Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31007
標題: 篩選促進番茄生長之根棲細菌及其對番茄生長、產量及青枯病發生之影響
Screening rhizobacteria for promoting tomato growth and their effects on growth , yield and severity of bacterial wilt of tomato
作者: 鄧雅靜
Teng, Ya-Ching
關鍵字: tomato
番茄
rhizobacteria
growth promotion
bacterial wilt control
rhizobacteria induced resistance
bacteria wilt disease
PR-1 gene
根棲細菌
生長促進
青枯病防治
根棲細菌
誘導抗病性
青枯病
PR-1蛋白基因
出版社: 植物病理學系所
引用: 引用文獻 (LITERATURE CITED) 1. 丁德志。1995。蓮霧青枯病之研究。國立中興大學植物病理學研究所第二十五屆畢業碩士論文。 2. 邱硯詩。2002。最近為害台灣中部馬鈴薯之青枯病菌菌系之特性。國立中興大學植物病理學系第三十二屆畢業碩士論文。 3. 林天枝、洪噬堂。1989。番茄新品種-台中亞蔬四號。台灣農業 25:71-79。 4. 林俊義、徐世典、何妙麟。1974。番茄抗青枯病育種 (一) 番茄品種間抗青枯病菌之差異性。農林廳種苗繁殖場試驗所研究報告 第三輯 1-15。 5. 林俊義、徐世典、何妙麟。1975。番茄抗青枯病育種 (二) 番茄雜交後代抗病品系選拔與純化。農林廳種苗繁殖場試驗所研究報告 第四輯:35-46。 6. 林俊義、陳盛義。 1982。番茄耐熱抗青枯病育種。台灣農業 18:40-46。 7. 徐世典。1975。土壤環境與植物病原細菌之消長。植保會刊 17:233-242。 8. 徐世典。1976。影響番茄青枯病發生之因素。農林學報 25:95-102。 9. 徐世典。1977。茄科植物青枯病菌在土壤及番茄罹病組織內之生存。植保會刊 19:133-139。 10. 徐世典。1991。臺灣植物青枯病菌之生態與防治。植保會刊 33:72-79。 11. 康慧鳳。1990。紫蘇青枯病之研究。國立中興大學植物病理學研究所第二十屆畢業碩士論文。 12. 潘瓊美。1995。絲瓜青枯病之研究。國立中興大學植物病理學研究所第二十五屆畢業碩士論文。 13. 鄧雅靜、徐世典、曾國欽。1993。番荔枝青枯病:病原菌之特性及番荔枝科植物對病原菌之感受性。植物保護學會會刊 35:354。 14. 鄧雅靜、徐世典、曾國欽。1996。番荔枝科植物對青枯病菌之反應。植物病理學會刊 5:129-136。 15. Ahl, P., Voisard, C., and Défago, G. 1986. Iron bound-siderophoers, cyanic acid, and antibiotics involved in suppression of Thielaviopsis basicola by a Pseudomonas fluorescens strain. J. Phytopathol. 116:121-134. 16. Akiew, E. B. 1990. Archontppoenix alexandrae, a new host of Pseudomonas solanacearum in Australia. Plant Dis. 74:615. 17. Akiew, E. B. 1992. Bacterial wilt of diploid Musa caused by Pseudomonas solanacearum race 1 in Australia Plant Dis. Rep. 49:378-379. 18. Alexander, D., Goodman, R. M., Gut-Rella, M., Glascock, C., and Weymann, K. 1993. Increased tolerance to 2 oomycete pathogens in transgenic tobacco expressing pathogensis-related protein-1a. Proc. Natl. Acad. Sci. USA 90: 7327-7331. 19. Bar-Yosef, B., Rogers, R. D., Wolfram, J. H., and Richman, E. 1999. Pseudomonas cepacia-mediated rockphosphate solubilization in kaolinite and montmorillonite suspensions. Soil Sci. Soc. Am. J. 63:1703-1708. 20. Buddenhagen, I. W., and Kelman, A. 1964. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacerum. Annu. Rev. Phytopathol. 2:203-230. 21. Burr, T. J., Schroth, M. N., and Suslow, T. 1978. Increased potato yield by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377-1383. 22. Chao, Y. C., Liang, W. J., Huang, L. L., Ho, W. C., and Tsai, C. H. 1995. Bacterial wilt of Texas blue bell (Eustoma Grandiflorum L.). Annual Meeting, Phytopathol. Soc. ROC. Abstract No. p.37. 23. Chen, C., Bélanger, R. R., Benhamou, N., and Paulitz, T. C. 1998. Induced systemic resistance (ISR) by Pseudomonas spp. impairs pre-and post-infection development of Pythium aphanidermatum on cucumber roots. Eur. J. Plant Pathol. 104:877-886. 24. De Boer, M., Bom, P., Kindt, F., Keurentjes, J. J. B., van der Sluis, I., van Loon, L. C., and Bakker, P. A. H. M. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanism. Phytopathology 93:626-632. 25. De Meyer, G., and Höfte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588-593. 26. Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gur-Rella, M., Kessmann, H., Ward, E., and Ryals, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266:1247-1250. 27. Duijff, B. J., Gianinazzi-Pearson, V., and Lemanceau, P. 1997. Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol. 135:325-334. 28. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754-756. 29. Gardner, J. M., Chandler, J. L., and Feldman, A. W. 1984. Growth promotion and inhibition by antibiotic-producing fluorescent pseudomonads on citrus roots. Plant Soil 77:103-113. 30. Geels, F. P., and Schippers, B. 1983. Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. J. Phytopathol. 108:193-206. 31. Geels, F. P., and Schippers, B. 1983. Reduction of yield depressions in high frequency potato cropping soil after seed tuber treatments with antagonistic fluorescent Pseudomonas spp. J. Phytopathol. 