Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31173
標題: 木瓜輪點病毒感染木瓜及其毒力相關基因之分析
Analyses of genes of PRSV responsible for papaya specificity and virulence
作者: 陳冠君
Chen, Kuan-Chun
關鍵字: Papaya ringspot virus
木瓜輪點病毒
host range
wilting
genomic analysis
resistance of transgenic papaya
寄主範圍
萎凋
基因體分析
轉基因木瓜抗性
出版社: 植物病理學系所
引用: Ahlquist, P., and Janda, M. 1984. cDNA cloning and in vitro transcription of the complete Brome mosaic virus genome. Mol. Cell. Biol. 4: 2876-2882. Aleman-Verdaguer, M. E., Goudou-Urbino, C., Dubern, J., Beachy, R. N., and Fauquet, C. 1997. Analysis of the sequence diversity of the P1, HC, P3, NIb and CP genomic regions of several Yam mosaic potyvirus isolates: implications for the intraspecies molecular diversity of potyviruses. J. Gen. Virol. 78: 1253-1264. Ali, A., Natsuaki, T., and Okuda, S. 2006. The complete nucleotide sequence of a Pakistani isolate of Watermelon mosaic virus provides further insights into the taxonomic status in the Bean common mosaic virus subgroup. Virus Genes 32: 307-311. Almazan, F., DeDiego, M. L., Galan, C., Escors, D., Alvarez, E., Ortego, J., Sola, I., Zuniga, S., Alonso, S., Moreno, J. L., Nogales, A., Capiscol, C., and Enjuanes, L. 2006. Construction of a Severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J. Virol. 80: 10900-10906. Almazan, F., Gonzalez, J. M., Penzes, Z., Izeta, A., Calvo, E., Plana-Duran, J., and Enjuanes, L. 2000. From the cover: Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc. Natl. Acad. Sci. U.S.A. 97: 5516-5521. Ammar, E. D., Jarlfors, U., and Pirone, T. P. 1994. Association of potyvirus helper component protein with virions and the cuticle lining the maxillary food canal and foregut of an aphid vector. Phytopathology 84: 1054-1060. Andrejeva, J., Puurand, U., Merits, A., Rabenstein, F., Jarvekulg, L., and Valkonen, J. P. 1999. Potyvirus helper component-proteinase and coat protein (CP) have coordinated functions in virus-host interactions and the same CP motif affects virus transmission and accumulation. J. Gen. Virol. 80: 1133-1139. Anindya, R., Chittori, S., and Savithri, H. S. 2005. Tyrosine 66 of Pepper vein banding virus genome-linked protein is uridylylated by RNA-dependent RNA polymerase. Virology 336: 154-162. Anindya, R., and Savithri, H. S. 2004. Potyviral NIa proteinase, a proteinase with novel deoxyribonuclease activity. J. Biol. Chem. 279: 32159-33269. Araujo, M. M., Tavares, E. T., Silva, F. R., Marinho, V. L., and Junior, M. T. 2007. Molecular detection of Papaya meleira virus in the latex of Carica papaya by RT-PCR. J. Virol. Methods 146: 305-310. Arazi, T., Slutsky, S. G., Shiboleth, Y. M., Wang, Y., Rubinstein, M., Barak, S., Yang, J., and Gal-On, A. 2001. Engineering Zucchini yellow mosaic potyvirus as a non-pathogenic vector for expression of heterologous proteins in cucurbits. J. Biotechnol. 87: 67-82. Atreya, C. D., and Pirone, T. P. 1993. Mutational analysis of the helper component-proteinase gene of a potyvirus: effects of amino acid substitutions, deletions, and gene replacement on virulence and aphid transmissibility. Proc. Natl. Acad. Sci. U.S.A. 90: 11919-11923. Atreya, P. L., Atreya, C. D., and Pirone, T. P. 1991. Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proc. Natl. Acad. Sci. U.S.A. 88: 7887-7891. Ayme, V., Petit-Pierre, J., Souche, S., Palloix, A., and Moury, B. 2007. Molecular dissection of the Potato virus Y VPg virulence factor reveals complex adaptations to the pvr2 resistance allelic series in pepper. J. Gen. Virol. 88: 1594-1601. Ballut, L., Drucker, M., Pugniere, M., Cambon, F., Blanc, S., Roquet, F., Candresse, T., Schmid, H.