Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3112
標題: 碳化矽/二氧化鈦奈米複合材料薄膜作為染料敏化太陽能電池之探討
Dye-sensitized solar cells based on silicon carbide/titanium dioxide nanocomposite photoelectrodes
作者: 賴彥州
Lai, Yan-Chou
關鍵字: 染料敏化太陽能電池
dye-sensitized solar cell
碳化矽
光電極
奈米複合
silicon carbide
photoelectrode
nanocomposite
出版社: 化學工程學系所
引用: 第五章 參考文獻 [1] M. Gratzel, Nature 414, (2001), 338. [2] 莊家琛, “太陽能工程-太陽電池篇”, 全華, 台北市, 第一章、第二章, 民86. [3] M. Gratzel, Nature 2000, (403), 363. [4] B. O’Regan, M. Gratzel, Nature 353, (1991), 737. [5] 楊素華、蔡泰成, “太陽能電池篇”, 科學發展雜誌, 2005年6月, 390期. [6] M.A. Green, K. Emery, Y. Hishikawa and W. Warta, Prog. Photovolt: Res. Appl 16, (2008), 61. [7] N. B. Chaure, J. Youang, A. P. Samantilleke, Sol. Energy Mater. Sol. Cells 81, (2004), 125. [8] M. K. Nazzeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C.A. Bignozzi, M. Gratzel, J. Am. Chem. Soc. 123, (2001), 6382. [9] Gerald Oster, Judith S. Bellin, Robert W. Kimball, Malcolm E. Schrader, J. Am. Chem. Soc. 81, (1959), 5095. [10] 馬振基, “有機與塑膠太陽能電池”, 五南, 台北市, 第三章, 民96. [11] R. Argazzi﹐Inorg. Chem. 33, (1994), 5741. [12] K. Finnie, J. Bartlett, J. Woolfrey﹐Langmuir 14, (1998), 2749. [13] Md. Nazeeruddin﹐Langmuir 16, (2000), 8525. [14] K .Murakoshi﹐J.Electroanal. Chem. 396, (1995), 27. [15] K. Sayama, H. Sugihara, H. Arakawa﹐Chem. Mater. 10, (1998), 3825. [16] C. Klein, Md. K. Nazeeruddin, D. D. Censo﹔P. Liska, M.Gratzel﹐Inorg. Chem. 43, (2004), 4216. [17] Y. Liu, A. Hagfeldt, X.Xiao, S.Lindquist﹐Sol. Energy Mater.Sol. Cells 55, (1998), 267. [18] K. Hara﹐Sol. Energy Mater. Sol. Cells 70, (2001), 151. [19] U. Bach, D. Lupo, M Gratzel, Nature 395, (1998), 583. [20] N. Papageorgiou, W. F. Maier, M. Gratzel, J. Electrochem. Soc. 144, (1997), 876. [21] Kay, M. Gratzel, Sol. Energy Mater. Sol. Cells 44, (1996), 99. [22] E. Ramasamya, W. J. Leea, D. Y. Leea , J. S. Songa, Electrochem. Commun. 10, (2008), 1087. [23] K. Vinodgopal, P. V. Kamat, Environ. Sci. Technol. 29, (1992), 841. [24] S. Hotchandani, P. V. Kamat, Chem. Phys. Lett. 191, (1992), 320. [25] Shiyanovskaya, M. J. Hepel, Electrochem. Soc. 145, (1998), 3981. [26] D. Ulrike, Surf. Sci. Rep. 48, (2003), 58. [27] M. A. Fox, M. Y. Dulay, Chem. Rev. 93, (1993), 341. [28] L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 95, (1995), 735. [29] M. R. Hoffmann, S. T. Martin, W. Choi, Chem. Rev. 95, (1995), 69. [30] P. Serp, P. Kalck, R. Feurer, Chem. Rev. 102, (2002), 3085. [31] K.-I. Iuchi, Y. Ohko, T. Tatsuma, A. Fujishima, Chem. Mater. 16, (2004), 1165. [32] Y. Ohko, K. Hashimoto, and A. Fujishima, J. Phys. Chem. A 101, (1997), 8057. [33] C. Anderson , A. J. Bard, J. Phys. Chem. 99, (1995), 9882. [34] Alex H.C. Chan, Chak K. Chan, John P. Barford, John F. Porter, Water Research 37, (2003), 1125. [35] M. Cho, H. Chung, W. Choi, J. Yoon, Water Research 38, (2004), 1069. [36] S. Horikoshi, H. Hidaka, N. Serpone, Environ. Sci. Technol. 36, (2002), 1357. [37] Q. Sun, Y. Jiang, Z. Jiang, L. Zhang, X. Sun, J. Li, Ind. Eng. Chem. Res. 48, (2009), 4210. [38] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature 1976, (261), 402. [39] K. MoHammad, P. Nazeeruddin, R. Thierry, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, J. Am. Chem. Soc. 123, (2001), 1613. [40] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, J. Am. Chem. Soc. 127, (2005), 16835. [41] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn. J. Appl. Phys. 45, (2006), L638. [42] C. Nasr, P. V. Kamat, S. Hotchandani, J. Phys. Chem. B 102, (1998), 10047. [43] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, V. P. S. Perera, Chem. Commun., (1999), 15. [44] S.