Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31042
DC FieldValueLanguage
dc.contributor陳煜焜zh_TW
dc.contributor詹富智zh_TW
dc.contributor林長平zh_TW
dc.contributor張清安zh_TW
dc.contributor.advisor葉錫東zh_TW
dc.contributor.advisorShyi-Dong Yehen_US
dc.contributor.author蕭文榮zh_TW
dc.contributor.authorHsiao, Wen-Rongen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T07:40:58Z-
dc.date.available2014-06-06T07:40:58Z-
dc.identifierU0005-2307200721454500zh_TW
dc.identifier.citationArazi, T., Slutsky, S. G., Shiboleth, Y. M., Wang, Y., Rubinstein, M., Barak, S., Yang, J., and Gal-On, A. 2001. Engineering Zucchini yellow mosaic potyvirus as a non-pathogenic vector for expression of heterologous proteins in cucurbits. J. Biotechnol. 87:67-82. Brittlebank, C. C. 1919. Tomato disease. J. Agric. Victoria. 17:213-235. Bucher, E., Sijen, T., De Haan, P., Goldbach, R., and Prins, M. 2003. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J. Virol. 77:1329-1336. Chapman, S., Kavanagh, T., and Baulcombe, D. 1992. Potato virus X as a vector for gene expression in plants. Plant J. 2:549-557. Chen, C. C., Shy, J. F., and Yeh, S. D. 1990. Thrips transmission of Tomato spotted wilt virus from watermelon. Plant Prot. Bull. 32:331-332. Chen, T. C. 2001. Broad-spectrum resistance to tospoviruses in transgenic Nicotiana benthamiana plants carrying the conserved RNA polymerase motifs of Watermelon silver mottle virus and expression of its individual genes using the Zucchini yellow mosaic virus vector. Ph. D. Dissertation., Department of Plant Pathology, National Chung Hsing University. Chen, T. C., Hsu, H. T., Jain, R. K., Huang, C. W., Lin, C. H., Liu, F. L., and Yeh, S. D. 2005. Purification and serological analyses of tospoviral nucleocapsid proteins expressed by Zucchini yellow mosaic virus vector in squash. J. Virol. Methods 129:113-124. Chen, T. C., Huang, C. W., Kuo, Y. W., Liu, F. L., Hsuan Yuan, C. H., Hsu, H. T., and Yeh, S. D. 2006. Identification of common epitopes on a conserved region of NSs proteins among tospoviruses of Watermelon silver mottle virus serogroup. Phytopathology 96:1296-1304. Choi, I. R., Stenger, D. C., Morris, T. J., and French, R. 2000. A plant virus vector for systemic expression of foreign genes in cereals. Plant J. 23:547-555. Chu, F. H., and Yeh, S. D. 1998. Comparison of replication forms and ambisense M RNA of Watermelon silver mottle virus with other tospoviruses. Phytopathology 88:351-358. Chu, F. H., Chao, C. H., Chung, M. H., Chen, C. C., and Yeh, S. D. 2001. Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology 91:361-368. de Haan, P., Wagemakers, L., Peters, D., and Goldbach, R. 1989. Molecular cloning and terminal sequence determination of the S and M RNAs of tomato spotted wilt virus. J. Gen. Virol. 70:3469-3473. de Haan, P., Wagemakers, L., Peters, D., and Goldbach, R. 1990. The S RNA segment of tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71:1001-1007. de Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D., and Goldbach, R. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol. 72:2207-2216. de Haan, P., de Avila, A. C., Kormelink, R., Westerbroek, A., Gielen, J. J., Peters, D., and Goldbach, R. 1992. The nucleotide sequence of the S RNA of Impatiens necrotic spot virus, a novel tospovirus. FEBS Lett. 306:27-32. Dolja, V. V., McBride, H. J., and Carrington, J. C. 1992. Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proc. Natl. Acad. Sci. U S A 89:10208-10212. Dolja, V. V., Peremyslov, V. V., Keller, K. E., Martin, R. R., and Hong, J. 1998. Isolation and stability of histidine-tagged proteins produced in plants via potyvirus gene vectors. Virology 252:269-274. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., and Ball, L. A. 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, New York. Fischer, R., Vaquero-Martin, C., Sack, M., Drossard, J., Emans, N., and Commandeur, U. 1999. Towards molecular farming in the future: transient protein expression in plants. Biotechnol. Appl. Biochem. 30:113-116. Francki, R. I. B., Fauquet, C. M., Knudson, D. L., and Brown, F. 1991. Classification and nomenclature of viruses. Fifth Report of the International Committee on Taxonomy of Viruses. Arch. Virol. Suppl. 2., pp. 450. Gal-On, A. 2000. A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology 90:467-473. German-Retana, S., Candresse, T., Alias, E., Delbos, R. P., and Le Gall, O. 2000. Effects of green fluorescent protein or beta-glucuronidase tagging on the accumulation and pathogenicity of a resistance-breaking Lettuce mosaic virus isolate in susceptible and resistant lettuce cultivars. Mol. Plant-Microbe Interact. 13:316-324. Gleba, Y., Marillonnet, S., and Klimyuk, V. 2004. Engineering viral expression vectors for plants: the ''full virus'' and the ''deconstructed virus'' strategies. Curr. Opin. Plant Biol. 7:182-188. Gleba, Y., Marillonnet, S., and Klimyuk, V. 2004. Design of safe and biologically contained transgenic plants: tools and technologies for controlled transgene flow and expression. Biotechnol. Genet. Eng. Rev. 21:325-367. Gopinath, K., Wellink, J., Porta, C., Taylor, K. M., Lomonossoff, G. P., and van Kammen, A. 2000. Engineering Cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants. Virology 267:159-173. Guo, H. S., Lopez-Moya, J. J., and Garcia, J. A. 1998. Susceptibility to recombination rearrangements of a chimeric Plum pox potyvirus genome after insertion of a foreign gene. Virus Res. 57:183-195. Hsu, C. H., Lin, S. S., Liu, F. L., Su, W. C., and Yeh, S. D. 2004. Oral administration of a mite allergen expressed by Zucchini yellow mosaic virus in cucurbit species downregulates allergen-induced airway inflammation and IgE synthesis. J. Allergy Clin. Immunol. 113:1079-1085. Huang, C. H. 2003. The roles of the NSs protein of Watermelon silver mottle virus in hypersensitive reaction and pathogenesis. Master Thesis, Department of Plant Pathologhy, National Chung Hsing University. Iwaki, M., Honda, Y., Hanada, K., and Tochihara, H. 1984. Silver mottle disease of watermelon caused by Tomato spotted wilt virus. Plant Dis. 68:1006-1008. Johansen, L. K., and Carrington, J. C. 2001. Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol. 126:930-938. Kormelink, R., de Haan, P., Meurs, C., Peters, D., and Goldbach, R. 1992. The nucleotide sequence of the M RNA segment of Tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J. Gen. Virol. 73:2795-2804. Kormelink, R., Storms, M., Van Lent, J., Peters, D., and Goldbach, R. 1994. Expression and subcellular location of the NSm protein of Tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56-65. Kormelink, R., Kitajima, E. W., De Haan, P., Zuidema, D., Peters, D., and Goldbach, R. 1991. The nonstructural protein (NSs) encoded by the ambisense S RNA segment of Tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181:459-468. Kumagai, M. H., Turpen, T. H., Weinzettl, N., della-Cioppa, G., Turpen, A. M., Donson, J., Hilf, M. E., Grantham, G. L., Dawson, W. O., and Chow, T. P. 1993. Rapid, high-level expression of biologically active alpha-trichosanthin in transfected plants by an RNA viral vector. Proc. Natl. Acad. Sci. U S A 90:427-430. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-5. Landy, A. 1989. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58:913-949. Law, M. D., Speck, J., and Moyer, J. W. 1992. The M RNA of Impatiens necrotic spot Tospovirus (Bunyaviridae) has an ambisense genomic organization. Virology 188:732-741. Lewandowski, D. J., and Adkins, S. 2005. The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology 342:26-37. Li, F., and Ding, S. W. 2006. Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu. Rev. Microbiol. 60:503-531. Lin, S. S. 2001. Assessment of genetic variability, characterization of genome organization, construction of infectious transcripts, development of viral vector, and generation of valuable attenuated strains of a Taiwan strain of Zucchini yellow mosaic virus. Ph. D. Dissertation., Institute of Agricultural Biotechnology, National Chung Hsing University. Lin, S. S., Hou, R. F., Huang, C. H., and Yeh, S. D. 1998. Characterization of Zucchini yellow mosaic virus (ZYMV) isolates collected from Taiwan by host reactions, serology, and RT-PCR. Plant Prot. Bull. 40:163-176. Lin, S. S., Wu, H. W., Jan, F. J., Hou, R. F., and Yeh, S. D. 2007. Modifications of the helper component-protease of Zucchini yellow mosaic virus for generation of attenuated mutants for cross protection against severe infection. Phytopathology 97:287-296. Lin, Y. H. 2003. The MP and 2b genes of Cucumber mosaic virus complement the mutated potyviral HC-Pro gene defective in hypersensitive reaction and virulence. Master Thesis, Department of Plant Pathology, National Chung Hsing University. Llave, C., Kasschau, K. D., and Carrington, J. C. 2000. Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc. Natl. Acad. Sci. U S A 97:13401-13406. Mohamed, N. A. 1981. Isolation and characterization of subviral structures from Tomato spotted wilt virus. J. Gen. Virol. 53:197-208. Moissiard, G., and Voinnet, O. 2004. Viral suppression of RNA silencing in plants. Mol. Plant Pathol. 5:71-82. Moyer, J. W. 1999. Tospoviruses (Bunyaviridae). In: Encyclopedia of Virology. A. Granoff and R. G. Webster, eds. AcademicPress, New York, pp. 1803-1807. Murphy, F. A., Fauquet, C. M., Bishop, D. H. L., Ohabrual, S. A., Jarvis, A. W., Martelli, O. P., Mayo, M. A., and Summers, M. D. 1995. Virus Taxonomy. Classification and Nomenclature of Viruses. Sixth Report of The International Committee on Taxonomy of Viruses. Arch. Virol. Suppl. 10. Pogue, G. P., Lindbo, J. A., Garger, S. J., and Fitzmaurice, W. P. 2002. Making an all from an enemy: plant virology and the new agriculture. Annu. Rev. Phytopathol. 40:45-74. Prins, M., and Goldbach, R. 1998. The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol. 6:31-35. Qu, F., and Morris, T. J. 2005. Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Lett. 579:5958-5964. Ratcliff, F., Martin-Hernandez, A. M., and Baulcombe, D. C. 2001. Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 25:237-245. Reddy, D. V. R., and Wightman, J. A. 1988. Tomato spotted wilt virus: Thrips transmission and control. Adv. Dis. Vector Res. 5:203-220. Roth, B. M., Pruss, G. J., and Vance, V. B. 2004. Plant viral suppressors of RNA silencing. Virus Res. 102:97-108. Ruiz, M. T., Voinnet, O., and Baulcombe, D. C. 1998. Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937-946. Ruoslahti, E., and Pierschbacher, M. D. 1986. Arg-Gly-Asp: A versatile cell recognition signal. Cell 44:517-518. Sakimura, K. 1962. the present status of thrip-borne disease. In: Maramorocsh. K. (ed): Biological transmission of disease agents. Academic Press, New York and London. Samuel, G., Blad, J. G., and Pittman, H. A. 1930. Investigation on "spotted wilt" of tomatoes. Aust. Counc. Sci. Ind. Res. Bull. 44:1-64. Satyanarayana, T., Mitchell, S. E., Reddy, D. V. R., Kresovich, S., Jarret, R., Naidu, R. A., Gowda, S., and Demski, J. W. 1996. The complete nucleotide sequence and genome organization of the M RNA segment of Peanut bud necrosis tospovirus and comparison with other tospoviruses. J. Gen. Virol. 