108:207-214. 32. Gessler, C., and Kuć, J. 1982. Induction of resistance to Fusarium wilt in cucumber by root and foliar pathogens. Phytopathology 72:1439-1441. 33. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41:109-117. 34. Glick, B. R., Karaturovic, D. M., and Newell, P. C. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Microbiol. 41:533-536. 35. Graham, J., Jones, D. A., and Lloyd, A. B. 1979. Survival of Pseudomonas solanacearum race 3 in plant debris and in latently infected potato tubers. Phytopathology 69:1100-1103. 36. Hammerschmidt, R., and Kuć, J. 1995. Induced resistance to disease in plants. Kluwer Academic Publishers, Dordrecht, the Netherlands.182pp. 37. Hartman, G. L., Hong, W. F., and Wang, T. C. 1991. Suvey of bacterial wilt on fresh market hybrid tomatoes in Taiwan. Plant Prot. Bull. 33:197-203. 38. Hayward, A. C. 1985. Bacterial wilt caused by Pseudomonas solanacearum in Asia and Australia : an overview. Pages 15-24 in : Bacterial Wilt Disease in Asia and the South Pacific. G. J. Persley, eds. ACIAR Proc. No.13. 39. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29: 65-87. 40. Hayward, A. C. 1994. The host of Pseudomonas solanacearum. Pages 9-12 in : Bacterial Wilt. The Disease and Its Causative Agent, Pseudomonas solanacearum. (Hayward, A. C. & Hartman, G. L., eds) CAB Int., Wallingford. UK. 259pp. 41. Hoffland, E., Hakulinen, J., and van Pelt, J. A. 1996. Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology 86: 757-762. 42. Hoffland, E., Pieterse, C. M. J., Bik, L., and van Pelt, J. A. 1995. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol. Mol. Plant Pathol. 46:309-320. 43. James, M., Beena, S., Anita Cherian, K., and Koshy, A. 1993. Baterial wilt of nutmeg (Myristica Fragrans L.) incited by Pseudomonas solanacearum (Smith) Smith. ACIAR Bacterial Wilt Newsletter No. 9:8. 44. Kelman, A. 1953. The bacterial wilt caused by Pseudomonas solanacearum. N. Carolina Agric. Exp. Sta. Tech. Bull. 99.194pp. 45. Kelman, A., and Sequeira, L. 1965. Root-to-root spread of Pseudomonas solanacearum. Phytopathology 55:304-309. 46. Kim, D.-S., Cook, R. J.,and Weller, D. M. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87:551-558. 47. Kim, D.-S., Weller, D. M., and Cook, R. J. 1997. Population dynamics of Bacillus sp. L324-92R12 and Pseudomonas fluorescens 2-79RN10 in the rhizosphere of wheat. Phytopathology 87:559-564. 48. Kloepper, J. W. 1983. Effect of seed piece inoculation with plant growth-promoting rhizobacteria on populations of Erwinia carotovora on potato roots and daughter tubers. Phytopathology 73:217-219. 49. Kloepper, J. W., and Schroth, M. N. 1978. Plant growth-promoting rhizobacteria on radishes. Pages 879 - 882 in: Proc. 4th Vol. 2. Int. Conf. Plant. Path. Bact. Angers, France. 50. Kloepper, J. W., and Schroth, M. N. 1981. Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020-1024. 51. Kloepper, J. W., Hume, D. J., Scher, F. M., Singleton, C., Tipping, B., Laliberte, M., Frauley, K., Kutchaw, T., Simonson, C., Lifshitz, R., Zaleska, I., and Lee, L. 1988. Plant growth-promoting rhizobacteria on canola (rapeseed). Plant Dis. 72:42-46. 52. Kloepper , J. W., Leong, J., Teintze, M., and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885-886. 53. Kloepper , J. W., Leong, J., Teintze, M., and Schroth, M. N. 1980. Pseudomonas siderophores : A mechanism explaining disease suppressive soils. Curr. Microbiol. 4:317-320. 54. Kloepper, J. W., Schroth, M. N., and Miller, T. D. 1980. Effects of rhizosphere colonization by plant growth promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078-1082. 55. Landa, B. B., Navas-Cortés, J. A., Hervás, A., and Jiménez-Díaz, R. M 2001. Influence of temperature and inoculum density of Fusarium oxysporum f. sp. ciceris on suppression of Fusarium wilt of chickpea by rhizosphere bacteria. Phytopathology 91:807-816. 56. Leeman, M., Den Ouden, F. M., Van Pelt, J. A., Dirkx, F. P. M., Setijl, H., Bakker, P. A. H. M., and Schippers, B. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149-155. 57. Leeman, M., Van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., and Bakker, P. A. H. M. 1995. Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021-1027. 58. Liu, L., Kloepper, J. W., and Tuzun, S. 1995. Induction of systemic resistance in cucumber against fusarium wilt by Plant growth-promoting rhizobacteria. Phytopathology 85:695-698. 59. Liu, L., Kloepper, J. W., and Tuzun, S. 1995. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85:843-847. 60. Liu, L., Kloepper, J. W., and Tuzun, S. 1995. Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria : Duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85:1064-1068. 61. Malamy, J., Carr, J. P., Klessig, D. F., and Raskin, I. 1990. Salicylic acid : A likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002-1004. 62. Mandeel, Q., and Baker, R. 1991. Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 81:462-469. 63. Mauch-Mani, B., and Métraux, J.-P. 1998. Salicylic acid and systemic acquired resistance to pathogen attack. Ann. Bot. 82: 535-540. 64. Maurhofer, M., Hase, C., Meuwly, P., Métraux, J.-P., and Défago, G. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0 : Influence of the gacA gene and of pyoverdine production. Phytopathology 84:139-146. 65. Mayers, P. E., and Hutton, D. G. 1987. Bacterial wilt, a new disease of custard apple : Symptoms and etiology. Ann. Appl. Biol. 111:135-145. 66. Mew, T. W., and Ho, W. C. 1977. Varietal reistance to bacterial wilt in tomato. Plant Dis. Rep. 60:264-268. 67. Moffett, M. L., Wood, B. A., and Hayward, A. C. 1981. Seed and Soil : sources of inoculum for the colonization of the foliage of solanaceous hosts by Pseudomonas solanacearum. Ann. Appl. Biol. 98:403-411. 68. Nautiyal, C. S. 2003. Plant growth-promoting rhizobacteria from stressed ecosystems. 6th Int. PGPR Workshop, Calicut, India. p.47-50. 69. Olsson, K. 1976. Overwintering of Pseudomonas solanacearum in Sweden. Pages 105-109 in : Planning Conf. and Workshop on the Ecology and Control of Bacterial Wilt caused by Pseudomonas solanacearum. L. Sequeira, and A. Kelman, eds. N. Carolina State University Raleigh, North Carolina. 70. Pan, B., Bai, Y. M., Leibovitch, S., and Smith, D. L. 1999. Plant-growth-promoting rhizobacteria and kinetin as ways to promote corn growth and yield in a short-growing-season area. Eur. J. Agronomy 11:179-186. 71. Persley, G. J. 1986. Bacterial wilt disease in Asia and the South Pacific. Proc. Int. Workshop PCARRD, Los Banos, Philippines, 8-10 Oct, 1985. ACIAR. Proc. No.13. 145pp. 72. Pieterse, C. M. J., van Wees, S. C. M., Hoffland, E., van Pelt, J. A., and van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225-1237. 73. Pieterse, C. M. J., van Wees, S. C. M., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580. 74. Press, C. M., Wilson, M., Tuzun, S., and Kloepper, J. W. 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinate of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe Interact. 10:761-768. 75. Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S., and Kloepper, J. W. 1996. Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Dis. 80:891-894. 76. Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340-358. 77. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819. 78. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., and Pare, P. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. 100:4927-4932. 79. Scher, F. M., and Baker, R. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567-1573. 80. Schippers, B., Bakker, A. W., and Bakker, P. A. H. M. 1987. Interaction of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25:339-358. 81. Sepmg, K. Y., Kim, Y. C., Cho, B. H., Kim, K. Y., and Park, K. H. 2001. Antimicrobial and alleopathic dffect of 3-methythiopropanoic acid produced by a PGPR strain 60-2G, Enterobacter intermedium. Phtopathology 91:80-81. 82. Sequeira, L. 1958. Bacterial wilt of bananas : Dissemination of the pathogen and control of the disease. Phytopathology 48:64-69. 