-P., Nicolas, P., Gall, O. L., and Badaoui, S. 2005. HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. J. Gen. Virol. 86: 2595-2603. Ballut, L., Petit, F., Mouzeyar, S., Le Gall, O., Candresse, T., Schmid, P., Nicolas, P., and Badaoui, S. 2003. Biochemical identification of proteasome associated endonuclease activity in sunflower. Biochim. Biophys. Acta. 1645: 30-39. Baulcombe, D. C. 1996. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8: 1833-1844. Beauchemin, C., Bougie, V., and Laliberte, J. F. 2005. Simultaneous production of two foreign proteins from a polyvirus-based vector. Virus Res. 112: 1-8. Beauchemin, C., and Laliberte, J.-F. 2007. The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during Turnip mosaic virus infection. J. Virol. 81: 10905-10913. Benjeddou, M., Leat, N., Allsopp, M., and Davison, S. 2002. Development of infectious transcripts and genome manipulation of Black queen-cell virus of honey bees. J. Gen. Virol. 83: 3139-3146. Bilgin, D. D., Liu, Y., Schiff, M., and Dinesh-Kumar, S. P. 2003. P58IPK, a plant ortholog of double-stranded RNA-dependent protein kinase PKR inhibitor, functions in viral pathogenesis. Dev. Cell 4: 651-661. Blanc, S., Ammar, E. D., Garcia-Lampasons, S., Dolja, V. V., Llave, C., Baker, J., and Pirone, T. P. 1998. Mutations in the potyvirus helper component protein: effects on interaction with virions and aphid stylets. J. Gen. Virol. 79: 3119-3122. Blanc, S., Lopez-Moya, J. J., Wang, R., Garcia-Lampasons, S., Thornbury, D. W., and Pirone, T. P. 1997. A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231: 141-147. Boyer, J. C., Drugeon, G., Seron, K., Morch-Devignes, M. D., Agnes, F., and Haenni, A. L. 1993. In vitro transcripts of Turnip yellow mosaic virus encompassing a long 3'' extension or produced from a full-length cDNA clone harbouring a 2 kb-long PCR-amplified segment are infectious. Res. Virol. 144: 339-348. Boyer, J. C., and Haenni, A. L. 1994. Infectious transcripts and cDNA clones of RNA viruses. Virology 198: 415-426. Brantley, J. D., and Hunt, A. G. 1993. The N-terminal protein of the polyprotein encoded by the potyvirus Tobacco vein mottle virus is an RNA-binding protein. J. Gen. Virol. 74: 1157-1162. Carrington, J., Jensen, P., and Schaad, M. 1998. Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J. 14: 393-400. Carrington, J. C., Cary, S. M., Parks, T. D., and Dougherty, W. G. 1989a. A second proteinase encoded by a plant potyvirus genome. EMBO (Eur. Mol. Biol. Organ.) J. 8: 365-370. Carrington, J. C., and Dougherty, W. G. 1987a. Processing of the Tobacco etch virus 49 K protease requires autoproteolysis. Virology 160: 355-362. Carrington, J. C., and Dougherty, W. G. 1987b. Small nuclear inclusion protein encoded by plant potyvirus genome is a protease. J. Virol. 61: 2540-2548. Carrington, J. C., and Freed, D. D. 1990. Cap-independent enhancement of translation by a plant potyvirus 5'' nontranslated region. J. Virol. 64: 1590-1597. Carrington, J. C., Freed, D. D., and Sanders, T. C. 1989b. Autocatalytic processing of the potyvirus helper component proteinase in Escherichia coli and in vitro. J. Virol. 63: 4459-4463. Charron, C., Nicolai, M., Gallois, J. L., Robaglia, C., Moury, B., Palloix, A., and Caranta, C. 2008. Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J 54: 56-68. Chen, C. C., Chen, T. C., Raja, J. A., Chang, C. A., Chen, L. W., Lin, S. S., and Yeh, S. D. 2007. Effectiveness and stability of heterologous proteins expressed in plants by Turnip mosaic virus vector at five different insertion sites. Virus Res. 130: 210-227. Chen, K.