Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31133
標題: 利用土壤添加物與微生物管理長豇豆栽培
Management of Asparagus Bean Cultivation with Soil Amendment and Microorganisms
作者: 何明清
Ha, Minh-Thanh
關鍵字: 長豇豆
Vigna unguiculata (L.) ssp. sesquipedalis Verdc
鐮孢菌萎凋病
枯草桿菌
有機添加物
蝦蟹殼粉
植株營養收
鐮孢菌病害
微生物活性
蟹殼粉
asparagus bean
Bacillus spp.
Fusarium oxysporum f. sp. tracheiphilum
Fusarium wilt
microbial activity
organic amendment
shrimp and crab shell powder
Biolog identification system
16S rDNA sequence comparison
Bacillus subtilis
plant nutrient uptake
出版社: 植物病理學系所
引用: Chapter I Adam, P. B., and Ayers, W. A. 1982. Biological control of Sclerotinia lettuce drop in the field by Sporidesmium sclerotivorum. Phytopathology 72: 485-488. Agrios, G. N. 1997. Plant Pathology, 3rd. ed. Academic Press, Inc.: New York. 803 pp. Amstrong, G. M. 1963. Fusarium wilt of bean in South Carolina and some host relations of the bean Fusarium. Plant Dis. Reptr. 47: 1088-1091. Armstrong, G. M. and Armstrong, J. K. 1950. Biological races of the Fusarium causing wilt of cowpea and soybean. Phytopathology 40: 181-193. Baker, K. F., and Cook, R. J. 1974. Biological Control of Plant Pathogens. W. H. Freeman & Company, San Francisco. 443 pp. Biswas, K. K., and Das, N. D. 1999. Biological control of pigeonpea wilt caused by Fusarium udum with Trichoderma spp. Ann. Plant Prot. Sci. 7: 46-50. Blok, W. J., Lamers, J. G., Termorshuizen, A. J., and Bollen, G. J., 2000. Control of soilborne plant pathogens by incorporating fresh organic amendments followed by trapping. Phytopathology 90: 253-259. Boelens, J., Zoutmann, D., Cambell, J., Verstraete, W., and Paranchych, W. 1993. The use of bioluminescence as a reporter to study the adherence of the plant growth promoting rhizospseudomonas 7NSK2 and ANP15 to canola roots. Can. J. Microbiol. 39: 329-334. Booth, C. 1971. The Genus Fusarium. Commonwelth Mycological Institute. Kew, Surrey, England. 231 pp. Bothe, H., K., Orsgen, H., Lehmacher, T., and Hundeshagen, T. 1992. Differential effects of Azospirillum, auxin and combined nitrogen on growth of the roots of wheat. Symbiosis 13: 167-179. Brewer, M. T., and Larkin, R. P. 2005. Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Prot. 24: 939-950. Cakmakci, R., Dönmez, F., Aydın, A., and Sahin, F. 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38: 1482-1487 Cao, L., Qiu, Z., You, J., Tan, H., and Zhou, S. 2005. Isolation and characterization of endophytic Streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana root. FEMS Microbiology Letters 247: 147-152. Chaoui, H. I., Zibilske, L. M., and Ohno, T. 2003. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol. Biochem. 35:295-302 Chen, C. Y., Wang, Y. H., and Huang, C. J. 2004. Enhancement of the antifugal activity of Bacillus subtilis F29-3 by the chitinase encoded by Bacillus circulans chiA gene. Can. J. Microbiol. 50: 451-454. Chung, W. C., Huang, J. W., and Huang, H. C. 2005. Formulation of a soil biofungicide for control of damping-off of Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani. Biol. Control 32: 287-294. Coelho, M. R. R., Von der Weid, I., Zahner, V., and Seldin, L. 2003. Characterization of nitrogen-fixing Paenibacillus species by polymerase chain reaction-restriction fragment length polymorphism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis. FEMS Microbiology Letters 222, 243-250. Cook, R. J., and Baker, K. F. 1983. The Nature and Practice of Biological Control of Plant Pathogens. American Phytopathological Society, St. Paul, MN. 539 pp. de Freitas, J. R., Banerjee, M. R., and Germida, J. J. 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soils 24: 358-364. Gamliel A., Austerweil, M., and Kritzman, G. 2000. Non-chemical approach to soilborne pest management - organic amendments. Crop Prot. 19: 847-853. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117. Handelsman, J., and Stabb, E. V. 1996. Biocontrol of soil borne plant pathogens. Plant Cell 8: 1855-1869. Hare, W. W. 1953. A new race of Fusarium causing wilt of cowpea. Phytopathology 43: 291. Herrera, M. A., Salamanka, C. P., and Barea, J. M. 1993. Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl. Environ. Microbiol. 