83. Sneh, B., Dupler, M., Elad, Y., and Baker, R. 1984. Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from a Fusarium-suppressive soil. Phytopathology 74:1115-1124. 84. Spletzer, M. E., and Enyedi, A. J. 1999. Salicylic acid induces resistance to Alternaria solani in hydroponically grown tomato. Phytopathology 89:722-727. 85. Sticher, L., Mauch-Mani, B., and Métraux, J. P. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35:235-270. 86. Suslow, T. V. 1982. Role of root-colonizing bacteria in plant growth. Pages 187-223 in : Phytopathogenic Procaryotes. Vol. 1. M. S. Mount and G. H. Lacy, eds. Academic press, N. Y. 87. Suslow, T. V., and Schroth, M. N. 1982. Role of deletrious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72:111-115. 88. Suslow, T. V., and Schroth, M. N. 1982. Rhizobacteria of sugar beets : effects of seed application and root colonization on yield. Phytopathology 72:199-206. 89. Tahiri-Alaoui, A., Dumas-Gaudot, E., Gianinazzi, S., and Antoniw, J. F. 1993. Expression of the PR-b1 gene in roots of two Nicotiana species and their amphidiploid hybrid infected with virulent and avirulent races of Chalara elegans. Plant Pathol. 42:728-736. 90. Toro, M., AzcóN, R., and Barea, J. M. 1997. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl. Environ. Microbiol. 63:4408-4412. 91. van Loon, L. C. 1985. Pathogenesis-related proteins. Plant Mol. Biol. 4:111-116. 92. van Loon, L. C., Bakker, P. A. H. M., and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483. 93. van Peer, R., Niemann, G. J., and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728-734. 94. van Wees, S. C. M., de Swart, E. A. M., van Pelt, J. A., van Loon, L. C., and Pieterse, C. M. J. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97:8711-8716. 95. Van Wees, S. C. M., Pieterse, C. M. J., Trijssenaar, A., Van''t Westende, Y. A. M., Hartog, F., and Van Loon, L. C. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant-Microbe Interact. 10:716-724. 96. Verberne, M. C., Verpoorte, R., Bol, J. F., Mercado-Blanco, J., and Linthorst, H. J. M. 2000. Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nature biotechnol. 18:779-783. 97. Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Métraux, J.-P., and Ryals, J. A. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085-1094. 98. Wei, G., Kloepper, J. W., and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508-1512. 99. Wei, G., Kloepper, J. W., and Tuzun, S. 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86:221-224. 100. Weller, D. M. 1988. Biological control of soil-born plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379-407. 101. Weller, D. M., and Cook, R. J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463-469. 102. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487-511. 103. White, R. F. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410-412. 104. Yan, Z., Reddy, M. S., Ryu, C. M., Mcinroy, J. A., Wilson, M., and Kloepper, J. W. 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329-1333. 105. Yuen, G. Y., and Schroth, M. N. 1986. Interactions of Pseudomonas fluorescens strain E6 with ornamental plants and its effect on the composition of root-colonizing microflora. Phytopathology 76:176-180. 106. Zhou, T., and Paulitz, T. C. 1994. Induced resistance in the biocontrol of Pythium aphanidermatum by Pseudomonas spp. on cucumber. J. Phytopathol. 142:51-63. 引用文獻 (LITERATURE CITED) 1. 曾德賜、葉瑩。2003。葉瑩病害防治用微生物製劑之開發與應用。植物保護學會特刊 新五號 (植物保護管理永續發展研討會專刊) p.221-238。 2. Ahl, P., Voisard, C., and Défago, G. 1986. Iron bound-siderophoers, cyanic acid, and antibiotics involved in suppression of Thielaviopsis basicola by a Pseudomonas fluorescens strain. J. Phytopathol. 116:121-134. 3. Aldesuquy, H. S., Mansour, F. A., and Abo-Hamed, S. A. 1998. Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol. 43:465-470. 