-C. 2001. Constructionof in vitro infectious clones of a type W strain of Papaya ringspot virus and analysis of host determinant for papaya. Master thesis. Department of Plant Pathology, National Chung Hsing University. 56pp. Chiang, C.-H., Lee, C.-Y., Wang, C.-H., Jan, F.-J., Lin, S.-S., Chen, T.-C., Raja, J. A. J., and Yeh, S.-D. 2007. Genetic analysis of an attenuated Papaya ringspot virus strain applied for cross-protection. Eur. J. Plant Pathol. 118: 333-348. Chiang, C. H., and Yeh, S. D. 1997. Infectivity assays of in vitro and in vivo transcripts of Papaya ringspot potyvirus. Bot. Bull. Acad. Sin. 38: 153-163. Choi, I.-R., Horken, K. M., Stenger, D. C., and French, R. 2005. An internal RNA element in the P3 cistron of Wheat streak mosaic virus revealed by synonymous mutations that affect both movement and replication. J. Gen. Virol. 86: 2605-2614. Chu, M., Lopez-Moya, J. J., Llave-Correas, C., and Pirone, T. P. 1997. Two separate regions in the genome of the Tobacco etch virus contain determinants of the wilting response of Tabasco pepper. Mol. Plant-Microbe Interact. 10: 472-480. Chung, B. Y. W., Miller, W. A., Atkins, J. F., and Firth, A. E. 2008. An overlapping essential gene in the Potyviridae. Proc. Natl. Acad. Sci. U.S.A. 105: 5897-5902. Covey, S. N., Turner, D. S., Lucy, A. P., and Saunders, K. 1990. Host regulation of the Cauliflower misaic virus multiplication cycle. Proc. Natl. Acad. Sci. U.S.A. 87: 1633-1637. Cronin, S., Verchot, J., Haldeman-Cahill, R., Schaad, M. C., and Carrington, J. C. 1995. Long-distance movement factor: a transport function of the potyvirus helper component proteinase. Plant Cell 7: 549-559. Daros, J. A., and Carrington, J. C. 1997. RNA binding activity of NIa proteinase of Tobacco etch potyvirus. Virology 237: 327-236. Dawson, W. O., Beck, D. L., Knorr, D. A., and Grantham, G. L. 1986. cDNA cloning of the complete genome of Tobacco mosaic virus and production of infectious transcripts. Proc. Natl. Acad. Sci. U.S.A. 83: 1832-1836. Diaz, J. A., Bernal, J. J., Moriones, E., and Aranda, M. A. 2003. Nucleotide sequence and infectious transcripts from a full-length cDNA clone of the carmovirus Melon necrotic spot virus. Arch. Virol. 148: 599-607. Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A., and Carrington, J. C. 1995. Capsid protein determinants involved in cell-to-cell and long distance movement of Tobacco etch potyvirus. Virology 206: 1007-1016. Dolja, V. V., Haldeman, R., Robertson, N. L., Dougherty, W. G., and Carrington, J. C. 1994. Distinct functions of capsid protein in assembly and movement of Tobacco etch potyvirus in plants. EMBO (Eur. Mol. Biol. Organ.) J. 13: 1482-1491. Dolja, V. V., Mcbride, H. J., and Carrington, J. C. 1992. Tagging of plant potyvirus replication and movement by insertion of b-glucuronidase into the viral polyprotein. Proc. Natl. Acad. Sci. U.S.A. 89: 10208-10212. Domier, L. L., Franklin, m. K. M., Hunt, A. G., Rhoads, R. E., and Shaw, J. G. 1989. Infectious in vitro transcripts from cloned cDNA of a potyvirus, Tobacco vein mottling virus. Proc. Natl. Acad. Sci. U.S.A. 86: 3509-3513. Dougherty, W. G., and Carrington, J. C. 1988. Expression and function of potyviral gene products. Annu. Rev. Phytopathol. 26: 123-143. Duke, G. M., and Palmenberg, A. C. 1989. Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(c) tracts. J. Virol. 63: 1822-1826. Dunoyer, P., Thomas, C., Harrison, S., Revers, F., and Maule, A. 2004. A cysteine-rich plant protein potentiates potyvirus movement through an interaction with the virus genome-linked protein VPg. J. Virol. 