59: 129-133. Hervas, A., Trapero-Casas, J. L., and Jime nez-Dıaz, R. M. 1995. Induced resistance against Fusarium wilt of chickpea by nonpathogenic races of Fusarium oxysporum f. sp. ciceris and nonpathogenic isolates of F. oxysporum. Plant Dis. 79:1110-1116. Hoitink, H. A. J., Harry A. 1986. Basis for the control of soilborne plant pathogens with composts. Annu. Rev. Phytopathol. 24:93-114. Hoitink, H. A. J., Inbar, Y., and Boehm, M. J. 1991. Status of compost-amended potting mixes naturally suppressive to soilborne diseases of floricultural crops. Plant Dis. 75: 869-873. Höflich, G., Wiehe, W., Kühn, G., 1994. Plant growth stimulation with symbiotic and associative rhizosphere microorganisms. Experientia 50, 897-905. Huang, H. C., Erickson, R. S., Chi Chang, Moyer, J. R., Larney, F. J., and Huang J. W. 2005. Control of white mold of bean caused by Sclerotinia sclerotiorum using organic soil amendment and biocontrol agents. Plant Pathol. Bull. 14: 183-190. Huang, H. C. and Huang, J. W. 1993. Prospects for control of soilborne plant pathogens by soil amendment. Cur. Top. Bot. Res. 1: 223-235. Huang, J. W. 1991. Control of soilborne crop diseases by soil amendments. Plant Prot. Bull. 33: 113-123. Huang, J. W., Hsieh, T. F. and Sun, S. K. 2003. Sustainable management of soilborne vegetable crop diseases. Pages 107-119, in: Advance in Plant Disease Management. Huang, H. C., and Acharya, S. N. (eds.), Research Signpost, India. Huang, J. W., and Huang, H. C. 2000. A formulated container medium suppressive to Rhizoctonia damping-off of cabbage. Bot. Bull. Acad. Sin. 41: 49-56. Huang, J. W., and Kuhlman, E. G. 1991. Formulation of a soil amendment to control damping-off slash pine seedlings. Phytopathology 81: 163-170. Hsu, F. S., and Tzeng, D. D. S. 2000. Bacillus subtilis isolate BS1 as a potential agent for biological control of tomato bacterial spot. Phytopathology 90: S36 (abstract). Innes, N. L. 1995. A plant breeding contribution to sustainable agriculture. Annu. Appl. Biol. 126: 1-18. Javed, M., and Arshad, M. 1997. Growth promotion of two wheat cultivars by plant growth promoting rhizobacteria. Pak. J. Bot. 29: 243-248. Jensen, C. S., Percich, J. A., and Graham, P. H. 2002. Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crops Res. 74: 107-115. Kaur, N. P., and Mukhopadhyay, A. N. 1992. Integrated control of chickpea wilt complex by Trichoderma and chemical methods in India. Trop. Pest Manage. 38: 372-375. Kendrich, J. B. 1931. Seed transmission of cowpea Fusarium wilt. Phytopathology 21: 979-983. Knott, J. E. and Deanon, J. A. 1967. Vegetable Production in Southeast Asia. Univ. of Philippines, College of Agriculture, Los Banos. 366 pp. Landa, B. B., Herva´s, A., Bettiol, W., and Jime´nez-Dı´az, R. M. 1997. Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris. Phytoparasitica 25: 305-318. Larkin, R. P., and Fravel, D. R. 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of fusarium wilt of tomato. Plant Dis. 82: 1022-1028. Lemanceau, P., Bakker, P. A. H. M., Kogel, W. J., Alabouvette, C., and Schippers, B. 1993. Antagonistic Effect of Nonpathogenic Fusarium oxysporum Fo47 and Pseudobactin 358 upon Pathogenic Fusarium oxysporum f. sp. dianthi. Appl. Environ. Microbiol. 59: 74-82. Long, D. W. 1963. Inhibition of Fusarium wilt symptom in cowpea by species of Cephalosporium. Phytopathology 53: 881. Lumsden, R. D., Lewis, J. A., and Millner, P. D. 1983. Effect of composted sewage sludge on several soilborne plant pathogens and diseases. Phytopathology 73:1543-1548. Lynch, V. M. 1978. Production and phytotoxicity of acetic acid produced in anaerobic soils containing plant residues. Soil Biol. Biochem. 10:131-135. Mayton, H. S., Olivier, C., Vaughn, S. F., and Loria, R. 1996. Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology 86: 267-271. Mittra, B. N., Karmakar, S., Swain, D. K., and Ghosh, B. C. 2005. Fly ash - a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel 84: 1447-1451. Moussa, T. A. A., and Rizk, M. A. 2002. Biocontrol of sugarbeet pathogen Fusarium solani (Mart.) Sacc. by Streptomyces aureofaciens. Pak. J. Biol Agric. Sci. 5: 556-559. Natarajan, M., Kannaiyan, J., Willey, R. W. and Nene, Y. L. 1985. Study on the effect of cropping system on fusarium wilt of pigeonpea. Field Crop Res. 10: 333-346. Nautiya C. S. 1997. Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungi. FEMS Microbiology Ecology 23: 145-158. Ni, H. F. 1992. Studies on the Antibiotic Production by the PB-113 Isolate of Bacillus subtilis, and Its Biological and Biochemical Properties. Master Thesis, Department of Plant Pathology, National Chung Hsing University. 63 pp. (in Chinese with English summary). Okon, Y. 1991. Associative Symbioses. Pages 17-22 in: Programm and Abstracts: 59. International Symposium Congress, Jerusalem, Israel, November. Pavloua, G. C., and Vakalounakisb, D. J. 2005. Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by lettuce soil amendment. Crop Prot. 24: 135-140. Prasad, R. D., Rangeshwaran, R., Hegde, S. V. and Anuroop, C. P. 2002. Effect of soil and seed application of Trichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions. Crop Prot. 21: 293-297. Ramirez-Villapudua, J., and Munnecke, D. E. 1988. Effect of solar heating and soil amendments of cruciferous residues on Fusarium oxysporum f. sp. conglutinans and other microorganisms. Phytopathology 78: 289-295. Requena, B. N., Jimenez, I., Toro, M., and Barea, J. M. 1997. Interactions between plant growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytiisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytologist 136:667-677. Rosado, A. S., and Seldin, L. 1993. Production of a potentially novel anti-microbial substance by Bacillus polymyxa. World J. Microbiol. Biotechnol. 9: 521-528. Saikia, R., Singh, T., Kumar, R., Srivastava, J., Srivastava, A. K., Singh, K., and Aroral, D. K. 2003. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol. Res. 158: 203-213. Salgado, M. O., Schwartz, H. F., and Brick, M. A. 1995. Inheritance of resistance to a Colorado race of Fusarium oxysporum f. sp. phaseoli in common beans. Plant Dis. 79: 279-281. Sarwar, M., Arshad, D. A., Martens, W. T., and Frankenberger, J. R. 1992. Tryptophan dependent biosynthesis of auxins in soil. Plant and Soil 147: 207-215. Shiau, F. L., Chung, W. C., Huang, J. W., and Huang, H. C. 1999. Organic amendment of commercial culture media for improving control of Rhizoctonia damping-off of cabbage. Can. J. Plant Pathol. 21: 368-374. Smith, I. M., Dunez, J., Phillips, D. H., Lelliott, R. A. and Archer, S. A. 1988. European Handbook of Plant Diseases. Blackwell Scientific Publications, Oxford. 583 pp. Smith, S. N., Helms, D. M., and Temple, S. R. 1999. The distribution of Fusarium wilt of blackeyed cowpea within California caused by Fusarium oxysporum f. sp. tracheiphilum Race 4. Plant Dis. 83: 694. Sun, S. K., and Huang, J. W. 1985. Formulated soil amendment for controlling Fusarium wilt and other soilborne diseases. Plant Dis. 69: 917-920. Thomason, I. J., Erwin, D. C., and Garber, M. J. 1959. The relationship of the root-knot nematode, Meloidogyne javanica, to Fusarium wilt of cowpea. Phytopathology 49: 602-606. Timmusk, S., Nicander, B., Granhall, U., Tillberg, E., 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31: 1847-1852. Toler, R. W., Dukes, P. D., and Jenkins, S. F. 1966. Growth response of Fusarium oxysporum f. sp. tracheiphilum in vitro to varying oxygen and carbon dioxide tensions. Phytopathology 56: 183-186. Tschen, J. S. M. 1991. Effect of antibiotic antagonists on control of basal stem rot of chrysanthemum caused by Rhizoctonia solani. Plant Prot. Bull. 33: 56-62. Walker, D. J., and Bernal, M. P. 2008. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresour. Technol. 99: 396-403. Weller, D. M., Raaijmakers, J. M., Gardener, B. B., and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40: 309-348. Wests D. W., and Francois L. E. 1983. Effects of salinity on germination, growth and yield of cowpea. Irrig. Sci. 3:169-175. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511. Yamaguchi, M. 1983. World Vegetables. AVI Publishing Company, Inc. Westport, Conn. 415 pp. Yangui, T., Rhouma, A., Triki, M. A., Gargouri, A., and Bouzid, J. 2008. Control of damping-off caused by Rhizoctonia solani and Fusarium solani using olive mill waste water and some of its indigenous bacterial strains. Crop Prot. 27: 189-197. Chapter II Aye, K. N., Karuppuswamy, R., Ahamed, T., and Stevens, W. F. 2006. Peripheral enzymatic deacetylation of chitin and reprecipitated chitin particles. Biores. Technol. 