77:2347-2352. Scholthof, H. B., Morris, T. J., and Jackson, A. O. 1993. The capsid protein gene to Tomato bushy stunt virus is dispensable for systemic movement and can be replaced for localized expression of foreign genes. Mol. Plant-Microbe Interact. 6:309-322. Soldan, S. S., and Gonzalez-Scarano, F. 2005. Emerging infectious diseases: the Bunyaviridae. J. Neurovirol. 11:412-423. Storms, M. M., Kormelink, R., Peters, D., Van Lent, J. W., and Goldbach, R. W. 1995. The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485-493. Takamatsu, N., Ishikawa, M., Meshi, T., and Okada, Y. 1987. Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J. 6:307-311. Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S., and Okuno, T. 2002. Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett. 532:75-79. van Kammen, A., Henstra, S., and Le, T. S. 1966. Morphology of Tomato spotted wilt virus. Virology 30:547-577. Verkleij, F. N., and Peters, D. 1983. Characterization of a defective form of Tomato spotted wilt virus. J. Gen. Virol. 64:677-686. Voinnet, O. 2005. Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet. 6:206-220. Voinnet, O., Lederer, C., and Baulcombe, D. C. 2000. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103:157-167. Voinnet, O., Vain, P., Angell, S., and Baulcombe, D. C. 1998. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177-187. Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. 2003. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of Tomato bushy stunt virus. Plant J. 33:949-956. Yeh, S. D., and Chang, T. F. 1995. Nucleotide sequence of the N gene of Watermelon silver mottle virus, a proposed new member of the genus Tospovirus. Phytopathology 85:58-64. Yeh, S. D., Sun, I. J., Ho, H. M., and Chang, T. F. 1996. Molecular cloning and nucleotide sequence analysis of the S RNA of Watermelon silver mottle tospovirus. In: The proceedings of the International Symposium on Tospovirus and Thrips of Floral and Vegetable Crops, Nov. 7-11, Taiwan Agricultural Research Institute, Wufeng, Taiwan. Acta Horticult.431:244-260. Yeh, S. D., Lin, Y. C., Cheng, Y. H., Jih, C. L., Chen, M. J., and Chen, C. C. 1992. Identification of tomato spotted wilt-like virus infecting watermelon in Taiwan. Plant Dis. 76:835-840.en_US
dc.identifier.urihttp://hdl.handle.net/11455/31042-
dc.description.abstract西瓜銀斑病毒 (Watermelon silver mottle virus, WSMoV) 為Bunyaviridae 科,蕃茄斑萎病毒屬 (Tospovirus) 之病毒,是亞洲瓜類栽培重要限制因子之一。 其中由病毒所表現出之非結構性 NSs (nonstructural, NSs) 蛋白,在前人研究中已指出此蛋白與病徵的嚴重度有關,且為一基因靜默抑制子 (gene silencing suppressor)。 在本實驗室先前研究中,製備了對抗西瓜銀斑病毒NSs 蛋白的單株抗體,此單株抗體可辨識同為西瓜銀斑病毒血清群的他種蕃茄斑萎病毒屬病毒的NSs蛋白,並且證實此單株抗體可辨識NSs蛋白的N 端第89至125個胺基酸的區域 (WNSscon),且此區域屬於西瓜銀斑病毒血清群屬的病毒中NSs 蛋白上的高保留區,並在該研究結果中指出Cys108及Lys109胺基酸為 N 端高保留區的關鍵胺基酸。 因此,本實驗之目的,在於分析 NSs 蛋白的 N 端 WNSscon 區域及C 端區域在NSs蛋白中,對病原性及基因靜默抑制作用上所扮演的角色。 利用本實驗室已構築,生物體內具感染力之矮南瓜黃化嵌紋病毒 (Zucchini yellow mosaic virus, ZYMV) 輕症型 (ZYMVAC) 作為載體來表現不同長度的NSs片段,並將重組病毒以機械接種方式接種於產生局部病斑的寄主奎藜或系統性寄主矮南瓜上,藉由寄主植物病徵之變化,以分析其對毒力的影響。 此外,在本研究中,進一步將原來的病毒載體改造成Gateway® 系統,可利用該系統特異點重組之特性,將想要表現之蛋白基因利用此重組技術,以重組的方式放到載體上進行表現,並且附帶一個GFP螢光蛋白以利追蹤及觀察各表現不同片段及定點突變NSs蛋白的重組病毒之病毒活性之用。 另一方面,同時利用農桿菌注射法 (agro-infiltration) 以及表現GFP螢光蛋白的菸草 (Nicotiana benthamiana line 16C),做為實驗的平台進行基因靜默的研究。 結果顯示利用輕症型載體 (ZYMVAC) 表現1/3、2/3及N端高度保留區 (WNSscon) 已移除的NSs蛋白後,經接種後在單斑寄主奎藜上不引發單斑反應,在系統性寄主矮南瓜上僅造成輕微病徵。 