78: 2301-2309. Dzianott, A. M., and Bujarski, J. J. 1989. Derivation of an infectious viral RNA by autocatalytic cleavage of in vitro transcribed viral cDNAs. Proc. Natl. Acad. Sci. U.S.A. 86: 4823-4827. Edwards, M. C. 1995. Mapping of the seed transmission determinants of Barley stripe mosaic virus. Mol. Plant-Microbe Interact. 8: 906-915. Fakhfakh, H., Vilaine, F., Makni, M., and Robaglia, C. 1996. Cell-free cloning and biolistic inoculation of an infectious cDNA of Potato virus Y. J. Gen. Virol. 77: 519-523. Fauguet, C. M., Mayo, M. A., Maniloff, J., Maniloof, J., Desselberger, U., and Ball, L. A., (eds) 2005. Virus Taxonomy. Eighth report of the international committee on taxonomy of viruses. Academic press. London, UK. 1259pp. Fedorkin, O. N., Merits, A., Lucchesi, J., Solovyev, A. G., Saarma, M., Morozov, S. Y., and Makinen, K. 2000. Complementation of the movement-deficient mutations in Potato virus X: potyvirus coat protein mediates cell-to-cell trafficking of C-terminal truncation but not deletion mutant of potexvirus coat protein. Virology 270: 31-42. Fellers, J., Wan, J., Hong, Y., Collins, G. B., and Hunt, A. G. 1998. In vitro interactions between a potyvirus-encoded, genome-linked protein and RNA-dependent RNA polymerase. J. Gen. Virol. 79: 2043-2049. Fernandez, A., and Garcia, J. 1996. The RNA helicase CI from Plum pox potyvirus has two regions involved in binding to RNA. FEBS Lett. 388: 206-210. Fernandez, A., Guo, H., Saenz, P., Simon-Buela, L., Gomez de Cedron, M., and Garcia, J. 1997. The motif V of Plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. Nucl. Acids Res. 25: 4474-4480. Flasinski, S., and Cassidy, B. G. 1998. Potyvirus aphid transmission requires helper component and homologous coat protein for maximal efficiency. Arch. Virol. 143: 2159-2172. Flasinski, S., Gunasinghe, U. B., Gonzales, R. A., and Cassidy, B. G. 1996. The cDNA sequence and infectious transcripts of Peanut stripe virus. Gene 171: 299-300. Flavell, R. A., Sabo, D. L., Bandle, E. F., and Weissmann, C. 1974. Site-directed mutagenesis: Generation of an extracistronic mutation in bacteriophage Q[beta] RNA. J. Mol. Biol. 89: 255-264. Gómez de Cedrón, M., Osaba, L., López, L., and García, J. A. 2006. Genetic analysis of the function of the Plum pox virus CI RNA helicase in virus movement. Virus Res. 116: 136-145. Gabrenaite-Verkhovskaya, R., Andreev, I. A., Kalinina, N. O., Torrance, L., Taliansky, M. E., and Makinen, K. 2008. Cylindrical inclusion protein of Potato virus A is associated with a subpopulation of particles isolated from infected plants. J. Gen. Virol. 89: 829-838. Gal-on, A., Antignus, Y., Rosner, A., and Raccah, B. 1991. Infectious in vitro RNA transcripts derived from cloned cDNA of the cucurbit potyvirus, Zucchini yellow mosaic virus. J. Gen. Virol. 72: 2639-2643. Gal-on, A., Antignus, Y., Rosner, A., and Raccah, B. 1992. A Zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication. J. Gen. Virol. 73: 2183-2187. Glais, L., Tribodet, M., and Kerlan, C. 2002. Genomic variability in Potato potyvirus Y (PVY): evidence that PVY(N)W and PVY(NTN) variants are single to multiple recombinants between PVY(O) and PVY(N) isolates. Arch. Virol. 147: 363-378. Gonsalves, D., and Ishii, M. 1980. Purification and serology of Papaya ringspot virus. Phytopathology 70: 1028-1032. Govier, D. A., and Kassanis, B. 1974. A virus-induced component of plant sap needed when aphids acquire Potato virus Y from purified preparations. Virology 61: 420-426. Greber, R. S. 1978. Watermelon mosic virus 1 and 2 in Queensland cucurbit crops. Aust. J. Agricul. Res. 29: 1235-1245. Guo, D., Merits, A., and Saarma, M. 1999. Self-association and mapping of interaction domains of helper component-proteinase of Potato A potyivirus. J. Gen. Virol. 