97: 557-582. Benhamou, N., and Theriault, G. 1992. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis lyxopersici. Physiol. Mol. Plant Pathol. 41: 33-52. Chen, C. Y., Wang, Y. H., and Huang, C. J. 2004. Enhancement of the antifungal activity of Bacillus subtilis F29-3 by the chitinase encoded by Bacillus circulans chiA gene. Can. J. Microbiol. 50: 451-454. Chinn, S. H. F. 1967. Differences in fungistasis in some Saskatchewan soils with special reference to Cochliobolus sativus. Phytopathology 57: 224-226. Chung, W. C., Huang, J. W., and Huang, H. C. 2005. Formulation of a soil biofungicide for control of damping-off of Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani. Biol. Control 32: 287-294. Cook, R. J., and Baker, K. F. 1983. The Nature and Practice of Biological Control of Plant Pathogens. American Phytopathological Society, St. Paul, MN. 539 pp. Cosio, I.G., Fisher, R. A., and Carroad, P.A. 1982. Bioconversion of shellfish chitin waste: waste pretreatment, enzyme production, process design, and economic analysis. J. Food Sci. 47: 901-905. He, H., Chen, X., Sun, C., Zhang, Y., and Gao, P. 2006. Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011. Biores. Technol. 97: 385-390. Huang, H. C., and Huang, J. W. 1993. Prospects for control of soilborne plant pathogens by soil amendment. Cur. Top. Bot. Res. 1: 223-235. Huang, H. C., Erickson, R. S., Chi Chang, Moyer, J. R., Larney, F. J., and Huang J. W. 2005. Control of white mold of bean caused by Sclerotinia sclerotiorum using organic soil amendment and biocontrol agents. Plant Pathol. Bull. 14: 183-190. Huang, H. C., Erickson, R. S., Phillippe, L. M., Mueller, C. A., Sun, S. K., and Huang J. W. 2006. Control of apothecia of Sclerotinia sclerotiorum by soil amendment with S-H mixture or Perlka® in bean, canola and wheat fields. Soil Biol. Biochem. 38: 1348-1352. Huang, J. W. 1991. Control of soilborne crop diseases by soil amendments. Plant Prot. Bull. 33: 113-123. Huang, J. W., and Kuhlman, E. G. 1991. Formulation of a soil amendment to control damping-off slash pine seedlings. Phytopathology 81: 163-170. Huang, J. W., Hsieh, T. F., and Sun, S. K. 2003. Sustainable management of soilborne vegetable crop diseases. Pages 107-119 in: Advance in Plant Disease Management. Huang, H. C. and Acharya, S. N., (eds.), Research Signpost, India. Huber, D. M., and Watson, R. D. 1970. Effect of organic amendment on soil-borne plant pathogens. Phytopathology 60: 22-26. Jensen, C. S., Percich, J. A., and Graham, P. H. 2002. Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crops Res. 74: 107-115. Jonhson, L. F., and Curl, E. A. 1972. Method for Research on the Ecology of Soilborne Plant Pathogens. Burgess Publishing Co., St. Paul, MN, U.S.A. 247 pp. Johnson, K.B. 1994. Dose-response relationships and inundative biological control. Phytopathology 84: 780-784. Kaur, N. P., and Mukhopadhyay, A. N. 1992. Integrated control of chickpea wilt complex by Trichoderma and chemical methods in India. Trop. Pest Manage. 38: 372-375. Landa, B. B., Herva´s, A., Bettiol, W., and Jime´nez-Dı´az, R. M. 1997. Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris. Phytoparasitica 25: 305-318. Lemanceau, P., Bakker, P. A. H. M., DeKogel, W. J., Alabouvette, C., and Schippers, B. 1992. Effect of pseudobactin 358 production of Pseudomonas putida WCS 358 on suppression of Fusarium wilt of carnations by non pathogenic Fusarium oxysporum FO47. Appl. Environ. Microbiol. 58: 2978-2982. Lingappa, Y., and Lockwood, J. L. 1962. Chitin media for selective isolation and culture of actinomycetes. Phytopathology 52 : 317-323. Nautiya, C. S. 1997. Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungi. FEMS Microbiol. Ecol. 23: 145-158. Pavloua, G. C., and Vakalounakisb, D. J. 2005. Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by lettuce soil amendment. Crop Prot. 24: 135-140. Prasada, R. D., Rangeshwarana, R., Hegdeb, S. V., and Anuroopa, C. P. 2002. Effect of soil and seed application of Trichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions. Crop Prot. 21: 293-297. Ratul S. , Tanuja S. , Rakesh K. , Juhi S. , Alok K. S. , Kiran S. , and Dilip K. Arora1. 