Please use this identifier to cite or link to this item:
標題: 抗三種蝴蝶蘭病毒轉基因植物之研發
Development of transgenic plants with multiple resistance to three Phalaenopsis orchids-infecting viruses
作者: 李佳華
Lee, Chia-Hwa
關鍵字: Phalaenopsis orchids-infecting virus
transgenic plant
multiple resistance
出版社: 植物病理學系所
引用: 米田和夫。2007。興大農業推廣叢書-蝴蝶蘭。國立中興大學農業推廣中心。台中。台灣。180 pp。 張清安。2005。植物保護技術專刊系列1-蘭花病毒病 (第三版)。行政院農業委員會動植物防疫檢疫局出版。台北。台灣。62 pp。 江宜樺。2009。利用轉錄後基因沉寂發展具有多重病毒抗性之轉基因西瓜。國立中興大學農藝學系碩士論文。台中。 何琇銀。2007。抗胡瓜嵌紋、胡瓜綠斑嵌紋與西瓜嵌紋病毒轉基因西瓜之研發。國立中興大學農藝學系碩士論文。台中。 林靜宜。2010。抗台灣番茄捲葉病毒與番茄斑萎病毒無篩選標誌轉基因植物之研發。國立中興大學植物病理學系博士論文。台中。 Lawson, R. H., and Hsu, H. T. 1995. Orchid. pp. 409-420 in: Virus and Virus-like Disease of Bulb and Flower Crops. G. Loebenstein, R. H. Lawson, and A. A. Brunt eds., Willey, West Sussex, Inglaterra. Anzai, H., Ishii, Y., Schichinohe, M., Katsumata, K., Nojiri, C., Morikawa, H., and Tanaka, M. 1996. Transformation of Phalaenopsis by particle bombardment. Plant Tiss. Cult. Lett. 13: 265-271. Bae, K. M., and Yu, S. N. 2002. Development of viral disease resistance in Dianthus caryophyllus by transformation of CarMV CP gene: I. Development of CarMV CP gene expression system for transformation. J. Kor. Soc. Hortic. Sci. 43: 466-470. Baker, C. A., Davison, D., and Jones, L. 2007. Impatiens necrotic spot virus and Tomato spotted wilt virus disgnosed in Phalaenopsis orchids from two Florida nurseries. Plant Dis. 91: 1515. Bai, Q. R., Zhu, J. H., Liu, C. X., Song, Y. Z., and Wen, F. J. 2005. Production of transgenic tobacco plants resistant to two viruses via RNA-mediated virus resistance. Acta Phytopathol. Sin. 35: 148-154. Baulcombe, D. 1996. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8: 1833-1844. Beck, D. L., van Dolleweerd, C. J., Lough, T. J., Balmori, E., Voot, D. M., Andersen, M. T., O''Brien, I. E. W., and Forster, R. L. S. 1994. Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block. Proc. Natl. Acad. Sci. USA 91: 10310-10314. Belarmino, M. M., and Mii, M. 2000. Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep. 19: 435-442. Bennett, P. M., Livesey, C. T., Nathwani, D., Reeves, D. S., Saunders, J. R., and Wise, R. 2004. An assessment of the risks associated with the use of antibiotic resistance genes in genetically modified plants: report of the Working Party of the British Society for Antimicrobial Chemotherapy. J. Antimicrob. Chemother. 53: 418-431. Borth, W. B., Barry, K., Obsuwan, K., Xu, M. Q., Liu, R. W., Kuehnle, A. R., and Hu, J. S. 2006. Movement of Cymbidum mosaic virus and transgenic resistance in Dendrobium orchids. Acta Hort. 722: 137-146. Bucher, E., Lohuis, D., Pieter, M., van Poppel, J. A., Geerts-Dimitriadou, C., Goldbach, R, and Prins, M. 2006. Multiple virus resistance at a high frequency using a single transgene construct. J. Gen. Virol. 87: 3697-3701. Chai, M. L., Xu, C. J., Senthil, K. K., Kim, J. Y., and Kim, D. H. 2002. Stable transformation of protocorm-like bodies in Phalaenopsis orchid mediated by Agrobacterium tumefaciens. Sci. Hortic. 96: 213-224. Chan, Y.-L., and Chan, M.-T. 2005. Both protein- and RNA-mediated mechanism involved in the resistance of Phalaenopsis transformed with viral coat protein against Cymbidium mosaic virus. J. Genet. Mol. Biol. 16: 26-39. Chan, Y.-L., Chen, W.-H., and Chan, M.-T. 2003. Phalaenopsis orchid gene transformation (I) - optimization of transient gene expression. Chinese Soc. Hort. Sci. 49: 33-44. Chan, Y.-L., Lin, K.-H., Sanjaya, Liao, L.-J., Chen, W.-H., and Chan, M.-T. 2005. Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res. 14: 279-288. Chang, C., Chen, Y.-C., Hsu, Y.-H., Wu, J.-T., Hu, C.-C., Chang W.-C., and Lin, N.-S. 2005. Transgenic resistance to Cymbidium mosaic virus in Dendrobium expressing the viral capsid protein gene. Transgenic Res. 14: 41-46. Chang, M. U., Arai, K., Doi, Y., and Yora, K. 1976. Morphology and intracellular appearance of orchid fleck virus. Ann. Phytopathol. Soc. Jp. 42: 156-157. Chen, C.-C., Huang, C.-H., Chen, T.-C., Yeh, S.-D., Cheng, Y.-H., Hsu, H.-T., and Chang, C.-A. 2007. First report of capsicum chlorosis virus caused yellowing stripes on calla lilies. Plant Dis. 91: 1201. Chen, C.-C., Huang, C.-H., Cheng, Y.-H., Chen, T.-C., Yeh, S.-D., and Chang, C.-A. 2009. First report of capsicum chlorosis virus infecting amaryllis and blood lily in Taiwan. Plant Dis. 93: 1346. Chen, K., Xu, Z., Yan, L., and Wang, G. 2007. Characterization of a new strain of Capsicum chlorosis virus from peanut (Arachis hypogaea L.) in China. J. Phytopathol. 155: 178-181. Chen, L., Kawai, H., Oku, T., Takahashi, C., and Niimi, Y. 2006. Introduction of Odontoglossum ringspot virus coat protein gene into Cymbidium niveo-marginatum mediated by Agrobacterium tumefaciens to produce transgenic plants. J. Jp. Soc. Hort. Sci. 75: 249-255. Chen, S., Li, X., Liu, X., Xu, H., Meng, K., Xiao, G., Wei, X., Wang, F., and Zhu, Z. 2005. Green fluorescent protein as a vital elimination marker to easily screen marker-free transgenic progeny derived from plants co-transformed with a double T-DNA binary vector system. Plant Cell Rep. 23: 625-631. Chia, T.-F., Chan, Y.-S., and Chua, N.-H. 1992. Characterization of Cymbidium mosaic virus coat protein gene and its expression in transgenic tobacco plants. Plant Mol. Biol. 18: 1091-1099. Chia, T.-F., Chan, Y.-S., and Chua, N.-H. 1994. The firefly luciferase gene as a non-invasive reporter for Dendrobium transformation. Plant J. 6: 441-446. Clough, G. H., and Hamm, P. B. 1995. Coat protein transgenic resistance to watermelon mosaic virus and zucchini yellow mosaic virus in squash and cantaloupe. Plant Dis. 79: 1107-1109. Daley, M., Knauf, V. C., Summerfelt, K. R., and Turner, J. C. 1998. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep. 17: 489-496. Darbani, B., Eimanifar, A., Stewart, C. N., and Camargo, W. N. 2007. Methods to produce marker-free transgenic plants. Biothchnol. J. 2: 83-90. de Framond, A. J., Back, E. W., Chilton, W. S., Kayes, L, and Chilton, M. D. 1986. Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Mol. Gen. Genet. 202: 125-131. de Haan, P., Gielen, J. J., Prins, M., Wijkamp, I. G., van Schepen, A., Peters, D., van Grinsven, M. Q., and Goldbach, R. 1992. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio/Technology 10: 1133-1137. de Neve, M., de Buck, S., Jacobs, A., van Montagu, M., and Depicker, A. 1997. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J. 11: 15-29. Depicker, A., Herman, L., Jaocobs, A., Schell, J., and van Montagu, M. 1985. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol. Gen. Genet. 201: 477-484. Ebinuma, H., Sugita, K., Matsunaga, E., Endo, S., Yamada, K, and Komamine, A. 2001. Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep. 20: 383-392. Francki, R. I. B. 1970. Cymbidium mosaic virus. CMI/AAB Descriptions of Plant Viruses No. 27. Fuchs, M., and Gonsalves, D. 1995. Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/Technology 13: 466-1473. Fulton, T. M. 1995. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209. Grant, S. R. 1999. Dissecting the mechanisms of posttranscriptional gene silencing: divide and conquer. Cell 96: 303-306. Grumet, R. 1994. Development of virus resistant plants via genetic engineering. Plant Breed. Rev. 12: 47-49. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., and Fraley, R. T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229-1231. Hsu, H.-T., Ueng, P.-P., Chu, F.-H., Ye, Z.-H., and Yeh, S.-D. 2000. Serological and molecular characterization of a high temperature-recovered virus belonging to tospovirus serogroup IV. J. Gen. Plant Pathol. 66: 167-175. Huang, C.-H., Zheng, Y.-X., Cheng, Y.-H., Lee, W.-S., and Jan, F.-J. 2010. First report of Capsicum chlorosis virus infecting tomato in Taiwan. Plant Dis. 94: 1263. Inouye, N. 1969. Cucumber mosaic virus isolated from Dendrobium. Agric. Res. 53: 49-60. Jan, F.-J., Fagoaga, C., Pang, S.-Z., and Gonsalves, D. 2000a. A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J. Gen. Virol. 81: 235-242. Jan, F.-J., Fagoaga, C., Pang, S.-Z., and Gonsalves, D. 2000b. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81: 2103-2109. Jan, F.-J., Pang, S.-Z., Tricoli, D. M., and Gonsalves, D. 2000c. Evidence that resistance in squash mosaic comovirus coat-protein-transgenic plants is affected by plant developmental stage and enhanced by combination of transgenes from different lines. J. Gen. Virol. 81: 2299-2306. Jan, F.-J., Shih, J.-R., Yeh, S.-D., and Gonsalves, D. 2002. Development of transgenic plants resistant to multiple viruses via gene silencing. Page 14 in: Abstract book of XII International Congress of Virology, July 27-August 1, 2002, Paris, France. Jauhar, P. P. 2001. Genetic engineering and accelerated plant improvement: opportunities and challenges. Plant Cell Tiss. Organ Cult. 64: 87-91. Jensen, D. D., and Gold, H. A. 1951. A virus ring spot of Odontoglossum orchid: symptoms, transmission and electron microscopy. Phytopathology 41: 648-653. Kamo, K., Gera, A., Cohen, J., Hammond, J., Blowers, A., Smith, F., and van Eck, J. 2005. Transgenic Gladiolus plants transformed with the bean yellow mosaic virus coat-protein gene in either sense or antisense orientation. Plant Cell Rep. 23: 654-663. Ko, N.-J. 1988. Cytological identification of Cucumber mosaic virus infecting Phalaenopsis. Proc. Natl. Sci. Counc. Repub. China B 12: 46-51. Komari, T., Hiei, Y., Saito, Y., Murai, N., and Kumashiro, T. 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plant mediated by Agrobacterium tumefaciens and segregation of transformants free from selection makers. Plant J. 10: 165-174. Korbin, M., Podwyszynska, M., Komorowska, B. and D. Wawrzynczak. 2002. Transformation of Gerbera plants with Tomato spotted wilt virus (TSWV) nucleoprotein gene. Acta Horti. 572: 149-157. Krishnareddy, M., Usha Rani, R., Anil Kumar, K. S., Pappu, H. R., and Madhavi Reddy, K. 2008. Capsicum chlorosis virus (Genus Tospovirus) infecting chili pepper (Capsicum annuum) in India. Plant Dis. 92: 1469. Kuehnle, A. R., and Sugii, N. 1992. Transformation of Dendrobium orchid using particle bombardment of protocorms. Plant Cell Rep. 11: 484-488. Kung, Y.-J., Bau, H.-J., Wu, Y.-L., Huang, C.-H., Chen, T.-M., and Yeh, S.-D. 2009. Generation of transgenic papaya with double resistance to Papaya ringspot virus and Papaya leaf-distortion mosaic virus. Phytopathology 99: 1312-1320. Kung, Y.-J., Yu, T.-A, Huang, C.-H., Wang, H.-C., Wang, S.-L., and Yeh, S.-D. 2010. Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots. Transgenic Res. 19: 621-635. Lee, A. M., Persley, D. M., and Thomas, J. E. 2002. A new tospovirus serogroup IV species infecting capsicum and tomato in Queensland, Australia. Aust. Plant Pathol. 31: 231-239. Lesemann, D. E. 1977. Long, filamentous virus-like particles associated with vein necrosis of Dendrobium phalaenopsis. Phytopathology 71: 257-269. Liao, L.-J., Pan, I.-C., Chan, Y.-L., Hsu, Y.-H., Chen, W.-H., and Chan, M.-T. 2004. Transgene silencing in Phalaenopsis expressing the coat protein of Cymbidium mosaic virus is a manifestation of RNA-mediated resistance. Mol. Breed. 13: 229-242. Liau, C.-H., Lu, J.-C., Prasad, V., Hsiao, H.-H., You, S.-J., Lee, J.-T., Yang, N.-S., Huang, H.-E., Feng, T.-Y., Chen, W.-H., and Chan, M.-T. 2003. The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res. 12: 329-336. Lin, C.-Y., and Jan, F.-J. 2005. Current development of the strategies for generating marker-free transgenic plants. Plant Pathol. Bull. 14: 159-176. Lin, C.-Y., Ku, H.-M., Tan, C.-W., Yeh, S.-D., and Jan, F.-J. 2011a. Construction of the binary vector with bi-selectable markers for generating marker-free transgenic plants. Bot. Studies 52: 239-248. Lin, C.-Y., Ku, H.-M., Tsai, W.-S., Green, S.-K.,and Jan, F.-J. 2011b. Resistance to a DNA and a RNA virus transgenic plants by using a single chimeric transgene construct. Transgenic Res. 20: 261-270. Lodge, J. K., Kaniewski, W. K., and Tumer, N. E. 1993. Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc. Natl. Acad. Sci. USA 90: 7089-7093. Lomonossoff, G. P. 1995. Pathogen-derived resistance to plant viruses. Ann. Rev. Phytopathol. 33: 323-343. Lu, H.-J., Zhou, C.-R., Gong, Z.-X. and Upadhyaya, N. M. 2001. Generation of selectable marker-free transgenic rice using double right border (DRB) binary vectors. Aust. J. Plant Physiol. 28: 241-248. Lu, L., Wu, X., Yin, X., Morrand, J., Chen, X., Folk, W. R., and Zhang, Z. J. 2009. Development of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tiss. Organ Cult. 99: 97-108. Miller, M., Tagliani, L., Wang, N., Berka, B., and Bidney D. 2002. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res. 11: 381-396. Nan, G. L., and Kuehnle, A. R. 1995. Factors affecting gene delivery by particle bombardment of Dendrobium orchids. In Vitro Cell 31: 131-136. Napoli, C., Lemieux, C., and Jorgenson, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279-289. Neves-Borges, A. C., Collares, W. M., Pontes, J. A., Breyne, P., Farinelli, L., and de Oliveira, D. E. 2001. Coat protein RNA-mediated protection against Andean potato mottle virus in transgenic tobacco. Plant Sci. 160: 699-712. Niu, Q.-W., Lin, S.-S., Reyes, J. L., Chen, K.-C., Wu, H.-W., Yeh, S.-D., and Chua, N.-H. 2006. Expression of artificial micro-RNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biothechnol. 24: 1420-1428. Pang, S.-Z., Jan, F.-J., and Gonsalves, D. 1997. Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants. Proc. Natl. Acad. Sci. USA 94: 8261-8266. Powell-Abel, P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T. and Beachy, R.N. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738-743. Praveen, S., Mishra, A. K., and Antony, G. 2006. Viral suppression in transgenic plants expression chimeric transgene from tomato leaf curl virus and cucumber mosaic virus. Plant Cell Tiss. Organ Cult. 84: 47-53. Premachandra, W. T. S. D., Borgemeister, C., Maiss, E., Knierim, D., and Poehling, H. M. 2005. Ceratothripoides claratris, a new vector of a Capsicum chlorosis virus isolate infecting tomato in Thailand. Phytopathology 95: 659-663. Prins, M., Laimer, M., Noris, E., Schubert, J., Wassenegger, M, and Tepfer, M. 2008. Strategies for antiviral resistance in transgenic plants. Mol. Plant Pathol. 