4. Alexander, M. 1977. Introduction to soil microbiology, 2nd ed. Krieger Publishing Company, Malabar, FL. 467pp. 5. Bar-Yosef, B., Rogers, R. D., Wolfram, J. H., and Richman, E. 1999. Pseudomonas cepacia-mediated rockphosphate solubilization in kaolinite and montmorillonite suspensions. Soil Sci. Soc. Am. J. 63:1703-1708. 6. Brown, M. E. 1974. Seed and root bacterization. Annu. Rev. Phytopathol. 12:181-197. 7. Burr, T. J., Schroth, M. N., and Suslow, T. 1978. Increased potato yield by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377-1383. 8. Chen, C., Bélanger, R. R., Benhamou, N., and Paulitz, T. C. 1998. Induced systemic resistance (ISR) by Pseudomonas spp. impairs pre-and post-infection development of Pythium aphanidermatum on cucumber roots. Eur. J. Plant Pathol. 104:877-886. 9. De Boer, M., Bom, P., Kindt, F., Keurentjes, J. J. B., van der Sluis, I., van Loon, L. C., and Bakker, P. A. H. M. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanism. Phytopathology 93:626-632. 10. Doumbou, C. L., Hamby Salove, M. K., Crawford, D. L., and Beaulieu, C. 2001. Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85-102. 11. Duijff, B. J., Gianinazzi-Pearson, V., and Lemanceau, P. 1997. Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol. 135:325-334. 12. El-Abyad, M. S., El-Sayed, M. A., El-Shanshoury, A. R., and El-Sabbagh, S. M. 1993. Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant Soil 149:185-195. 13. Gardner, J. M., Chandler, J. L., and Feldman, A.W. 1984. Growth promotion and inhibition by antibiotic-producing fluorescent pseudomonads on citrus roots. Plant Soil 77:103-113. 14. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41:109-117. 15. Hamby, M. K., and Crawford, D. L. 2000. The enhancement of plant growth by selected Streptomyces species. Am. Soc. for Microbiol, 100th General Meeting, Los Angeles, CA, Abstracts, p.567. 16. Jobin, G., Couture, G., Goyer, C., Brzezinski, R., and Beaulieu, C. 2005. Streptomycete spores entrapped in chitosan beads as a novel biocontrol tool against common scab of potato. Appl. Microbiol. Biotechnol. 68:104-110. 17. Kado, C. I., and Heskett, M. G. 1970. Selective medium for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology 60:969-976. 18. Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693-695. 19. King, E. O., Ward, M. R., and Raney, D. E. 1954. Two simple media for the demonstration of pycocyanin and fluorescein. J. Lab. Clin. Med. 44:301-307. 20. Kloepper, J. W. 1983. Effect of seed piece inoculation with plant growth-promoting rhizobacteria on populations of Erwinia carotovora on potato roots and daughter tubers. Phytopathology 73:217-219. 21. Kloepper, J. W., and Schroth, M. N. 1978. Plant growth-promoting rhizobacteria on radishes. Pages 879 - 882 in : Proc. 4th Vol. 2. Int. Conf. Plant. Path. Bact. Angers, France. 22. Kloepper, J. W., and Schroth, M. N. 1981. Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020-1024. 23. Kloepper , J. W., Leong, J., Teintze, M., and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885-886. 24. Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M. N. 1980. Pseudomonas siderophores : A mechanism explaining disease-suppressive soils. Curr. Microbiol. 4:317-320. 25. Kloepper, J. W., Schroth, M. N., and Miller, T. D. 1980. Effects of rhizosphere colonization by plant growth promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078-1082. 26. Krause, M. S., Madden, L. V., and Hoitink, H. A. J. 2001. Effect of potting mix microbial carrying capacity on biological control of Rhizoctonia damping-off of radish and Rhizoctonia crown and root rot of poinsettia. Phytopathology 91:1116-1123. 27. Kwok, O. C. H., Fahy, P. C., Hoitink, H. A. J., and Kuter, G. A. 1987. Interactions between bacteria and Trichoderma in suppression of Rhizoctiona damping-off in bark compost media. Phytopathology 77:1206-1212. 28. Landa, B. B., Navas-Cortés, J. A., Hervás, A., and Jiménez-Díaz, R. M 2001. Influence of temperature and inoculum density of Fusarium oxysporum f. sp. ciceris on suppression of Fusarium wilt of chickpea by rhizosphere bacteria. Phytopathology 91:807-816. 