2003. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol. Res. 158: 203-213. SAS Institute Inc. 1989. SAS/STA TM User's Guide, Version 6, 4thEd. SAS Institute Inc. Cary, North Carolina. 1686 pp. Saravanan, T., Muthusamy, M., and Marimuthu, T. 2003. Development of integrated approach to manage the fusarial wilt of banana. Crop Prot. 22: 1117-1123. Schnürer, J., and Rosewall, T. 1992. Fluorecein diacetate hydrolysis as a measure of total microbial activity in soil in litter. Appl. Environ. Microbial. 46: 1256-1261. Sun, S. K., and Huang, J. W. 1985. Formulated soil amendment for controlling Fusarium wilt and other soilborne diseases. Plant Dis. 69: 917-920. Wang, S. L., Hsiao W. J., and Chang W. T. 2002. Purification and characterization of an antimicrobial chitinase extracellularly produced by Momascus purpureus CCRC31499 in a shrimp and crab shell powder medium. J. Agric. Food Chem. 50: 2249-2255. Wang, S. L., Yen, T. C., and Shih, I. L. 1999. Production of antifungal compounds by Pseudomonas aeruginosa K-187 using shrimp and crab shell powder as a carbon source. Enzyme Microb. Technol. 25: 142 - 148. Zakaria, M. A., and Lockwood, J. L. 1980. Reduction in Fusarium populations in soil by oilseed meal amendments. Phytopathology 70:240-243. Zakaria, M. A., Lockwood, J. L., and Filonow, A. B. 1980. Reduction in Fusarium population density in soil by volatile degradation products of oilseed meal amendments. Phytopathology 70:495-499. Chapter III Ash, C., Farrow, J. A. E., Wallbanks, S., and Collins, M.D. 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol. 13: 202- 206. Baath, E., Diaz-Ravina, M., Frostegard, A., and Campbell, C. D. 1998. Effect of metal-rich sludge ammendments on the soil microbial community. Appl. Environ. Microbial. 64: 238-245. Chizhikov,V., Rasooly, A., Chumakov, K., and Levy, D. D. 2001. Microarray analysis of microbial virulence factors. Appl. Environ. Microbiol. 67: 3258- 3263. Chun, J., Huq, A., and Colwell, R. R. 1999. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl. Environ. Microbiol. 65: 2202-2208. Claus, D., and Berkeley, R. C. W. 1986. Genus Bacillus. Pages 1105-1139 in: Bergey's Manual of Systematic Bacteriology, Vol. II. Sneath, P. H. A., Mair, N. S., Sharpe, M. E. and Holt, J. G., (eds.), Williams and Wilkins, Baltimore, USA. Daffonchio, D., Borin, S., Consolondi, A., Mora, D., Manachini, P. L., and Sorlini, C. 1998. 16S-23S rRNA internal transcribed spaces as molecular markers for the species of the 16S rRNA group I of the genus Bacillus. FEMS Microbiol. Lett. 163: 229-236. Garland, J. L., and Mills, A. L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbial. 57: 2351-2359. Giffel, M. C., Beumer, R. R., Klijn, N., Wagendorp, A., and Rombouts, F. M. 1997. Discrimination between Bacillus cereus and Bacillus thuringiensis is using specific DNA probes based on variable regions of 16S rRNA. FEMS Microbiol. Lett. 146: 47-51. Haack, S. K., Garchow, H., KIug, M. J., and Forney, L. J. 1995. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl. Environ. Microbial. 61: 1458-1468. Holt, J. G., Krieg, N. R., Sneath, P. H. A, Staley, J. T., and Williams, S. T. 1994. Endospore forming gram positive rods and cocci. page 559 in: Bergey's Manual of Determinative Bacteriology. Kanopka, A., Oliver, L., and Turco, R. F. 1998: The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbiol. Ecol. 35: 103-115. Laberge, I., Ibrahim, A., Barta, J. R., and Griffiths, M. W. 1996. Detection of Cryptosporidium parvum in raw milk by PCR and oligonucleotide probe hybridization. Appl. Environ. Microbiol. 62: 3259-3264. Mauckline, W. S., and Keevil, C. W. 1991. Development of the Biolog substrate utilization system for identification of Legionella spp. Appl. Environ. Microbiol. 57: 3345-3349. Odumeru, J. A., Steel, M., Fruhner, L., Larkin, C. Jiang, J., Mann, E., and Mcnab, W. B. 1999. Evaluation of accuracy and repeatability of identification of food-borne pathogens by automated bacterial identification systems. J. Clin. Microbiol. 