9: 73-83. Puchta, H. 2003. Marker-free transgenic plants. Plant Cell Tiss. Organ Cult. 74: 123-134. Rajasekaran, S., Vengoji, R., Karuppannan, V. 2008. Generation of selectable marker-free sheath blight resistant transgenic rice plants by efficient co-transformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Cell Rep. 27: 1635-1644. Register, J. C. and Beachy, R. N. 1988. Resistance to TMV in transgenic plants results from interference with an early event in infection. Virology 166: 524-532. Rudolph, C., Schreier, P. H., and Uhrig, J. F. 2003. Peptide-mediated broad-spectrum plant resistance to tospoviruses. Proc. Natl. Acad. Sci. USA 100: 4429-4434. Sanford, J. C., and Johnston, S. A. 1985. The concept of parasite-drived resistance-deriving resistance genes from the parasite’s own genome. J. Theor. Biol. 113: 395-405. Sherman, J. M., Moyer, J. W., and Daub, M. E. 1998. Tomato spotted wilt virus resistance in chrysanthemum expressing the viral nucleocapsid gene. Plant Dis. 82: 407-414. Shiva Prakash, N., Bhojaraja, R., Shivbachan, S. K., Hari Priya, G. G., Nagraj, T. K., Prasad, V., Srikanth Babu, V., Jayaprakash, T. L., Dasgupta, S., Spencer, T., Boddupalli Raghava, S. 2009. Marker-free transgenic corn plant production through co-bombardment. Plant Cell Rep. 28: 1655-1668. Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G., and Waterhouse, P. M. 2000. Total silencing by intron-spliced harpin RNAs. Nature 407: 319-320. Tricoli, D. M., Carney, K. J., Russell, P. F., McMaster, J. R., Groff, D. W., Hadden, K. C., Himmel, P. T., Hubbard, J. P., Boeshore, M. L., and Quemada, H. D. 1995. Field evaluaton of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2, and zucchini yellow mosaic virus. Bio/Technology 13: 1458-1465. Vaucheret, H., Christophe, B., Elmayan, T., Feuerbach, F., Godon, C., Morel, J. B., Mourrain, P., Palauqui, J. C., and Vernhettes, S. 1998. Transgene-induced gene silencing in plants. Plant J. 16: 651-659. Wey, G.-C. 1988. Occurrence and investigation of important diseases on Phalaenopsis in Taiwan. Rep. Taiwan Sugar Res. Inst. 122: 31-41. Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M. B., Rouse, D. T., Liu, Q., Gooding, P. S., Singh, S. P., Abbott, D., Stoutjesdijk, P. A., Robinson, S. P., Gleave, A. P., Green, A. G., and Waterhouse, P. M. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27: 581-590. Wong, S. M., Mahtani, P. H., Lee, K. C., Yu, H. H., Tan, Y., Neo, K. K., Chan, Y., Wu, M., and Chng, C. G. 1997. Cymbidium mosaic potexvirus RNA: complete nucleotide sequence and phylogenetic analysis. Arch. Virol. 142: 383. Wu, H.-W., Yu, T.-A., Raja, J. A. J., Christopher, S.-J., Wang, S.-L., and Yeh, S.-D. 2010. Double-virus resistance of transgenic oriental melon conferred by untranslatable chimeric construct carrying partial coat protein genes of two viruses. Plant Dis. 94: 1341-1347. Yang, J., Lee, H. J., Shin, D. H., Oh, S. K., Seon, J. H., Paek, K. Y., and Han, K. H. 1999. Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep. 18: 978-984. Yeh, S.-D., and Gonsalves, D. 1984. Purification and immunological analyses of cylindrical-inclusion protein induced by papaya ringspot virus and watermelon mosaic virus 1. Phytopathology 74: 1273-1278. Yoder, J. I., and Goldsbrough, A. P. 1994. Transformation systems for generating marker-free transgenic plants. Bio/Technology 12: 263-267. You, S.