-S. Kim, J.-H. Yum and Y.-E. Sung, Sol. Energy Mater. Sol. Cells 79, (2003), 495. [45] K. H. Park, E. M. Jin, H. B. Gu, S. D. Yoon,; E. M. Han and J. J. Yun, Appl. Phys. Lett. 97, (2010), 023302. [46] T. Durkop, S. A. Getty, E. Cobas, M.S. Fuhrer,Nano Lett. 4, (2004), 35. [47] R. Jose, V. Thavasi, S. Ramakrishna, J. Am. Ceram. Soc. 92, (2009), 289. [48] A. Kongkanand, R. M. Dominguez, P. V. Kamat, Nano Lett. 7, (2007), 676. [49] A. Kongkanand, P. V. Kamat, ACS nano 1, (2007), 13. [50] Kun-Mu Lee, Chih-Wei Hu, Hsin-Wei Chen, Kuo-Chuan Ho, Sol. Energy Mater. Sol. Cells, 92, (2008), 1628. [51] C. Y. Yen, Y. F. Lin, S. H. Liao, C. C. Weng, C. C. Huang, Y. H. Hsiao, C. C. M Ma, M. C. Chang, H. Shao, M. C. Tsai, C. K. Hsieh, C. H. Tsai, F. B. Weng, Nanotechnology 19, (2008), 375305. [52] N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, ACS Nano 4 (2), (2010), 887. [53] M.-Y. Yen, M.-C. Hsiao, S.-H. Liao, P.-I. Liu, H.-M. Tsai,C.-C. M. Ma, N.-W. Pu, M.-D. Ger, Carbon 49, ( 2011) 3597. [54] Acheson, E.G., Carborundum: Its history, manufacture and uses. J. Franklin Inst. 136(4), (1893), p. 279-289. [55] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76, (1994), 1363. [56] 林博文, 陶瓷技術手冊(下) Vol. 761 民國八十二年: 中國粉末冶金協會. [57] M. Bhatnagar, B. J. Baliga, IEEE Trans. Electron Devices 40 (3), (1993) 645. [58] C. E. Weitzel, K. E. Moore, “Silicon Carbide and Gallium Nitride RF Power Device,” Power Semiconductor Material and Device, (1997), p111-120. [59] T. P. Chow, N. Ramungul, and M. Ghezzo, “Wide Bandgap Semiconductor Power Device,” Power Semiconductor Material and Device, (1997), p89-102. [60] S. Ogawa, N. Yoshida, T. Itoh, S. Nonomura, Jpn. J. Appl. Phys. 46, (2007), 518. [61] T. Stapinski, B. Swatowska, J. Non-Cryst. Solids 352, (2006), 1406. [62] S. Ogawa, M. Okabe, Y. Ikeda, T. Itoh, N. Yoshida, S. Nonomura, Thin Solid Films 516, (2008), 740. [63] A. Salimi, L. Mohamadi, R. Hallaj and S. Soltanian, Electrochem. Commun. 11, (2009), 1116. [64] W. C. Wu, H. W. Chang and Y. C. Tsai, Chem. Commun. 47, (2011), 6458. [65] M.A.B. Christopher, A.M.O. Brett, Electrochemistry Principles, Methods, And Application, Oxford New York, 1993. [66] C. Longo, J. Freitas, M.A. De Paoli, J. Photochem. Photobiol. A: Chem. 159, (2003), 33. [67] M.C. Bernard, H. Cachet, P. Falaras, A. Hugot-Le Goff, M. Kalbac, I. Lukes, N.T. Oanh, T. Stergiopoulos, I. Arabatzis, J. Electrochem. Soc. 150, (2003), E155. [68] M. Tomkiewicz, J. Electrochem. Soc. 126 (9), (1979), 1505. [69] P. Atienzar, M. de Victoria-Rodriguez, O. Juanes, J. C. Rodriguez-Ubis, E. Brunet, H. Garcia, Energy Environ. Sci. 4, (2011), 4718. [70] Yinhua Jiang, Yun Yan, Wenli Zhang, Liang Ni, Yueming Sun, Hengbo Yin, Appl. Surf. Sci. 257, (2011), 6583. [71] Yaoming Xiao, Jihuai Wu, Gentian Yue, Guixiang Xie, Jianming Lin, Miaoliang Huang, Electrochim. Acta 55, (2010), 4573. [72] S. R. Jang, M. J. Choi, R. Vittal, K. J. Kim, Sol. Energy Mater. Sol. Cells 91, (2007), 1209. [73] H. S. Uam, Y. S. Jung, Y. Jun, K. J. Kim, J. Photochem. Photobiol., A 212, (2010), 122. [74] I. Lauermann, R. Memming, D. Meissner, J. Electrochem. Soc. 144 (1), (1997), 73. [75] A. J. Bard, I. R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000. [76] Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coordin. Chem. Rev. 248 (2004) 1381.