37: 944-949. Rudi, K., Skulberg, O. M., Skulberg, R., and Jakobsen, K. S. 2000. Application of sequence-specific labeled 16S rRNA gene oligonucleotide probes for genetic profiling of cyanobacterial abundance and diversity by array hybridization. Appl. Environ. Microbiol. 66: 4004-4011. Talen, L. T., Miranda, M., and Miller, M. W. 1973. Electron micrography of bud formation in Metschnikowia krissii. J. Bacteriol. 114: 413-423. Truu, J., Talpsep, E., Heinaru, E., Stottmeister, U., Wand, H., and Heinaru, A. 1999. Comparison of API 20NE and Biolog GN identification systems assessed by techniques of multivariate analysis. J. Microbiol. Meth. 36: 193-201. Tsen, H.Y., and Chen, T. R. 2001. Development of DNA probes and PCR primers for the specific detection of food pathogens. Food Sci. Agric. Chem. 3: 1-7. Tsen, H.Y., and Lin, C. K. 1999. Comparison of the partial 16S rRNA gene sequences and development of oligonucleotide probes for the detection of Escherichia coli cells in water and milk. Food Microbiol. 16: 551-562. Chapter V Aye, K. N., Karuppuswamy, R., Ahamed, T., and Stevens, W. F. 2006. Peripheral enzymatic deacetylation of chitin and reprecipitated chitin particles. Biores. Technol. 97: 557-582. Benhamou, N., and Theriault, G. 1992. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis lyxopersici. Physiol. Mol. Plant Pathol. 41: 33-52. Boelens, J., Zoutmann, D., Cambell, J., and Verstraete, W. 1993. The use of bioluminescence as a reporter to study the adherence of the plant growth promoting rhizospseudomonas 7NSK2 and ANP15 to canola roots. Can. J. Microbiol. 39: 329-334. Bothe, H., Körsgen, H., Lehmacher, T., and Hundeshagen, B. 1992. Differential effects of azospirillum, auxin and combined nitrogen on growth of the roots of wheat. Symbiosis 13: 167- 179. Bray, R. H., and Kurtz, L. T. 1945. Determination of total organic and available forms of phosphorus in soil. Soil Sci. 59: 39-45. Cakmakci, R., Donmez, D., Aydın, A., and Sahin, F. 2005. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38: 1482-1487. Chen, S. K., Clive, A. E., and Scott, S. 2003. The influence of two agricultural biostimulants on nitrogen transformations, microbial activity, and plant growth in soil microcosms. Soil Biol. Biochem. 35: 9-19. Chiarini, L., Bevivino, A., Dalmastri, C., Nacamulli, C., and Tabacchioni, S. 1998. Influence of plant development, cultivar and soil type on microbial colonization of maize roots. App. Soil Ecol. 8: 11-18. Chiu, K. K., Ye, Z. H., and Wong, M. H. 2006. Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresour. Technol. 97: 158-170. Cosio, I. G., Fisher, R. A., and Carroad, P. A. 1982. Bioconversion of shellfish chitin waste: waste pretreatment, enzyme production, process design, and economic analysis. J. Food Sci. 47: 901-905. Doll, E. C., and Lucas, R. E. 1973. Testing soil for potassium, calcium and magnesium. Pages:133-152 in: Soil Testing and Plant Analysis. Walsh, L. M and Beaton, J. D. (eds.). Soil Sci. Soc. of Am., Madison, WI. Ha, M. T., and Huang, J. W. 2007. Control of Fusarium wilt of asparagus bean by organic soil amendment and microorganisms. Plant Pathol. Bull. 16: 169-180. Holl, F. B., Chanway, C. P., Turkington, R., and Radley, R. A. 1988. Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne L.), and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol. Biochem. 20: 19-24. Höflich, G., Wiehe, W., and Kühn, G. 1994. Plant growth stimulation with symbiotic and associative rhizosphere microorganisms. Experientia 50: 897-905. Islam, K. R., and Weil, R. R. 2000. Soil quality indicator properties in mid- Atlantic soils as influenced by conservation management. J. Soil Water Cons. 55: 69-78. Janzen, R. A., Cook, F. D., and McGill, W. B. 1995. Compost extract added to microcosms may stimulate community-level controls on soil microorganisms involved in element cycling. Soil Biol. Biochem. 27: 81-188. Javed, N. P., and Arshad, M. 1997. Growth promotion of two wheat cultivars by plant growth promoting rhizobacteria. Pak. J. Bot. 29: 243-248. Kloepper, J. W., and Beauchamp, C. J. 1992. A review of issues related to measuring of plant roots by bacteria. Can. J. Microbiol. 