yeast handbook. Edit by Rosa C.and Péter G., New York: Springer. 45. Kurtzman, C. P. and Phaff, H. J. 1987. Molecular taxonomy of yeasts. The Yeasts 2(1): 63-94. 46. Kurtzman, C. P. and Robnett, C. J. 1997. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5'' end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35(5): 1216-1223. 47. Kurtzman, C. P. and Robnett, C. J. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73: 331-381. 48. Kurtzman, C. P. and Robnett, C. J. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. . Antonie van Leeuwenhoek 73: 331-371. 49. Kurtzman, C. P. and Robnett, C. J. 2003. Phylogenetic relationships among yeasts of the ''Saccharomyces complex'' determined from multigene sequence analyses. FEMS Yeast Res 3: 417-432. 50. Kurtzman, C. P. and Robnett, C. J. 2007. Multigene phylogenetic analysis of the Trichomonascus, Wickerhamiella and Zygoascus yeast clades, and the proposal of Sugiyamaella gen. nov. and 14 new species combinations. FEMS Yeast Res 7: 141-151. 51. Kurtzman, C. P., Smiley, M. J. and Johnson, C. J. 1980. Emendation of the genus Issatchenkia Kudriavzev and comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure. Int J Syst Bacteriol 30(2): 503-513. 52. Kurtzman, C. P., Smiley, M. J., Johnson, C. J., Wickerham, L. J. and Fuson, G. B. 1980. Two New and Closely Related Heterothallic Species, Pichia amylophila and Pichia mississippiensis: characterization by hybridization and deoxyribonucleic acid reassociation. Int J Syst Bacteriol 30(1): 208-216. 53. Lachance, M.-A., Phaff, H. J. and Starmer, W. T. 1993. Kluyveromyces bacillisporus sp. nov., a yeast from emory oak exudate. International Journal of Systematic Bacteriology 43(1): 115-119. 54. Lachance, M. A., Bowles, J. M. and Starmer, W. T. 2003. Metschnikowia santaceciliae, Candida hawaiiana, and Candida kipukae, three new yeast species associated with insects of tropical morning glory. FEMS Yeast res 3: 97-103. 55. Las Heras-Vazquez, F. J., L. Mingorance-Cazorla, Clemente-Jimenez, J. M. and Rodriguez-Vico, F. 2003. Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and the two internal transcribed spacers. FEMS Yeast Research 3(1): 3-9. 56. Lindegren, C. C. and Lindegren, G. 1949. Unusual gene-controlled combinations of carbohydrate fermentations in yeast hybrids. Proceedings of the National Academy of Sciences 35: 23-27. 57. Magee, B. B., Souza, T. M. D. and Magee, P. T. 1987. Strain and species identification by restriction fragment length polymorphisms in the ribosomal DNA repeat of Candida species. J. Bacteriol. 169: 1639-1643. 58. Meyer, S. A., Smith, M. T. and Simione, F. P. J. 1978. Systematics of Hanseniaspora Zikes and Kloeckera Janke. Antonie van Leeuwenhoek 44: 79-96. 59. Middelhoven, W. J., Scorzetti, G. and Fell, J. W. 2004. Systematics of the anamorphic basidiomycetous yeast genus Trichosporon Behrend with the description of five novel species. Int J Syst Evol Micr 54(Pt 3): 975-986. 60. Morais, P. B., Teixeira, L. C. R. S., Bowles, J. M., Lachance, M. A. and Rosa, C. A. 2004. Ogataea falcaomoraisii sp. nov., a sporogenous methylotrophic yeast from tree exudates. FEMS Yeast Research 5(1): 81-85. 61. Nagahama, T., Hamamoto, M. and Horikoshi, K. 2006. Rhodotorula pacifica sp. nov., a novel yeast species from sediment collected on the deep-sea floor of the north-west Pacific Ocean. Int J Syst Evol Microbiol 56(1): 295-299. 62. Nagahama, T., Hamamoto, M., Nakase, T. and Horikoshi, K. 2003. Rhodotorula benthica sp. nov. and Rhodotorula calyptogenae sp. nov., novel yeast species from animals collected from the deep-sea floor, and Rhodotorula lysiniphila sp. nov., which is related phylogenetically. Int J Syst Evol Microbiol 53(3): 897-903. 63. Nakase, T. 2000. Expanding world of ballistosporous yeasts: distribution in the phyllosphere, systematics and phylogeny. J Gen Appl Microbiol 46: 189-216. 64. Nakase, T., Imanishi, Y., Ninomiya S. and Takashima, M. 2010. Candida rishirensis sp. nov., a novel methylotrophic anamorphic yeast species isolated from soil on Rishiri Island in Japan. Journal of General and Applied Microbiology 56(2): 169-173. 