摘要: 本研究分別選用六角晶系結構的6H-SiC (α phase)及立方晶系結構的3C-SiC (β phase)配製成6H-SiC/TiO2及3C-SiC/TiO2兩種溶液,利用刮刀法將其塗佈在FTO導電玻璃上製作成染料敏化太陽能電池薄膜光電極,量測其光電轉換效率。與TiO2奈米結構光電極和6H-SiC/TiO2奈米複合薄膜光電極相比3C-SiC/TiO2奈米複合薄膜光電極確實有較高的光電轉換效率表現。利用場發射式掃描式電子顯微鏡(field emission scanning electron microscopy, FESEM) 觀察6H-SiC/TiO2 和3C-SiC/TiO2 奈米複合薄膜光電極的表面形貌差異及利用紫外光/可見光分光光譜儀(UV/Vis spectrophotometer)分析6H-SiC/TiO2 和3C-SiC/TiO2 奈米複合薄膜光電極所吸附染料分子的含量,藉此得知光電轉換效率表現上的差異是由於6H-SiC 和3C-SiC 能隙(energy gap, Eg)與導帶(conduction band, ECB)不同所造成。 接著量測不同3C-SiC含量之3C-SiC/TiO2複合薄膜光電極染料敏化太陽能電池光電轉換效率表現,由光電轉換效率量測結果可得知在3C-SiC含量為0.04 wt%時有最佳的光電轉換效率7.19%。藉由電化學交流阻抗分析3C-SiC/TiO2奈米複合薄膜光電極的內部電阻,發現3C-SiC (0.04 wt%)/TiO2奈米複合薄膜光電極有最低的內部電阻,使電子傳遞速度獲得提升,減少再結合現象的發生。接著改變3C-SiC (0.04 wt%)/TiO2複合薄膜的厚度並量測其光電轉換效率,發現在薄膜厚度為12.9 μm時有最佳的光電轉換效率7.30 %,與TiO2奈米薄膜光電極光電轉換效率3.39 % 相比,3C-SiC (0.04 wt%)/TiO2複合薄膜光電極在光電轉換效率表現上能提升將近115%。
We choose two SiC forms, a hexagonal structure 6H-SiC (α phase) and a cubic structure 3C-SiC (β phase), and disperse them into water directly and make the 6H-SiC/TiO2 solution and 3C-SiC/TiO2 solution, respectively. The pastes were coated by using the doctor blade technique onto fluorine-doped SnO2 glass substrates (FTO), respectively, as dye-sensitized solar cell (DSSC) photoelectrodes, and measured solar-to-electric energy conversion efficiency. To compare with TiO2 nanocrystalline photoelectrodes and 6H-SiC/TiO2 nanocomposite photoelectrodes, the 3C-SiC/TiO2 nanocomposite photoelectrodes show the higher photovoltaic conversion efficiency. The 6H-SiC/TiO2 and 3C-SiC/TiO2 nanocomposite morphology were investigated by field emission scanning electron microscopy (FESEM). UV/Vis spectrophotometers were measured the amount of adsorbed dyes, which were adsorbed by 6H-SiC/TiO2 and 3C-SiC/TiO2 nanocomposite photoelectrodes, respectively. The behaviors seen in the performance of the DSSCs would appear to be attributable to the different bandgap energies and conduction band energies of 6H-SiC and 3C-SiC. To investigate the photocurrent-voltage (J-V) characteristics of DSSCs based on different 3C-SiC contents 3C-SiC/TiO2 nanocomposite photoelectrode, the 3C-SiC (0.04 wt%)/TiO2 nanocomposite photoelectrode shows the higher solar-to-electric energy conversion efficiency 7.19%. Internal resistance in the DSSC was characterized by electrochemical impedance spectroscopy (EIS). The EIS results reveal the 3C-SiC (0.04 wt%)/TiO2 nanocomposite photoelectrode has the lower internal resistance. The 3C-SiC(0.04 wt%)/TiO2 nanocomposite photoelectrode can enhance the rate of charge transfer exactly, reduce the charge recombination, and enhance photovoltaic conversion efficiency. To investigate the effect of film thickness of 3C-SiC(0.04 wt%)/TiO2 nanocomposite film on the photovoltaic performance of the DSSC, an optimum of 3C-SiC(0.04 wt%)/TiO2 nanocompostie film thickness was 12.9 μm and achieved a high conversion efficiency 7.30%. To compare with TiO2 nanocrystalline photoelectrodes photovoltaic conversion efficiency 3.39%, the 3C-SiC(0.04 wt%)/TiO2 nanocompostie photoelectrodes show ~115% increase in solar-to-electric energy conversion efficiency.
URI: http://hdl.handle.net/11455/3112
其他識別: U0005-2707201211161400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707201211161400
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.