Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorWu, Cheng-Yuen_US
dc.identifier.citationAbel, P. P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N. 1986. Delay of disease development in transgenic plants that express the Tobacco mosaic virus coat protein gene. Science 232:738-743. Abdul-Razzak, A., Guiraud, T., Peypelut, M., Walter, J., Marie-Christine, H., Candresse, T., Gall, O. L., and German-Retana, S. 2009. Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against Lettuce mosaic potyvirus. Mol. Plant Pathol. 10:109-113. Anandalakshimi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., and Vance, V. B. 1998. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA. 95:13079-13084. Alvarez, V., Ducasse, D. A., Biderbost, E., and Nome, S. F. 1997. Sequencing and characterization of the coat protein and 3'' non-coding region of a new sweet potato potyvirus. Arch. Virol. 142:1635-1644. Baulcombe, D.C. 1996. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol. Biol. 32:79-88. Baulcombe, D. 2004. RNA silencing in plants. Nature 431:356-363. Beachy, R. N., Loesch-Fries, S., and Tumer, N. E. 1990. Coat protein-mediate dresistance against virus infection. Annu. Rev. Phytopathol. 28:451-474. Blair, W. S., Nguyen, J. H., Parsley, T. B., and Semler, B. L. 1996. Mutations in the poliovirus 3CD proteinase S1-specificity pocket affect substrate recognition and RNA binding. Virology 218:1-13. Bousalem, M., Dallot, S. and Guyader, S. 2000. The use of phylogenetic data to develop molecular tools for the detection and genotyping of Yam mosaic virus. Potential application in molecular epidemiology. J. Virol. Methods 90:25-36. Bucher, E., Lohuis, D., Van Poppel, P. M., Geerts-Dimitriadou, C., Goldbach, R., and Prins, M. 2006. Multiple virus resistance at a high frequency using a single transgene construct. J. Gen. Virol. 87:3697-36701. Bucher, E., Sijen, T., de Haan, P., Goldbach, R., and Prins, M. 2003. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J. Virol. 77:1329-1336. Colinet, D., Kummert, J., Lepoivre, P., and Semal, J. 1993. Identification of distinct potyviruses in mixedly-infected sweetpotato by the polymerase chain reaction with degenerate primers. Phytopathology 84:65-69. Cronin, S., Verchot, J., Haldeman-Cahill, R., Schaad, M. C., and Carrington, J. C. 1995. Long-distance movement factor: a transport function of the potyvirus helper component proteinase. Plant Cell 7:549-559. Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A., and Carrington, J. C. 1995. Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206:1007-1016. Donson, J., Kearney, C. M., Turpen, T. H., Khan, I. A., Kurath, G., Turpen, A. M., Jones, G. E., Dawson, W. O., and Lewandowski, D. J. 1993. Broad resistance to tobamoviruses is mediated by a modified tobacco mosaic virus replicase transgene. Mol. Plant-Microbe Interact. 6:635-642. Dougherty, W. G., Lindbo, J. A., Smith, H. A., Parks, T. F., Swaney, S., and Proebsting, W. M. 1994. RNA-mediated virus resistance in transgenic plants: Exploitation of a cellular pathway possibly involved in RNA degradation. Mol. Plant-Microbe Interact. 7:544-552. Eagles, R. M., Balmori-Melian, E., Beck, D. L., Gardner, R. C., and Forster, R. L. 1994. Characterization of NTPase, RNA-binding and RNA-helicase activities of the cytoplasmic inclusion protein of Tamarillo mosaic potyvirus. Eur. J. Biochem. 224:677-684. Edwards, K., Johnstone. C., and Thompson, C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl. Acids Res. 19:1349. Edwardson, J. R., and Christie, R. G. 1991. The Potyvirus Group. University of Florida Monograph 16, Volume 3: 699-712. Gainesville, USA: University of Florida. Elmayan, T., and Vaucheret, H. 1996. Expression of single copies of a strongly expressed 35S transgene can be silenced posttranscriptionally. Plant J. 9: 787-797. Fagard, M., and Vaucheret, H. 2000. (Trans) Gene silencing in plants: How many mechanism? Annu. Rev. Plant Mol. Biol. 51:167-194. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., and Ball, L. A. 2005. Virus taxonomy: classification and nomenclature of viruses, eighth report of the international committee on taxonomy of viruses. Elsevier Academic Press, San Diego, California, USA, 1259. Fuchs, M., and Gonsalves, D. 1995. Resistance of transgenic squash Pavo ZW-20 expressing the coat protein genes of Zucchini yellow mosaic virus and Watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/ Biotechnology 13:1466-1473. Gal-On, A., Antignus, Y., Rosner, A., and Raccah, B. 1992. A Zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no efffect on multiplication. J. Gen. Virol. 73:2183-2187. Gough, K.H., and Shukla, D.D. 1993. Nucleotide sequence of Johnsongrass mosaic potyvirus genomic RNA. Intervirology 36:181-192. Grant, S. R. 1999. Dissecting the mechanism of posttranscriptional gene silencing:divide and conquer. Cell 96:303-306. Gottula, J., and Fuchs, M. 2009. Toward a quarter century of pathogen-derived resistance and practical approaches to plant virus disease control. Adv. Virus Res. 75:161-183. Hamilton, A. J., and Baulcombe, D. C. 1999. A species of small antisense RNA in post-transcriptional gene silencing in plants. Science 286:950-952. Harrison, B. D., and Robinson, D. J. 1988. Molecular variation in vector-borne plant viruses: epidemiological significance. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 321:447-462. Hong, Y., and Hunt, A. G. 1996. RNA polymerase activity catalyzed by a potyvirus-encoded RNA-dependent RNA polymerase. Virology 226:146-151. Hemenway, C., Fang, R. X., Kaniewski, W. K., Chua, N. H., and Tumer, N. E. 1988. Analysis of the mechanism of protection in transgenic plants expressing the Potato virus X coat protein or its antisense RNA. EMBO J. 7:1273-1280. Iwai, H., Yamashita, Y., Nishi, N., and Nakamura, M. 2006. The potyvirus associated with the dappled fruit of Passiflora edulis in Kagoshima prefecture, Japan is the third strain of the proposed new species East asian passiflora virus (EAPV) phylogenetically distinguished from strains of Passion fruit woodiness virus. Arch. Virol. 151: 811-818. Jan, F-J., Fagoaga, C., Pang, S. Z., and Gonsalves, D. 2000a. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81:2103-2109. Jan, F-J., Pang, S. Z., Fagoaga, C., and Gonsalves, D. 1999. Turnip mosaic potyvirus resistance in Nicotiana benthamiana derived by post-transcriptional gene silencing. Transgenic Res. 8:203-213. Jan, F-J., Pang, S. Z., Tricoli, D. M., and Gonsalves, D. 2000b. Evidence that resistance in Squash mosaic comovirus coat protein-transgenic plants is affected by plant developmental stage and enhanced by combination of transgenes from different lines. J. Gen. Virol. 81:2299-2306. Krubphachaya, P., Jurícek, M., and Kertbundit, S. 2007. Induction of RNA-mediated Resistance to Papaya ringspot virus Type W. J. Biochem. Mol. Biol. 40:404-411. Lindbo, J. A., and Dougherty, W. G. 1992. Untranslatable transcripts of theTobacco etch virus coat protein gene sequence can interfere with Tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725-733. Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M., and Dougherty, W. G. 1993. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:1749-1759. Lomonossoff, G. P. 1995. Pathogen-derived resistance to plant viruses. Annu. Rev. Phytopathol. 33:323-343. Maia, I. G., Haenni, A. L., and Bernardi, F. 1996. Potyviral HC-Pro: a multifunctional protein. J. Gen. Virol. 77:1335-1341. Maoka, T., and Hataya, T. 2005. The complete nucleotide sequence and biotype variability of Papaya leaf distortion mosaic virus. Phytopathology 95:128-35. Merits, A., Guo, D., and Saarma, M. 1998. VPg, coat protein andfive non-structural proteins of Potato A potyvirus bind RNA in a sequence-unspecific manner. J. Gen. Virol. 79:3123-3127. Nicola-Negri, E., Brunetti, A., Tavazza, M., Ilardi, V. 2005. Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res. 14:989-994. Nicola-Negri, E., Tavazza, M., Salandri, L., Ilardi, V. 2010. Silencing of Plum pox virus 5'UTR/P1 sequence confers resistance to a wide range of PPV strains. Plant Cell Rep. 29:1435-1444. Pang, S. Z., Jan, F-J., Tricoli, D. M., Russell, P. F., Carney, K. J., Hu, J. S., Fuchs, M., Quemada, H. D., and Gonsalves, D. 2000. Resistance to Squash mosaic comovirus in transgenic squash plants expressing its coat protein genes. Mol. Breed. 6:87-93. Prins, M., Laimer, M., Noris, E., Schubert, J., Wassenegger, M., and Tepfer, M. 2008. Strategies for antiviral resistance in transgenic plants. Mol. Plant Pathol. 9:73-83. Pruss, G., Ge, X., Shi, X. M., Carrington, J. C., and Vance, V. B. 1997. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9:859-868. Rusholme, R. L., Higgins, E. E., Walsh, J. A., and Lydiate, D. J. 2007. Genetic control of broad-spectrum resistance to Turnip mosaic virus in Brassica rapa (Chinese cabbage). J. Gen. Virol. 88:3177-3186. Sanford, J. C., and Johnston, S. A. 1985. The concept of parasite-derived resistance: deriving resistance gene from the parasite's own genome. J. Theor. Biol. 113:395-405. Shattuck, V. I. 2010. The Biology, Epidemiology, and Control of Turnip mosaic virus. Horticultural Rev. Vol.14 Shimizu, T., Yoshii, M., Wei, T., Hirochika, H., and Omura, T. 2009. Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnol. J. 7:24-32. Shukla, D. D., and Ward, C. W. 1989. Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. Adv. Virus Res. 36:273-314. Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G., and Waterhouse, P. M. 2000. Total silencing by intron-spliced hairpin RNAs. Nature 407:319-320. Tacke, E., Salamini, F., and Rohde, W. 1996. Genetic engineering of potato for broad-spectrum protection against virus infection. Nat. Biotechnol. 14:1597-1601. Thouvenel, J. C., and Dumont, R. 1990. Perte de rendement de l''igname infectée par le virus de la mosaïque en Côte d''Ivoire. Agronomie Tropicale. 45:125-129. Urcuqui-Inchima, S., Haenni, A. L., and Bernardi, F. 2001. Potyvirus proteins: a wealth of functions. Virus Res. 74:157-175. Van Houdt, H., Ingelbrecht, I., van Montagu, M. and Depicker, A. 1997. Post-transcriptional silencing of a neomycin phosphotransferase II transgene correlates with the accumulation of unproductive RNAs and with increased cytosine methylation of 30 flanking regions. Plant J. 12:379-392. Vaucheret, H., Nussaume, L., Palauqui, J. C., Quillere, I., and Elmayan, T. 1997. A transcriptionally active state is required for posttranscriptional silencing (cosuppression) of nitrate reductase host genes and transgenes. Plant Cell 9: 1495-1504. Wang, R. Y., Powell, G., Hardie, J., and Pirone, T. P. 1998. Role of the helper component in vector-specific transmission of potyviruses. J. Gen .Virol. 79:1519-1524. Wassenegger, M., and Krczal, G. 2006. Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci. 11:142-151. Wu, H. W., Yu, T. A., RajaJa, Joseph, A. J., Wang, H. C., and Yeh, S. D. 2009. Generation of transgenic oriental melon resistant to Zucchini yellow mosaic virus by an improved cotyledon-cutting method. Plant Cell Rep. 28:1053-1064. Wu, H. W., Yu, T. A., Joseph, A. J. Raja, Christopher, S.J., Wang, S. L., and Yeh, S. D. 2010. Double-virus resistance of transgenic oriental melon conferred by untranslatable chimeric construct carrying partial coat protein genes of two viruses. Plant Dis. 94:1341-1347. Zheng, H., Chen, J., Chen, J., Adams, M. J., and Hou, M. 2002. Bean common mosaic virus isolates causing different symptoms in asparagus bean in China differ greatly in the 5''-parts of their genomes. Arch. Virol. 147:1257-1262.zh_TW