-J., Liau, C.-H., Huang, H.-E., Feng, T.-Y., Prasad, V., Hsiao, H.-H., Lu, J.-C., and Chan, M.-T. 2003. Sweet pepper ferredoxin-like protein (pflp) gene as a novel selection marker for orchid transformation. Planta 217: 60-65. Yu, Z., Chen, M., Nie, L., Lu, H., Ming, X., Zheng, H., Qu, L. J., and Chen, Z. 1999. Recovery of transgenic orchid plants with hygromycin selection by particle bombardment to protocorms. Plant Cell Tiss. Organ Cult. 58: 87-92. Yu, H., Yang, S. H., and Goh, C. J. 2001. Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1. Plant Cell Rep. 20: 301-305. Yu, T.-A., Chiang, C.-H., Wu, H.-W., Li, C.-M., Yang, C.-F., Chen, J.-H., Chen, Y.-W., and Yeh, S.-D. 2011. Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W. Plant Cell Rep. 30: 359-371. Zettler, F. W., Ko, N. J., Wisler, G. C., Elliott, M. S., and Wong, S. M. 1990. Viruses of orchids and their control. Plant Dis. 74: 621-625. Zheng, Y.-X. 2007. Identification and characterization of new Phalaenopsis orchid-infecting viruses and developing new transgenic approach for broad-spectrum resistance to viruses by expressing designed siRNA-generating synthetic nucleotides. PhD Thesis, Department of plant pathology, National Chung Hsing University, Taiwan. Zheng, Y.-X., Chen, C.-C., Chen Y.-K., and Jan, F.-J. 2008a. Identification and characterization of a potyvirus causing chlorotic spots on Phalaenopsis orchids. Eur. J. Plant Pathol. 121: 87-95. Zheng, Y.-X., Chen, C.-C., and Jan, F.-J. 2008b. Phalaenopsis orchids showing chlorotic rings, a new disease caused by Carnation mottle virus. J. Plant Pathol. 90: 192. Zheng, Y.-X., Chen, C.-C., and Jan, F.-J. 2011. First Report of Carnation mottle virus in Phalaenopsis Orchids. Plant Dis. 95: 354. Zheng, Y.-X., Chen, C.-C., Yang, C.-J., Yeh, S.-D., and Jan, F.-J. 2008c. Identification and characterization of a tospovirus causing chlorotic ringspots on Phalaenopsis orchids. Eur. J. Plant Pathol. 120: 199-209. Zheng, Y.-X., Shen, B.-N., Chen, C.-C., and Jan, F.-J. 2010. Odontoglossum ringspot virus causing flower crinkle in Phalaenopsis hybrids. Eur. J. Plant Pathol. 128: 1-5. Zheng, Y.-X., Yeh, S.-D., Chen, C.-C., and Jan, F.-J. 2003. Molecular cloning of a tospovirus infecting Phalaenopsis orchids in Taiwan. Plant Pathol. Bull. 12: 293-294. Zhou, H.-Y., Chen, S.-B., Li, X.-G., Xiao, G.-F., Wei, X.-L., and Zhu, Z. 2003. Generation marker-free transgenic tobacco plants by Agrobacterium-mediated transformation with double T-DNA binary vector. Acta Botanica Sinica 45: 1103-1108. Zhu, C. X., Song, Y. Z., Yin, G. H., and Wen, F. J. 2009. Induction of RNA-mediated multiple virus resistance to Potato virus Y, Tobacco mosaic virus and Cucumber mosaic virus. J. Phytopathol. 157: 101-107.
摘要: 蝴蝶蘭 (Phalaenopsis spp.) 是台灣重要的外銷花卉作物,其多是以組織培養方式大量繁殖,在栽培過程中易遭受多種植物病原菌感染,其中又以病毒病害最難以防治。目前主要感染蝴蝶蘭之病毒為蕙蘭嵌紋病毒 (Cymbidium mosaic virus, CymMV)、齒舌蘭輪斑病毒 (Odontoglossum ringspot virus, ORSV) 及番椒黃化病毒 (Capsicum chlorosis virus, CaCV-Ph) 三種,不僅引起嚴重病徵,還會影響產量及造成重大經濟損失,而且蝴蝶蘭栽培期間不只會被一種病毒感染,故為了解決蘭花病毒病害的問題,本研究針對此三種蝴蝶蘭病毒,運用植物基因工程技術及轉錄後基因沉寂 (post-transcriptional gene silencing, PTGS) 的策略,藉由轉基因表現連結多種病毒基因片段,發展同時具有多重蝴蝶蘭病毒抗性之轉基因植物。研究中選殖CymMV、ORSV及CaCV-Ph之複製酶部分基因片段,構築兩種帶有連結此三段基因的轉殖載體,一為傳統轉殖載體pCAMBIA1304-CyORCaRep,另一個則是可以產生無篩選標誌之載體pGA2TNH-CyORCaRep,並藉由農桿菌進行模式植物菸草 (Nicotiana benthamiana) 轉殖以及蝴蝶蘭轉殖,由於蝴蝶蘭轉殖與再生需要較長的時間,故先以模式植物分析構築的轉殖載體所誘發轉基因植物對病毒產生抗性的機制及效果,評估載體用於發展具有多重病毒抗性之轉基因蝴蝶蘭的可行性。轉殖再生的菸草株系分別以PCR與南方雜合反應確認轉殖成功的轉基因菸草,其中轉殖pCAMBIA1304-CyORCaRep獲得38株確定的轉基因株系,而轉殖pGA2TNH-CyORCaRep獲得7株帶有目標基因的轉殖株系,總共有45個株系挑戰接種病毒ORSV或CaCV-Ph,接種結果得到pCAMBIA1304-CyORCaRep有5株系為對ORSV具有抗病性的轉基因菸草,另外pGA2TNH-CyORCaRep有3株系具有對CaCV-Ph的抗性,以及1株系對CaCV-Ph延遲發病的轉基因株系,將這些抗病轉殖株自交後得到的R1子代,進一步以病毒接種分析子代的抗病性,結果證明此抗病能力能夠遺傳至後代。此外,本研究選用蝴蝶蘭V3大白花品種 (Phalaenopsis Sogo Yukidian ''V3'') 之擬圓球體 (protocorm-like bodies, PLBs) 作為轉殖培植體,利用基因槍轉殖法及農桿菌轉殖法進行大量的蝴蝶蘭轉殖,目前以抗生素篩選後已得到103個可能轉殖株,其中6個經PCR及南方雜合反應確認帶有目標轉基因,後續待其增殖生長後即可進行病毒接種測試抗病性。此多重抗病的轉殖策略除了可應用於蝴蝶蘭親本抗病育種外,還能運用在其他蘭花,如石斛蘭、文心蘭,期望藉此可降低病毒病害對蘭花產業的為害。