另一方面利用p35SZAC-DC-nGFP 輕症型具Gateway® 系統之載體表現各長度片段及突變的NSs蛋白,只有ZAC-DC-nGFP-WNSsF可表現完整NSs蛋白及ZAC-DC-nGFP-WNSsC108A其表現的 NSs 蛋白的Cys108突變成Ala108之重組病毒可在單斑寄主奎藜上形成典型單斑。 利用農桿菌注射法進行基因靜默功能的分析,也只有 WNSsF 及 WNSsC108A 此二蛋白在農桿菌共同注射法 (co-infiltration) 的分析下,在五天之後可觀察到具有基因靜默抑制子的活性。 以西方轉漬法 (western blotting) 對此二表現系統進行產物偵測時,實驗結果顯示, NSs 蛋白的Lys109胺基酸遭突變後 (WNSsK109A), NSs 蛋白的專一性單株抗體則無法偵測此一定點突變 NSs 蛋白。 同時 WNSsK109A定點突變蛋白,即失去對 ZYMV突變後受損的HC-Pro 功能上有所互補,基因靜默抑制子的活性也受到影響。 另一方面, C 端第352到第388 胺基酸遭移除後 (WNSsΔ352-388) 的 NSs 蛋白,也不具有對因突變而功能受損的 HC-Pro 在功能上有所互補,也觀察不到基因靜默抑制子的活性。 根據以上結果,我們認為 NSs 蛋白的 N 端WNSscon 高度保留區和 C 端的第352到第388 胺基酸區域對NSs 蛋白的基因靜默抑制能力及病原性扮演重要角色。 更進一步, N 端高保留區中的 Lys109胺基酸在 NSs 蛋白的專一性單株抗體辨識上、基因靜默抑制子活性及毒力上都具有相當重要具不可或缺的角色。zh_TW
dc.description.abstractWatermelon silver mottle virus (WSMoV), a member of the genus Tospovirus, is a major limiting factor for growing watermelon, melon, wax gourd, and other cucurbits in Asia. A highly conserved WNSscon region (aa 89 ~ 125) in NSs protein specifically targeted by a mouse monoclonal antibody (MAb) was previously identified. In this investigation, the WNSscon and C-terminal region NSs protein was analyzed for their roles in pathogenicity and gene silencing suppression. The engineered mild strain ZYMVGAC, which contained two amino acid changes in the HC-Pro gene, induced mild symptoms on zucchini squash plants and infected plants of Chenopodium quinoa without local lesions, was used to express the nonstructural (NSs) protein of WSMoV in both hosts. In addition, the mild strain ZYMVGAC was further modified to generate the destination vector ZAC-DC-nGFP with a Gateway® system in between P1 and HC-Pro regions and with a GFP coding sequence inserted between NIb and CP regions. Different deletion forms and point-mutated forms of NSs protein were constructed and expressed by ZYMVGAC and ZAC-DC-nGFP vector separately to analyze the essential part of the NSs protein for its functions in complementation of the HC-Pro mutations. The Agrobacterium-mediated transient expression system and GFP transgeneic Nicotiana benthanamiana line 16C were used to analyze the activity of silencing suppression of the deleted or mutated NSs proteins by co-infiltration with a partial GFP gene for inducing GFP silencing. The mild recombinants derived from strain p35SZYMVAC carrying one-third, two-third or full-length NSs ORF without the WNSscon common epitope induced no local lesions on plants of C. quinoa and caused mild mottling on squash plants without virulence enhancement. Furthermore, the modified infectious clone p35SZAC-DC-nGFP was used to express deleted or mutated NSs proteins. Only the recombinants ZAC-DC-nGFP-WNSsF carrying the full length of the NSs protein and ZAC-DC-nGFP-WNSsC108A with Cys108 replaced by Ala108 induced local lesions on C. quinoa plants. The expression of different deleted or mutated NSs proteins were also analyzed by agro-infiltration system. Only the construct WNSsF carrying full-length NSs protein and WNSsC108A with Cys108 replaced with Ala108 suppressed the GFP silencing 5 days after co-infiltration. In western blotting assay, the mutated NSs protein, WNSsK109A the Lys109 of the NSs protein changed to Ala109, was no longer recognized by the mouse monoclonal antibody. The ability to complement the function of the attenuated ZYMV HC-Pro and gene silencing suppression of the mutated NSs protein, WNSsK109, both was abolished. On the other hand, the deleted NSs protein, WNSsΔ352-388 a deletion from 352-388 aa of NSs protein, did not complement the function of the attenuated ZYMV HC-Pro and did not suppress gene silencing. Our results indicated that both the WNSscon common eiptope and the C-terminal region (352-388 aa) of the NSs protein play important roles in induction of hypersensitive reaction on C. quinoa and virulence enhancement on squash plants. Moreover, the residue Lys109 in the common WNSscon epitope of the NSs protein, which is indispensable for MAb recognization, is crucial for silencing suppression and virulence enhancement.en_US