29. Leeman, M., Den Ouden, F. M., Van Pelt, J. A., Dirkx, F. P. M., Setijl, H., Bakker, P. A. H. M., and Schippers, B. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149-155. 30. Leeman, M., Van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., and Bakker, P. A. H. M. 1995. Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021-1027. 31. Liu, L., Kloepper, J. W., and Tuzun, S. 1995. Induction of systemic resistance in cucumber against fusarium wilt by Plant growth-promoting rhizobacteria. Phytopathology 85:695-698. 32. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., and Pare, P. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. 100:4927-4932. 33. Scher, F. M., and Baker, R. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567-1573. 34. Schippers, B., Bakker, A. W., and Bakker, P. A. H. M. 1987. Interaction of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25:339-358. 35. Shih, H. D., Liu, Y. C., Hsu, F. L., Mulabagal, V., Dodda, R., and Huang, J. W. 2003. Fungichromin : A substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J. Agric. Food Chem. 51:95-99. 36. Suslow, T. V. 1982. Role of root-colonizing bacteria in plant growth. Pages 187-223 in : Phytopathogenic Procaryotes. Vol. 1. M. S. Mount and G. H. Lacy, eds. Academic press, N. Y. 37. Suslow, T. V., and Schroth, M. N. 1982. Role of deletrious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72:111-115. 38. Suslow, T. V., and Schroth, M. N. 1982. Rhizobacteria of sugar beets : effects of seed application and root colonization on yield. Phytopathology 72:199-206. 39. Toro, M., AzcóN, R., and Barea, J. M. 1997. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl. Environ. Microbiol. 63:4408-4412. 40. Tsay, T. T., and Wu, W. S. 2005. Evaluating the efficacy of organic amendments with Streptomyces saraceticus on controlling plant parasitic nematodes. Soc. Nematologists 44th Annu. Meeting, Florida. Program and Abstracts, p.74. 41. Van Loon, L. C., Bakker, P. A. H. M., and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483. 42. Van Peer, R., Niemann, G. J., and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biologicol control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728-734. 43. Weller, D. M. 1988. Biological control of soilborn plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379-407. 44. Weller, D. M., and Cook, R. J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463-469. 45. Zhou, T., and Paulitz, T. C. 1994. Induced resistance in the biocontrol of Pythium aphanidermatum by Pseudomonas spp. on cucumber. J. Phytopathol. 142:51-63. 引用文獻 (LITERATURE CITED) 1. 林宜賢。2004。產氰綠膿桿菌對蔬菜作物生長及番茄青枯病發生之影響。國立中興大學植物病理學系博士論文。 2. 陳懿芬。2001。一氧化氮與水楊酸在番茄過敏性反應與防禦基因表現中所扮演之角色。國立中興大學植物病理學系博士論文。 3. 陳志威。2003。茄科作物脯胺酸代謝相關基因之選殖及其功能分析。國立中興大學農藝學系碩士論文。 4. 楊尚書。2005。鏈黴菌Streptomyces griseobrunneus S3幾丁質分解酵素基因之分子選殖及抗病性轉基因蕃茄與菸草之製作。國立中興大學植物病理學系博士論文。 5. 鄧雅靜、曾國欽、徐世典。2006。促進番茄生長根棲細菌之篩選及防治青枯病之測試。植病會刊15:83-95。 6. Alexander, D., Goodman, R. M., Gut-Rella, M., Glascock, C., and Weymann, K. 1993. Increased tolerance to 2 oomycete pathogens in transgenic tobacco expressing pathogensis-related protein-1a. Proc. Natl. Acad. Sci. USA 90:7327-7331. 7. Anith, K. N., Momol, M. T., Kloepper, J. W., Marois, J. J., Olson, S. M., and Jones, J. B. 2004. Efficacy of plant growth-promoting rhizobacteria, acibenzolar-s-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis. 88:669-673. 8. Baker, C. J., Atkinson, M. M., and Collmer, A. 1987. Concurrent loss in Tn5 mutants of Pseudomonas syringae pv. syringae of the ability to induce the hypersensitive response and host plasma membrane K+/H+ exchange in tobacco. Phytopathology 77:1268-1272. 9. Biles, C. L., and Martyn, R. D. 1989. Local and systemic resistance induced in watermelons by formae speciales of Fusarium oxysporum. Phytopathology 79: 856-860. 10. Chen, C., Bélanger, R. R., Benhamou, N., and Paulitz, T. C. 1998. Induced systemic resistance (ISR) by Pseudomonas spp. impairs pre- and post-infection development of Pythium aphanidermatum on cucumber roots. Eur. J. Plant Pathol. 