38: 1219-1232. Kloepper, J. W., Zablowicz, R. M., Tipping, B., and Lifshitz, R. 1991. Plant growth mediated by bacterial rhizosphere colonizers. Pages 315-326 in: The Rhizosphere and Plant Growth. Keister, D. L. and Gregan, B. (eds.), BARC Symposium, Vol. 14. Kluwer Acadamic Publisher. Kozdro´j, J., Trevors, J. T., and Van Elsas, J. D., 2004. Influence of introduced potential biocontrol agents on maize seedling growth and bacterial community structure in the rhizosphere. Soil Biol. Biochem. 36: 1775-1784. Latour, X., Corberand, T., Laguerre, G., Allard, F., and Lemanceau, P. 1996. The composition of fluorescent Pseudomonad population associated with roots is influenced by plant and soil type. Appl. Environ. Microbiol. 62: 2449-2456. Lifshitz, R., Kloepper, J. W., Kozlowski, M., Simonson, C., Carlso, J., Tipping, E.M., and Zaleska, I. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33, 390. McLean, E. O. 1982. Soil pH and lime requirement. Pages 199-223, in: Methods of Soil Analysis. Part 2, 2nd. ed. A. L. Page et al. (eds.) ASA-SSSA, Madison, Wisconsin, USA. Min, D. H., Islam, K. R., Vough, L. R., and Weil, R. R. 2003. Dairy manure effects on soil quality properties and carbon sequestration in alfalfa orchard grass systems. Comm. Soil Sci. Plant Anal. 34: 781-799. Mittra, B. N., Karmakar, S., Swain, D. K., and Ghosh, B. C. 2005. Fly ash - a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel 84: 1447-1451. Richards, J. E. 1993. Chemical characterization of plant tissue. Pages 115-139 in: Soil Sampling and Methods of Analysis. M. R. Carter (ed.). Canadian Society of Soil Science, Lewis Publishers, Boca Raton, FL. SAS Institute Inc. 1989. SAS/STA TM User's Guide, Version 6, 4thEd. SAS Institute Inc. Cary, North Carolina. 1686 pp. Tate, R. L. 1995. Soil Microbiology. Wiley, New York, 398 pp. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586. Wong, M. H. 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50: 775- 780. Zhao F., McGrath, S. P., and Crosland, A. R. 1994. Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectrometry (ICP-AES). Communications in Soil Science Plant Analysis 25: 407-418. Chapter V Benhamou, N., and Theriault, G. 1992. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis lyxopersici. Physiol. Mol. Plant Pathol. 41: 33-52. Bostock, R. M. 2005. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43: 545-580. Bowen, G. D., and Rovira, A. D. 1999. The rhizosphere and its management to improve plant growth. Adv. Agron. 66: 1-102. Chen, S. K., Clive, A. E., and Scott, S. 2003. The influence of two agricultural biostimulants on nitrogen transformations, microbial activity, and plant growth in soil microcosms. Soil Biol. Biochem. 35: 9-19. Frändberg, E., and Schnürer, C. 1994. Chitinolytic properties of Bacillus paubli K1. J. Appl. Bacteriol. 76: 361-367. Janzen, R. A., Cook, F. D., and McGill, W. B. 1995. Compost extract added to microcosms may stimulate community-level controls on soil microorganisms involved in element cycling. Soil Biol. Biochem. 27: 81-188. Kloepper, J. W., Ryu, C. M., and Zhang, S. A. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. Kloepper, J. W., Zablowicz, R. M., Tipping, B., and Lifshitz, R. 1991. Plant growth mediated by bacterial rhizosphere colonizers. Pages 315-326, in: The Rhizosphere and Plant Growth. Keister, D. L. and Gregan, B. (eds.), BARC Symposium, Vol. 14. Kluwer Acadamic Publisher. Mazzola, M. 2002. Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie van Leewenhoek 81: 557-564. Nelson, L. M. 2004. Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Manage. Parke, J. L., and Gurian-Sherman, D. 2001. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu. Rev. Phytopathol. 39: 225-258. Ryu, C. M., Hu, C. H., Reddy, M. S. and Kloepper, J. W. 2003. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160: 413-420. Sun, S. K., and Huang, J. W. 1985. Formulated soil amendment for controlling Fusarium wilt and other soilborne diseases. Plant Dis. 69: 917-920. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586. Zakaria, M. A., Lockwood, J. L., and Filonow, A. B. 1980. Reduction in Fusarium population density in soil by volatile degradation products of oilseed meal amendments. Phytopathology 70:495-499.