80: 1127-1131. Guo, D., Saarma, C., Spetz, M., and Valkonen, J. P. 2003. Two potato proteins, including a novel RING finger protein (HIP1), interact with the potyviral multifunctional protein HCpro. Mol. Plant-Microbe Interact. 16: 405-410. Guo, H. S., Lopez-Moya, J. J., and Garcia, J. A. 1998. Susceptibility to recombination rearrangements of a chimeric Plum pox potyvirus genome after insertion of a foreign gene. Virus Res. 57: 183-195. Ha, C., Coombs, S., Revill, P. A., Harding, R. M., Vu, M., and Dale, J. L. 2008. Design and application of two novel degenerate primer pairs for the detection and complete genomic characterization of potyviruses. Arch. Virol. 153: 25-36. Hafren, A., and Makinen, K. 2008. Purification of viral genome-linked protein VPg from Potato virus A-infected plants reveals several post-translationally modified forms of the protein. J. Gen. Virol. 89: 1509-1518. Hajimorad, M. R., Eggenberger, A. L., and Hill, J. H. 2005. Loss and gain of elicitor function of Soybean mosaic virus G7 provoking Rsv1-mediated lethal systemic hypersensitive response maps to P3. J. Virol. 79: 1215-1222. Hari, V. 1981. The RNA of Tobacco etch virus: further characterization and detection of protein linked to RNA. Virology 112: 391-399. Hari, V., Siegel, A., Rozek, C., and Timberlake, W. E. 1979. The RNA of Tobacco etch virus contains poly(A). Virology 92: 568-571. Harrison, B. D., and Robinson, D. J. 1988. Moleular variation in vector-borne plant viruses: epidemiological significance. Phil. Trans. R. Soc. Lond. B 321: 447-462. Heaton, L. A., Carrington, J. C., and Morris, T. J. 1989. Turnip crinkel virus infection from RNA synthesized in vitro. Virology 170: 214-218. Hollings, M., and Brunt, A. A. 1981. Potyvirus gruop. CMI/AAB Descriptions of Plant Viruses. No. 245. Holy, S., and AbouHaidar, M. G. 1993. Production of infectious in vitro transcripts from a full-length Clover yellow mosaic virus cDNA clones. J. Gen. Virol. 74: 781-784. Hong, Y., and Hunt, A. G. 1996. RNA polymerase activity catalyzed by a potyvirus-encoded RNA-dependent RNA polymerase. Virology 226: 146-151. Hong, Y., Levay, K., Murphy, J. F., Klein, P. G., Shaw, J. G., and Hunt, A. G. 1995. A potyvirus polymerase interacts with the viral coat protein and VPg in yeast cells. Virology 214: 159-166. Hsu, C. H., Lin, S. S., Liu, F. L., Su, W. C., and Yeh, S. D. 2004. Oral administration of a mite allergen expressed by Zucchini yellow mosaic virus in cucurbit species downregulates allergen-induced airway inflammation and IgE synthesis. J. Allergy Clin. Immunol. 113: 1079-1085. Ishii, M., and Holtzmann, O. V. 1963. Papaya mosaic disease in Hawaii. Plant Dis. Rep. 49: 947-951. Jakab, G., Droz, E., Brigneti, G., Baulcombe, D., and Malnoe, P. Y. 1997. Infectious in vivo and in vitro transcripts from a full-length cDNA clone of PVY-N605, a Swiss necrotic isolate of potato virus. J. Gen. Virol. 78: 3141-3145. Jenner, C., Wang, X., Tomimura, K., Ohshima, K., Ponz, F., and Walsh, J. 2003. The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol. Plant-Microbe Interact. 16: 777-784. Jenner, C. E., Sanchez, F., Nettleship, S. B., Foster, G. D., Ponz, F., and Walsh, J. A. 2000. The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01. Mol. Plant-Microbe Interact. 13: 1102-1108. Jenner, C. E., Tomimura, K., Ohshima, K., Hughes, S. L., and Walsh, J. A. 2002. Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300: 50-59. Jensne, D. D. 1949. Papaya ringspot virus and its insect vector relationships. Phytopathology 39: 212-220. Jimenez, I., Lopez, L., Alamillo, J. M., Valli, A., and Garcia, J. A. 2006. Identification of a Plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol. Plant-Microbe Interact. 19: 350-358. Johansen, I. E., Keller, K. E., Dougherty, W. G., and Hampton, R. O. 1996a. Biological and molecular properties of a pathotype P-1 and a pathotype P-4 isolate of Pea seed-borne mosaic virus. J. Gen. Virol. 77: 1329-1333. Johansen, I. E., Keller, K. E., Dougherty, W. G., Wang, D., and Hampton, R. O. 1996b. Multiple viral determinants affet seed transmission of Pea seed-brone mosaic virus in Pisum sativum. J. Gen. Virol. 77: 3149-3154. Johansen, I. E., Lund, O. S., Hjulsager, C. K., and Laursen, J. 2001. Recessive resistance in Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus. J. Virol. 75: 6609-6614. Kamer, G., and Argos, P. 1984. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucl. Acids Res. 12: 7269-7282. Kang, H., Lee, Y. J., Goo, J. H., and Park, W. J. 2001. Determination of the substrate specificity of Turnip mosaic virus NIa protease using a genetic method. J. Gen. Virol. 82: 3115-3117. Kang, S.-H., Lim, W.-S., Hwang, S.-H., Park, J.-W., Choi, H.-S., and Kim, K.-H. 2006. Importance of the C-terminal domain of Soybean mosaic virus coat protein for subunit interactions. J. Gen. Virol. 87: 225-229. Kasschau, K. D., and Carrington, J. C. 1998. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95: 461-470. Kasschau, K. D., and Carrington, J. C. 2001. Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology 285: 71-81. Kasschau, K. D., Cronin, S., and Carrington, J. C. 1997. Genome amplification and long-distance movement functions associated with the central domain of Tobacco etch potyvirus helper component-proteinase. Virology 228: 251-262. Kawano, S., and Yonaha, T. 1992. The occurrence of Papaya leaf-distorsion mosaic virus in Okinawa. Tech. Bull. FFTC 132: 13-23. Kekarainen, T., Savilahti, H., and Valkonen, J. P. T. 2002. Functional genomics of Potato virus A: virus genome-wide map of sites essential for virus propagation genome. Genome Res. 12: 584-594. Keller, K. E., Johansen, I. E., Martin, R. R., and Hampton, R. O. 1998. Potyvirus genome-linked protein (VPg) determines Pea seed-borne mosaic virus pathotype-specific virulence in Pisum sativum. Mol. Plant-Microbe Interact. 11: 124-130. Kelloniemi, J., Makinen, K., and Valkonen, J. P. 2008. Three heterologous proteins simultaneously expressed from a chimeric potyvirus: Infectivity, stability and the correlation of genome and virion lengths. Virus Res. 135: 282-291. Khan, M. A., Miyoshi, H., Gallie, D. R., and Goss, D. J. 2008. Potyvirus genome-linked protein, VPg, directly affects wheat germ in vitro translation: interactions with translation initiation factors eIF4F and eIFiso4F. J. Biol. Chem. 283: 1340-1349. Kim, K. S., Oh, H. Y., Suranto, S., Nurhayati, E., Gough, K. H., Shukla, D. D., and Pallaghy, C. K. 2003. Infectivity of in vitro transcripts of Johnsongrass mosaic potyvirus full-length cDNA clones in maize and sorghum. Arch. Virol. 148: 563-574. Klein, P. G., Klein, R. R., Rodriguez-Cerezo, E., Hunt, A. G., and Shaw, J. G. 1994. Mutational analysis of the Tobacco vein mottling virus genome. Virology 204: 759-769. Kulkarni, H. Y. 1970. Decline viruses of papaya Carica papaya L. in East Africa. Ann. Appl. Biol. 66: 1-9. Léonard, S., Viel, C., Beauchemin, C., Daigneault, N., Fortin, M. G., and Laliberté, J.-F. 2004. Interaction of VPg-Pro of Turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta. J. Gen. Virol. 