104:877-886. 11. Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gur-Rella, M., Kessmann, H., Ward, E., and Ryals, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266:1247-1250. 12. Elad, Y., and Chet, I. 1987. Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology 77:190-195. 13. Feinberg, A. P., and Vogelstein, G. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6-13. 14. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754-756. 15. Gardner, J. M., Chandler, J. L., and Feldman, A. W. 1984. Growth promotion and inhibition by antibiotic-producing fluorescent pseudomonads on citrus roots. Plant Soil 77:103-113. 16. Gessler, C., and Kuć, J. 1982. Induction of resistance to Fusarium wilt in cucumber by root and foliar pathogens. Phytopathology 72:1439-1441. 17. Hammerschmidt, R., and Kuć, J. 1995. Induced resistance to disease in plants. Kluwer Academic Publishers, Dordrecht, the Netherlands.182pp. 18. Hoffland, E., Hakulinen, J., and van Pelt, J. A. 1996. Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology 86: 757-762. 19. Hoffland, E., Pieterse, C. M. J., Bik, L., and van Pelt, J. A. 1995. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol. Mol. Plant Pathol. 46:309-320. 20. Kado, C. I., and Heskett, M. G. 1970. Selective medium for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology 60:969-976. 21. Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693-695. 22. Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885-886. 23. Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M. N. 1980. Pseudomonas siderophores : A mechanism explaining disease suppressive soils. Curr. Microbiol. 4:317-320. 24. Kuć, J., and Richmond, S. 1977. Aspects of the protection of cucumber against Colletotrichum lagenarium by Colletotrichum lagenarium. Phytopathology 67:533-536. 25. Leeman, M., van Pelt, J. A., den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M., and Schippers, B. 1995. Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur. J. Plant Pathol. 101:655-664. 26. Liu, L., Kloepper, J. W., and Tuzun, S. 1995. Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria : Duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85:1064-1068. 27. Malamy, J., Carr, J. P., Klessig, D. F., and Raskin, I. 1990. Salicylic acid : A likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002-1004. 28. Mandeel, Q., and Baker, R. 1991. Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 81:462-469. 29. Mauch-Mani, B., and Métraux, J.-P. 1998. Salicylic acid and systemic acquired resistance to pathogen attack. Ann. Bot. 82: 535-540. 30. Maurhofer,
摘要: 青枯病為土壤傳播性病害,不易防治。許多研究指出促進植物生長之根棲細菌 (plant growth-promoting rhizobacteria, PGPR) 可誘導植物產生抗病性而減少病害之發生。本研究以防治番茄青枯病為目標,篩選可促進番茄生長之PGPR,並探討其防治青枯病之效果及可能機制。自台灣中部不同地區數種作物分離得到之396株根棲細菌,被覆於番茄種子後,利用套袋塑膠培養皿之系統及含泥炭土栽培介質之穴盤系統於生長箱篩選,共有 14株菌株在重複篩選過程中均能提高種子發芽率及促進根生長之效果,其中RS4、RS65及RS70三菌株表現最佳,可增加根長度、莖長度、植株鮮重及乾重 (RS65菌株除外)。民間育苗場之試驗亦顯示此三株菌株不論以種子被覆處理 (浸種30分鐘) 或以澆灌處理仍能提高種子發芽率及促進植株生長,且於播種後21天內均能維持高族群量 (RS65菌株浸種30分鐘者除外)。上述具有促進番茄生長之14 株菌株中,有11株在供試三種培養基上對青枯病菌PS152皆無拮抗作用,但在溫室及生長箱之測試,有9株可顯著降低番茄青枯病之發病程度,但仍以RS4、RS65及RS70 三株菌株在防治效果上表現最優。此三株菌株經鑑定,RS4為Chryseobacterium sp.,RS65及RS70菌株為Streptomyces spp.。這些菌株之防病機制可能與誘導抗病性有關,因以其中之RS70菌株接種於番茄頂葉後,第七天再由根部澆灌接種青枯病菌PS152時,可顯著減少青枯病之發病程度。RS70菌株接種後至少需要六天才能誘導有效之抗性,且此抗性僅持續數天。RS70菌株之處理可誘發未處理葉片PR-1基因之表現,在10天測試期間,其mRNA表現量隨處理天數之增加而增多,至第八天達最高峰,隨後則略為降低。RS70菌株不論接種於頂葉或根部後,皆能在未處理之葉片內偵測到PR-1 mRNA之累積,顯示其誘發PR-1基因表現之訊號可向上或向下移行。RS4、RS65及RS70菌株在溫室 (以無土栽培介質及施用養液之方式栽培) 夏作試驗中,有促進番茄初期生長之效果,亦能增加產量 (RS70除外)、單果重及減少殘果率;由其生長期及採收期葉片養分 (N, P, K, Ca, Mg) 之分析,顯示此三株菌株在促進植株吸收養分之能力上有差異,但葉片養分含量之差異與產量並無相關性。在溫室秋作試驗中,只有RS4菌株有促進初期生長及增加產量之效果,但此三株菌株均可增加單果重;果實之分析顯示其鈣及鎂含量,RS70菌株處理組之磷及鉀含量,及RS4及RS70處理組之氮含量均高於對照組。在田間試驗中,此三株菌株以浸根及澆灌二種方式處理幼苗後,均能增加商品果之產量和果數,且減少殘果之產量 (RS4澆灌處理者除外) 及果數,亦可提高果實之品質;由採收期葉片及果實養分分析,顯示此三株菌株處理組之氮、磷、鉀、鈣及鎂含量大多高於對照組。此三株菌株於番茄根系之族群量,隨作物生長期之增長而遞減,且遞減速度因菌株之不同而有所差異。