Phalaenopsis orchids (Phalaenopsis spp.) are commercially important export ornamental plants cultivated as cut flowers and potted plants in Taiwan. Currently, the Phalaenopsis orchids are commonly propagated by tissue culture technology, but the productivity are limited by various pathogens, especially the orchid-infecting viruses. Three viruses, including Cymbidium mosaic virus (CymMV), Odontoglossum ringspot virus (ORSV) and Capsicum chlorosis virus (CaCV-Ph), were the most predominant viruses that infect Phalaenopsis orchids in Taiwan. The fact that orchids are frequently invaded by more than one virus during the breeding process prompted this study to develop transgenic plants with multiple resistance to three Phalaenopsis orchids-infecting viruses. The gene silencing strategy was used to generate transgenic plants by introducing the chimeric transgene containing the three viruses' gene fragment. The individual partial-replicase genes of the three viruses was fused together and cloned into the expression vector. The expression cassette contained the chimeric transgene was introduced into two transformation vectors, one is the traditional vector, pCAMBIA1304 and the other is marker-free binary vector, pGA2TNH. The two constructs were transformed into Nicotiana benthamiana and Phalaenopsis orchids separately. In transformed N. benthamiana, 38 transgenic tobacco plant lines derived from pCAMBIA1304-CyORCaRep were obtained and the insertion of the transgene was confirmed by PCR and Southern blot. In the marker-free system, pGA2TNH-CyORCaRep, 7 transgenic tobacco plant lines carried the viral transgene. All 45 lines carried viral transgene were challenged with ORSV or CaCV-Ph to evaluate their resistance to respective virus. Results of the resistance assays showed 5 lines were resistant to ORSV, 3 lines to CaCV-Ph and 1 line with delayed symptom to CaCV-Ph. Seeds of the resistant lines were collected and used to evaluate the inheritance of viral resistance. Eighteen percent of the progeny plants were resistant to ORSV infection whereas 28% showed resistant to CaCV-Ph infection. In addition, these two constructs were transformed into protocorm-like bodies (PLBs) of Phalaenopsis Sogo Yukidian ''V3'' by particle bombardment and Agrobacterium-mediated transformation. So far, 103 putative lines of transgenic Phalaenopsis orchid were screened from the selection medium, and 6 of them were confirmed the presence of transgene by PCR and Southern blot carried the target transgene. The transgenic orchid lines are being propagated in large scale and will be used in resistance evaluation. The orchids with multiple resistances developed in this study could be used for resistance breeding program and the constructs could be applied in other orchid cultivar such as Dendrobium and Oncidium orchids to control the virus disease in orchid production.
其他識別: U0005-2507201100250900
Appears in Collections:植物病理學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.