85: 1055-1063. López-Moya, J. J., and Garcia, J. A. 2000. Construction of a stable and highly infectious intron-containing cDNA clone of Plum pox potyvirus and its use to infect plants by particle bombardment. Virus Res. 68: 99-107. López, L., Urzainqui, A., Domínguez, E., and García, J. A. 2001. Identification of an N-terminal domain of the Plum pox potyvirus CI RNA helicase involved in self-interaction in a yeast two-hybrid system. J. Gen. Virol. 82: 677-686. Lain, S., Martin, M. T., Riechmann, J. L., and Garcia, J. A. 1991. Novel catalytic activity associated with positive-strand RNA virus infection nucleic acid-stimulated ATPase activity of the Plum pox potyvirus helicase-like protein. J. Virol. 65: 1-6. Lain, S., Riechmann, J. L., and Garcia, J. A. 1990. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucl. Acids Res. 18: 7003-7006. Langenberg, W. G., and Zhang, L. 1997. Immunocytology shows the presence of Tobacco etch virus P3 protein in nuclear inclusions. J. Struct. Biol. 118: 243-247. Lee, K. C., and Wang, S. M. 1998. Variability of P1 protein of Zucchini yellow mosaic virus for strain differentiation and phylogenetic analysis with other potyviruses. DNA Seq. 9: 275-293. Li, X. H., and Carrington, J. C. 1993. Nuclear transport of Tobacco etch potyviral RNA-dependent RNA polymerase is highly sensitive to sequence alterations. Virology 193: 951-958. Li, X. H., and Carrington, J. C. 1995. Complementation of Tobacco etch potyvirus mutants by active RNA polymerase expressed in transgenic cells. Proc. Natl. Acad. Sci. U.S.A. 92: 457-461. Li, X. H., Valdez, P., Olvera, R. E., and Carrington, J. C. 1997. Functions of the Tobacco etch virus RNA polymerase (NIb): subcellular transport and protein-protein interaction with VPg/proteinase (NIa). J. Virol. 71: 1598-1607. Lima, R. C. A., Lima, J. A. A., Souza JR., M. T., Pio-Ribeiro, G., and Andrade, G. P. 2001. Etiology and control strategies of papaya virus diseases in Brazil. Fitopatol. bras. 26: 689-702. Lin, S. S., Hou, R. F., and Yeh, S. D. 2002. Construction of in vitro and in vivo infectious transcripts of a Taiwan strain of Zucchini yellow mosaic virus. Bot. Bull. Acad. Sin. 43: 261-269. Loesch-Fries, L. S., Jarvis, N. P., Krahn, K. J., Nelson, S. E., and Hall, T. C. 1985. Expression of Alfalfa mosaic virus RNA 4 cDNA transcripts in vitro and in vivo. Virology 146: 177-187. Lopez-Moya, J. J., and Pirone, T. P. 1998. Charge changes near the N-terminus of the coat protein of two potyviruses affect virus movement. J. Gen. Virol. 79: 161-165. Lopez-Moya, J. J., Wang, R. Y., and Pirone, T. P. 1999. Context of the coat protein DAG motif affects potyvirus transmissibility by aphids. J. Gen. Virol. 80: 3281-3288. MacFarlane, S. A., Wallis, C. V., Taylor, S. C., Goulden, M. G., Wood, K. R., and Davis, J. W. 1991. Construction and analysis of infectious transcripts synthesized from full-length clones of both genomic RNAs of Pea early browing virus. Virology 182: 124-129. Maciel-Zambolim, E., Kunieda-Alonso, S., Matsuoka, K., de Carvalho, M. G., and Zerbini, F. M. 2003. Purification and some properties of Papaya meleira virus, a novel virus infecting papayas in Brazil. Plant Pathol. 52: 389-394. Mahajan, S., Dolja, V. V., and Carrington, J. C. 1996. Roles of the sequence encoding Tobacco etch virus capsid protein in genome amplification: requirements for the translation predess and a cis-active element. J. Virol. 70: 4370-4379. Maia, I. G., Haenni, A.-L., and Bernardi, F. 1996. Potyviral HC-Pro: a multifunctional protein. J. Gen. Virol. 