摘要: 在溫室評估10種有機物防治長豇豆鐮孢菌萎凋病(由Fusarium oxysporum f. sp. tracheciphilum引起)的效果,結果發現0.5%或1%(w/w)蝦蟹殼粉可顯著促進土中放線菌與細菌量的增殖外,亦可抑制33-56%長豇豆萎凋病的發生率。同時利用fluorecein diacetate (FDA)水解反應也發現土壤添加蝦蟹殼粉確可顯著提高土中的微生物活性。由長豇豆的根圈土壤分離本病原菌的拮抗微生物,測試17株細菌菌系中,發現Bacillus spp. PMB-028與PMB-034兩者可有效抑制36-47%罹病度,並可提高33%長豇豆的根鮮重與增加30%的固氮根瘤數。進一步研究,亦佐證PMB-028與PMB-034兩菌系可顯著提高蝦蟹殼粉防治長豇豆鐮孢菌病害的效果外,且又可促進植株的固氮根瘤數目。利用Biolog identification system及16rDNA序列比對鑑定兩拮抗菌的學名,結果PMB-034與PMB-028分別被鑑定為B. subtilis及B. amyloliquefaciens。 評估有機添加物與微生物對於長豇豆植株生長在台中與大里土壤中吸收營養元素的影響。試驗結果發現在台中與大里土中添加0.5%(w/w)蝦蟹殼粉和B. subtilis strain PMB-034(108 cfu/g soil),分別可以有效降低50%與62%長豇豆萎凋病的罹病度;同時尚可在兩種土壤中促進長豇豆幼苗的生長。長豇豆的地上部植體分析,發現在台中土壤中添加蝦蟹殼粉與B. subtilis PMB-034可以顯著促進植株吸收營養元素;然而在大里土壤中,添加物與微生物對於促進植株吸收營養的效果卻不顯著。本研究證實在含有病原菌的土壤中添加蝦蟹殼粉與枯草桿菌後,土壤來源是影響長豇豆植株吸收營養元素的重要因子之一。 綜合上述結果,本研究證實土壤添加蝦蟹殼粉,配合拌入B. subtilis PMB-034或B. amyloliquefaciens PMB-028用於栽培長豇豆,及防治其鐮孢菌萎凋病是一種值得開發運用的方法。
Greenhouse experiments were conducted to evaluate 10 organic materials for control of asparagus bean wilt caused by Fusarium oxysporum f. sp. tracheiphilum. Results showed that amendment of shrimp and crab shell powder (SCSP) at 1% (w/w) in the pathogen-infested soil was the most effective in reducing population density of F. oxysporum f. sp. tracheiphilum. Treatment of pathogen-infested soil with SCSP at 1% (w/w) and 0.5% (w/w) reduced disease severity by 56% and 33%, respectively. These treatments also promoted seedling growth and formation of nodules of asparagus bean. Analysis of hydrolysis of fluorescein diacetate (FDA) showed that amendment of soil with SCSP at 1% (w/w) resulted in a significant increase of soil microbial activity. Among the seven strains of Pseudomonas spp. and 10 strains of Bacillus spp. tested in the pathogen-infested soil, Bacillus spp. strains PMB-028 and PMB-034 were the most effective in reducing disease severity by 36% and 47%, respectively. Meanwhile, treatment of PMB-028 and PMB-034 also increased root fresh weight of asparagus bean by 20% and 46% and increased formation of root nodules by 30% and 31%, respectively. In advance studies, it revealed that combined treatment of SCSP at 0.5% (w/w) and Bacillus spp. strains PMB-028 and PMB-034 was more effective than the treatment of SCSP or bacterial strain alone in reducing disease severity of Fusarium wilt and improving growth and nodule formation of asparagus bean. Bacillus strains PMB-034 and PMB-028 antagonistic to F. oxysporum f. sp. tracheiphilum were identified by Biolog microbial identification system and 16S rDNA sequence comparison. Strains PMB-034 and PMB-028 were identified as B. subtilis and B. amyloliquefaciens, respectively. In advance, the experiments were carried out to evaluate efficacy of soil amendment with shrimp and crab shell powder (SCSP) and B. subtilis strain PMB-034 on control of Fusarium wilt of asparagus bean caused by F. oxysporum f. sp. tracheiphilum and growth of bean plants in two field soils. Results showed that amendment of soils, from Taichung or Dali, with SCSP at 0.5% (w/w) and B. subtilis (108 cfu/g soil) were effective in controlling Fusarium wilt of asparagus bean and improving seedling uptake of mineral nutrients and seedling growth. Compared to untreated control, the treatment of SCSP at 0.5% and B. subtilis PMB-034 (108 cfu/g soil) reduced disease severity by 50% and 62% in Taichung and Dali soils, respectively. The treatment also increased shoot dry weight by 39.3% and 57.7% in Taichung and Dali soils, respectively. Results of analyses of nutrient elements in shoots of asparagus bean showed that SCSP and B. subtilis PMB-034 had a stimulatory effect on nutrient uptake of asparagus bean in Taichung soil where the contents of macro-element nutrients including N, P, K, Ca, Mg increased by 50-67%, and micro-element nutrients including Fe, Mn, Cu, Zn increased by 57-98%. In contrast, this treatment did not cause a significant effect on nutrient uptake of asparagus beans grown in Dali soil. This study suggested that soil source is an important factor affecting uptake of mineral nutrients of asparagus bean plants grown in infested and non-infested soils with or without amendment of SCSP and B. subtilis.
URI: http://hdl.handle.net/11455/31133
其他識別: U0005-0108200815114900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0108200815114900
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.