65. Nakase, T. and Komagata, K. 1970. Significance of DNA base composition in the classification of yeast genera Hanseniaspora and Kloeckera. J Gen Appl. Microbiol 16: 241-250. 66. Nisiotou, A. A. and Nychas, G.-J. E. 2007. Yeast Populations Residing on Healthy or Botrytis-Infected Grapes from a Vineyard in Attica, Greece. Appl. Environ. Microbiol. 73(8): 2765-2768. 67. Olstorpe, M., Lyberg, K., Lindberg, J. E., Schnu‥rer, J. and Passoth, V. 2008. Population diversity of yeasts and lactic acid bacteria in pig feed fermented with whey, wet wheat distillers, grains, or water at different temperatures. Appl. Environ. Microbiol. 74: 1696-1703. 68. Péter, G., Dlauchy, D., Tornai-Lehoczki, J., Suzuki, M. and Kurtzman, C. P. 2011. Spencermartinsiella europaea gen. nov., sp. nov., a new member of the family Trichomonascaceae. International Journal of Systematic and Evolutionary Microbiology 61(4): 993-1000. 69. Péter, G., Tornai-Lehoczki, J., Suzuki, M. and Dlauchy, D. 2005. Metschnikowia viticola sp. nov., a new yeast species from grape. Antonie van Leeuwenhoek 87(2): 155-160. 70. Peterson, S. W. and Kurtzman, C. P. 1991. Ribosomal RNA sequence divergence among sibling species of yeasts. Systematic and Applied Microbiology 14: 124-129. 71. Phaff, H. J., Vaughan-Martini, A. and Starmer, W. T. 1998. Debaryomyces prosopidis sp. nov., a yeast from exudates of mesquite trees. International Journal of Systematic Bacteriology 48(4): 1419-1424. 72. Phaff, H. J., Starmer, W. T., Tredick, J. and Miranda, M. 1985. Pichia deserticola and Candida deserticola, two new species of yeasts associated with necrotic stems of cacti. International Journal of Systematic Bacteriology 35(2): 211-216. 73. Pitt, J. I. and Miller, M. W. 1968. Sporulation in Candida pulcherrima, Candida reukaufii and Chlamydozyma species: their relationships with Metschnikowia. Mycologia 60: 663-685. 74. Price, C. W., Fuson, G. B. and Phaff, H. J. 1978. Genome comparison in yeast systematics: Delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces, and Pichia. Microbiological Reviews 42(1): 161-193. 75. Prillinger, H., Molnár, O., Eliskases-Lechner, F. and Lopandic, K. 1999. Phenotypic and genotypic identification of yeasts from cheese. Antonie van Leeuwenhoek 75(4): 267-283. 76. Ramírez, J., Gutierrez, H. and Gschaedler, A. 2001. Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. Journal of Biotechnology 88(3): 259-268. 77. Rokas, A., Williams, B. L., King, N. and Carroll, S. B. 2003. Genomescale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798-804. 78. Sampaio, J. P., Inácio, J., Fonseca, A., Gadanho, M., Spencer-Martins, I., Scorzetti, G. and Fell, J. W. 2004. Auriculibuller fuscus gen. nov., sp. nov. and Bullera japonica sp. nov., novel taxa in the Tremellales. Int J Syst Evol Microbiol 54: 987-993. 79. Sampaio, J. P., Weiß, M., Gadanho, M. and Bauer, R. 2002. New taxa in the Tremellales: Bulleribasidium oberjochense gen. et sp. nov., Papiliotrema bandonii gen. et sp. nov. and Fibulobasidium murrhardtense sp. nov. . Mycologia 94: 873-887. 80. Scorzetti, G., Fell, J. W., Fonseca, A. and Statzell-Tallman, A. 2002. Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2: 495-517. 81. Scorzetti, G., Fell, J. W., Fonseca, A. and Statzell-Tallman, A. 2002. Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Research 2(4): 495-517. 82. Spencer, J. F. T., Gorin, P. A. J. and Gardner, N. R. 1970. Yeasts isolated from the South Saskatchewan, a polluted river. Canadian Journal of Microbiology 16(11): 1051-1057. 83. Suh, S.-O., Gibson, C. M. and Blackwell, M. 2004. Metschnikowia chrysoperlae sp. nov., Candida picachoensis sp. nov. and Candida pimensis sp. nov., isolated from the green lacewings Chrysoperla comanche and Chrysoperla carnea (Neuroptera: Chrysopidae). International Journal of Systematic and Evolutionary Microbiology 54(5): 1883-1890. 84. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. Mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Molecular Biology and Evolution 10.1093/molbev/msm092. 85. Urquhart, E. J. and Punja, Z. K. 2002. Hydrolytic enzymes and antifungal compounds produced by Tilletiopsis species, phyllosphere yeasts that are antagonists of powdery mildew fungi. Can. J. Microbiol. 48(3): 219-229. 86. Vilgalys, R. and Hester, M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol 172(8): 4238-4246. 87. Walker, W. F. 1985. 5S ribosomal RNA sequences from ascomycetes and evolutionary implications. System Appl Microbiol 6: 48-53. 88. Weijman, A. C. M. 1979. Carbohydrate composition and taxonomy of Geotrichum, Trichosporon and allied genera. Antonie van Leeuwenhoek 45: 119-127. 89. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols a guide to methods and applications, Academic Press: 315-322. 90. Williams, D. W., Wilson, M. J., Lewis, M. A. and Potts. A. J. 1995. Identification of Candida Species by PCR and Restriction Fragment Length Polymorphism Analysis of Intergenic Spacer Regions of Ribosomal DNA. J Clin Microbiol. 33(9): 2476-2479. 91. Williams, J., Kubelik, A., Livak, K. and Tingey, S. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18(22): 6531-6535. . 92. Winge, O. and Roberts, C. 1949. Inheritance of enzymatic characters in yeast, and the phenomenon of long-tenn adaptation. C. R. Trav. Lab. Carlsberg 24: 263-315. 93. Wisniewski, M., Biles, C., Droby, S., McLaughlin, R., Wilson, C. and Chalutz, E. 1991. Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I: Characterization of attachment to Botrytis cinerea. Physiological and Molecular Plant Pathology 39(4): 245-258. 94. Xue, M.-L., Zhang, L.-Q., Wang, Q.-M., Zhang, J.-S. and Bai, F.-Y. 2006. Metschnikowia sinensis sp. nov., Metschnikowia zizyphicola sp. nov. and Metschnikowia shanxiensis sp. nov., novel yeast species from jujube fruit. International Journal of Systematic and Evolutionary Microbiology. 56(9): 2245-2250.
摘要: 酵母菌廣泛分布於自然環境中,於不同環境基質上所存在之多樣性酵母菌物種,皆衍生出特有之性質,可作為開發其應用價值之基礎。探索酵母菌在環境中之多樣性,將可找到更多有益菌種,供未來永續利用。本研究調查植物基質中酵母菌之多樣性,探討不同基質上酵母菌物種之差異。酵母菌多樣性研究,先對所蒐集之菌株分析限制酵素片段長度多型性(RFLPs),依DNA圖譜歸納分群,再從各群中選擇代表菌株以 DNA 序列比對鑑定。為了改良現有多樣性調查方法,本研究發展酵母菌資料庫搜尋系統,將RFLPs圖譜儲存在資料庫中,結合網路搜尋功能,讓多樣性研究過程中菌種之蒐集整理與鑑定能更有效率及精確。本研究蒐集 339 個菌株,共有74 種,包括 18 個新種,並將資料庫搜尋結果和圖鑑檔案結合。透過持續新增新的菌種資訊,未來在多樣性調查時,任何蒐集到的菌株皆能快速的進行初步之鑑定,而資料庫搜尋系統可做為管理菌種及發現新的物種的有利工具。
Yeasts are ubiquitous in the ecosystem. Diverse species are derived from diverse environments and substrates. In order to adapt to different habitats, numerous properties have been evolved in different yeasts. They are potentially useful for human being. The objective of this study was to survey the diversity of yeasts from different plant materials, and to realize the correlation between substrates and yeasts species. During the survey of yeast diversity, a lot of isolates will flood in. Therefore, to separate all the obtained isolates into groups by RFLPs fingerprinting is essential. In order to develop a proper method to manage the DNA fingerprinting data derived from RFLPs, a search system combined with database was designed in this study. All the DNA fingerprinting data are stored in database and can be retrieved through designed webpage. This dadabase search system will make the organization and identification of yeast isolates efficient and accurate. There were 339 isolates obtained in this study. They can be attributed to 74 species, including 18 new species. Photos containg all the discernable characters were established for all the obtained species and they were all deposited in the database. Further species or isolate with fingerprinting data can continuously be added to this database to complete this database. It is expected that this database search system will be a helpful and powerful tool to manage yeast culture collections and to explore new species in the future.
URI: http://hdl.handle.net/11455/31004
其他識別: U0005-1908201115285800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201115285800


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。