dc.description.tableofcontents中文摘要. . . . . . . . . . . . . . . . . . . . . . . .2 英文摘要. . . . . . . . . . . . . . . . . . . . . . . .4 序言. . . . . . . . . . . . . . . . . . . . . . . . . .6 Introduction. . . . . . . . . . . . . . . . . . . . . .13 Materials and Method . . . . . . . . . . . . . . . . . .19 Virus sources and propagation. . . . . . . . . . . . 19 Construction of the NSs ORF of WSMoV into the ZYMV vector. . . . . . . . . . . . . . . . . . . . . . .19 Construction of the ZYMV viral vector as a Gateway® destination vector carrying a GFP reporter gene. . . . . . . . . . . . . . . . . . . . . . .21 Modifications of NSs ORF of WSMoV . . . . . . . . .22 Point mutations at the critical residues of the common epitope of NSs. . . . . . . . . . . . . . . . . .24 pENTRTM directional TOPO® cloning and sequence determination. . . . . . . . . . . . . . . . . . . .26 Construction of the NSs ORF of WSMoV into the ZYMV vector and binary vector by LR recombination. . . . 26 Infectivity assay of the ZYMV recombinants. . . . . .27 Detection of the NSs protein by western blotting. . .28 Detection of ZYMV recombinants in infected plants by RT- PCR. . . . . . . . . . . . . . . . . . . . . . . . .29 Detection of ZYMV recombinants in the infected plants by western blotting. . . . . . . . . . . . . . . . . . .29 Agrobacterium infiltration. . . . . . . . . . . . . . 29 Detection of the NSs protein by western blotting after agro-infiltration. . . . . . . . . . . . . . . . . . 30 Silencing suppression activity assay and GFP imaging. . . . . . . . . . . . . . . . . . . . . . . 31 Results. . . . . . . . . . . . . . . . . . . . . . . . 32 Infectivity of ZYMV mild-strain recombinants carrying different length of NSs ORF . . . . . . . . . . . .32 Infectivity of ZAC-DC-nGFP mild-strain recombinants carrying individual mutated NSs proteins. . . . . . 32 Detection of virus recombinants in infected plants by RT- PCR. . . . . . . . . . . . . . . . . . . . . . . . .33 Detection of the NSs protein expressed by the ZYMV mild- strain recombinants in infected plants. . . . . . . 34 Detection of the NSs protein expressed by agro- infiltration. . . . . . . . . . . . . . . . . . . . 36 Silencing suppressor activity assay. . . . . . . . . 37 Discussion. . . . . . . . . . . . . . . . . . . . . . .39 References. . . . . . . . . . . . . . . . . . . . . . .47 Figures. . . . . . . . . . . . . . . . . . . . . . . . 53zh_TW
dc.language.isoen_USzh_TW
dc.publisher植物病理學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2307200721454500en_US
dc.subjectWSMoVen_US
dc.subject西瓜銀斑病毒zh_TW
dc.subjectNSsen_US
dc.subjectWNSsconen_US
dc.subjectZYMVen_US
dc.subjectGateway systemen_US
dc.subjectgene silencing suppressoren_US
dc.subjectpathogenicityen_US
dc.subject非結構性蛋白zh_TW
dc.subject矮南瓜黃化嵌紋病毒zh_TW
dc.subject基因靜默抑制子zh_TW
dc.subject病原性zh_TW
dc.title利用矮南瓜黃化嵌紋病毒載體及農桿菌暫時性表現系統對西瓜銀斑病毒之非結構性NSs蛋白上重要區域對基因靜默及病原性之功能性分析zh_TW
dc.titleAnalysis of essential regions of NSs protein of Watermelon silver mottle virus for gene silencing suppression and pathogenicity by Zucchini yellow mosaic virus vector and Agrobacterium-mediated expression systemen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:植物病理學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.