dc.description.abstract馬鈴薯Y群病毒屬(Potyvirus屬)在全世界許多重要的經濟作物造成嚴重的危害。為了能夠有效且廣泛性的對抗馬鈴薯Y群病毒所造成的病害,利用抗病毒的轉基因作物,使其明顯地降低在經濟上的損失是最好的方法。本研究利用轉基因技術,將蕪菁嵌紋病毒(Turnip mosaic virus, TuMV) 的HC-Pro、CIP、NIb和CP基因的高保留序列轉殖於菸草上,擬經由後轉錄基因沉寂作用(post-transcriptional gene silencing, PTGS),誘發轉基因菸草產生對馬鈴薯Y群病毒屬病毒之廣泛性抗性。為了研究不同高保留序列之構築所產生之抗性差異性,本實驗轉殖出帶有不同高保留序列所組合成的序列之轉基因菸草。結果顯示,帶有不同高度保留序列組合之轉基因菸草株系對於蕪菁嵌紋病毒的高抗性比例相近,並無明顯差異,並且都能對蕪菁嵌紋病毒產生免疫抗性(immunity) 的能力。進一步探討對蕪菁嵌紋病毒具有免疫抗性的轉基因菸草,對其他馬鈴薯Y群病毒是否也具有抗性,因此選擇與蕪菁嵌紋病毒演化親緣性有不同距離的另外四種馬鈴薯Y群病毒挑戰接種於對蕪菁嵌紋病毒免疫的轉基因菸草,分別為菜豆普通嵌紋病毒(Been common mosaic virus, BCMV)、甘藷潛伏病毒(Sweet potato latent virus, SPLV)、山藥嵌紋病毒(Yam mosaic virus, YMV) 和百香果木質病毒 (Passionfruit woodiness virus, PWV)。其結果指出帶有HC-Pro和NIb高保留序列的轉基因菸草挑戰接種山藥嵌紋病毒、菜豆普通嵌紋病毒以及百香果木質病毒時,能夠就延緩病徵的發展有4-25天的影響。北方墨點分析顯示轉基因菸草中小干擾RNA (small interfering RNA, siRNA) 的累積量與抗性呈正相關。因此在個別的基因的比較下,我們認為帶有HC-Pro和NIb基因高保留區序列的轉基因植物能夠對馬鈴薯Y群病毒具有廣泛性的抗性。此外,病毒在感染帶有多基因的轉基因作物時,其基因突變導致對轉基因具有抗性之機會會遠比在單一轉基因作物上發生的機率低很多,因此我們認為帶有多個病毒高保留基因序列的轉基因作物對病毒防治上具有較好的耐久性。本研究結果提供未來發展對馬鈴薯Y群病毒具有廣泛性抗性的轉基因作物之重要的設計模式與參考。zh_TW
dc.description.abstractMany economically important crops are attacked by a number of species of the genus Potyvirus. Appropriate transgenic plants conferring multiple resistance against potyviruses may help reduce the agricultural loses significantly. In this investigation, transgenic Nicotiana benthamiana plants carrying the conserved regions of potyviral HC-Pro, CIP, NIb and CP genes, engineered from Turnip mosaic virus (TuMV), were generated for control of potyviruses by post-transcriptional gene silencing (PTGS) mechanism. To compare the effectiveness of different combinations of the conserved regions for confering resistance against potyviruses, different transgenic lines carrying single, double, triple and tetra combinations of the conserved regions were generated by Agrobaterium-mediated transformation. In a similar proportion, transgenic tobacco lines carrying each construct were able to provide complete resistance of immunity to TuMV infection. To assess the broad-spectrum resistance of the transgenic lines, all TuMV-immune lines were further challenged with four other potyviruses, i.e., Bean common mosaic virus (BCMV), Sweet potato latent virus (SPLV), Yam mosaic virus (YMV) and Passionfruit woodiness virus (PWV), which have different phylogenetic distances from the homologous TuMV. The results showed that TuMV-immune tHC5-16, tNIb7-11, tHC20-13+CIP, tHC+CIP+NIb30-12 and tHC+CIP+NIb+CP32-5 transgenic tobacco lines conferred different levels of resistance in delaying symptom expression (4 - 25) after separate inoculation with YMV, BCMV and PWV. Northern hybridization analysis revealed that the levels of accumulation of siRNA were positively correlated to the levels of resistance of transgenic lines. It is inferred that the multiple combination of the conserved regions has a better effect for resistance durability, since the chances for mutations at multiple genes to overcome PTGS by a potyvirus are much less than mutations at a single gene. Among the four individual single constructs, we conclude that the transgenic lines carrying the conserved regions of HC-Pro or NIb gene have higher capability for conferring broad-spectrum resistance against potyviruses.en_US
dc.description.tableofcontents中文摘要 i Abstract iii 目次 v 圖表目次 vi Introduction 1 Materials and methods 7 Virus sources 7 Indirect enzyme-linked immunosorbent assay (ELISA) 7 Construction of plant transformation vectors 8 Transformation of transgenic tobacco lines 10 Method of genomic DNA preparation and PCR screening 11 Resistance evaluation 11 Detection of small RNAs by northern blot analysis 11 Rescults 14 Construction of plant transformation vector 14 Generation of transgenic tobacco lines 14 Confirmation of the presence of a specific construct in transgenic tobacco lines 15 Confirmation of potyviral inocula 15 Evaluation of transgenic resistance against TuMV 16 Evaluation of transgenic resistance against different potyviruses 17 Accumulation of siRNA accumulation detected in the resistant transgenic lines 19 Discussion 20 References 25 Tables and figures 33zh_TW
dc.subjectTransgenic planten_US
dc.subjectpost-transcriptional gene silencingen_US
dc.subjectbroad spectrum resistanceen_US
dc.titleDevelopment of transgenic resistance against potyviruses in tobacco plants carrying highly conserved regions of HC-Pro, CIP, NIb and CP genes of Turnip mosaic virusen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:植物病理學系


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.