A total of 396 rhizobacterial strains isolated from different crops in central Taiwan were screened by a petri dish-blotter paper system and then by a peat moss-plug system in growth chamber for their effects on tomato growth following seed bacterization (seed coating). Fourteen strains consistently increased the seed germination and root length, among which, strains RS4, RS65, and RS70 performed best. These three strains significantly increased not only root length, but also stem length, plant fresh weight and dry weight (except strain RS65). In a commercial nursery using the peat moss-plug system, these three strains also showed their ability to promote seedling growth following either seed bacterization or peat moss drenching, and their populations in peat moss maintained at high levels (except strain RS65 for 30 min seed soaking ) within 21 days after seeding. The above 14 strains that were capable of promoting tomato growth were tested for their ability to control bacterial wilt of tomato. Among these 11 strains did not inhibit the growth of Ralstonia solanacearum PS152 on three media tested, but 9 strains significantly reduced the disease severity of bacterial wilt in growth chamber and greenhouse tests. Strains RS4, RS65, and RS70 which were better in the ability to promote tomato growth also performed better in the efficiency of disease control. Strain RS4 was identified as Chryseobacterium sp. and strains RS65 and RS70 as Streptomyces spp. The disease control mechanism might be related to the induce systemic resistance, because the severity of bacterial wilt was significantly reduced when top leaves of tomato were syringe-infiltrated with Streptomyces sp. RS70 and 7 days later roots were challenge-inoculated by drenching with R. solanacearum PS152. The induction of effective resistance required at least six days after leaf treatment with RS70. However, the induced resistance persisted only for several days. RS70 treatment could induce PR-1 gene expression in noninoculated leaves, and in a 10-day test period, the quantity of PR-1 mRNA increased over with time, reaching highest at the 8th day and then slightly decreased. Accumulation of PR-1 mRNA in noninoculated leaves was observed not only by leaf treatment but also by root treatment with RS70, indicating that the signal for PR-1 gene expression induced by RS70 may transport downward and upward from the inoculated site. The effectiveness of strains RS4, RS65, and RS70 for increasing yield of tomato was conducted in greenhouse and field. In greenhouse summer crop, these three strains enhanced the early growth, increased yield ( except for strain RS70) and single fruit weight, and reduced culls ratio. Analyses of nutrient content (N, P, K, Ca, Mg) of leaves at growing and harvest stage showed that the three strains differed in the ability to enhance the plant to absorb the nutrients, however, the variation in the nutrient content of leaves was not related to the yield of fruits. In greenhouse fall crop, only strain RS4 enhanced the early growth and increased yield, but these three strains also increased single fruit weight. Analyses of nutrient content of fruits showed that Ca and Mg in the three strains treatments, P and K in RS70-treated and N in RS4- and RS70-treated plants had higher concentrations than untreated controls. In the field test, these three strains applied by root-dip or soil-drench increased the yield and number of marketable fruits and reduced the yield (except for strain RS4 in soil-drench treatment) and number of culls. They also improved fruit quality except for a few treatments. Treatments with these three strains generally have higher concentrations of N, P, K, Ca and Mg in leaves and fruits at harvest stage than those of untreated controls. Populations of the three strains on tomato roots declined with plant growth, and varied with strains.
URI: http://hdl.handle.net/11455/31007
其他識別: U0005-3107200609301800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3107200609301800
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.