77: 1335-1341. Maiss, E., Timpe, U., Brisske-Rode, A., Lesemann, D. E., and Casper, R. 1992. Infectious in vitro transcripts of a Plum pox potyvirus full-length cDNA clone containing the Cauliflower mosaic virus 35S RNA promoter. J. Gen. Virol. 73: 709-713. Makkouk, K. M., and Lesemann, D. E. 1980. A severe mosaic of cucumbers in Lebanon caused by watermelon mosaic virus-1. Plant Dis. 64: 799-801. Martelli, G. P., and Russo, M. 1976. Unusual cytoplasmic inclutions induced by Watermelon mosaic virus. Virology 72: 352-362. Martı´n, B., Collar, J. L., Tjallingii, W. F., and Fereres, A. 1997. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J. Gen. Virol. 78: 2701-2705. Masuta, C., Yamana, T., Tacahashi, Y., Uyeda, I., Sato, M., Ueda, S., and Matsumura, T. 2000. Development of Clover yellow vein virus as an efficient, stable gene-expression system for legume species. Plant J. 23: 539-546. Merits, A., Guo, D., and Saarma, M. 1998. Vpg, coat protein and five non-structural proteins of Potato A potyvirus bind RNA in a sequence-unspecific manner. J. Gen. Virol. 79: 3123-3127. Merits, A., Rajamaki, M.-L., Lindholm, P., Runeberg-Roos, P., Kekarainen, T., Puustinen, P., Makelainen, K., Valkonen, J. P. T., and Saarma, M. 2002. Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. J. Gen. Virol. 83: 1211-1221. Mestre, P., Brigneti, G., Durrant, M. C., and Baulcombe, D. C. 2003. Potota virus Y NIa protease activity is not sufficient for elicitation of Ry-mediated disease resistance in potato. Plant J. 36: 755-761. Milne, K. S., Grogan, R. G., and Kimble, K. A. 1969. Identificationof viruses infecting cucurbits in California. Phytopathology 59: 819-828. Moreno, M., Bernal, J. J., Jimenez, I., and Rodriguez-Cerezo, E. 1998. Resistance in plants transformed with the P1 or P3 gene of Tobacco vein mottling potyvirus. J. Gen. Virol. 79: 2819-2827. Morozov, S. Y., and Solovyev, A. G. 2003. Triple gene block: modular design of a multifunctional machine for plant virus movement. J. Gen. Virol. 84: 1351-1366. Murphy, J. F., Klein, P. G., Hunt, A. G., and Shaw, J. G. 1996. Replacement of the tyrosine residue that links a potyviral VPg to the viral RNA is lethal. Virology 220: 535-538. Murphy, J. F., Rhoads, R. E., Hunt, A. G., and Shaw, J. G. 1990. The VPg of Tobacco etch virus RNA is the 49-kDa proteinase or the amino-terminal 24-kDa part of the proteinase. Virology 178: 285-288. Nicolas, O., Dunnington, S. W., Gotow, L. F., Pirone, T. P., and Hellmann, G. M. 1997. Variations in the VPg protein allow a potyvirus to overcome va gene resistance in tobacco. Virology 27: 452-459. Nicolas, O., Pirone, T. P., and Hellmann, G. M. 1996. Construction and analysis of infectious transcripts from a resistance-breaking strain of Tobacco vein mottling potyvirus. Arch. Virol. 141: 1535-1552. Nunn, C. M., Jeeves, M., Cliff, M. J., Urquhart, G. T., George, R. R., Chao, L. H., Tscuchia, Y., and Djordjevic, S. 2005. Crystal structure of Tobacco etch virus protease shows the protein C terminus bound within the active site. J. Mol. Biol. 350: 145-155. Oh, C. S., and Carrington, J. C. 1989. Identification of essential residues in potyvirus proteinase HC-Pro by site-directed mutagenesis. Virology 173: 692-699. Olsen, B. S., and Johansen, I. E. 2001. Nucleotide sequence and infectious cDNA clone of the L1 isolate of Pea seed-borne mosaic potyvirus. Arch. Virol. 146: 15-25. Paalme, V., Gammelgard, E., Jarvekulg, L., and Valkonen, J. P. T. 2004. In vitro recombinants of two nearly identical potyviral isolates express novel virulence and symptom phenotypes in plants. J. Gen. Virol. 85: 739-747. Peng, Y.-H., Kadoury, D., Gal-on, A., Huet, H., Wang, Y., and Raccah, B. 1998. Mutaions in the HC-Pro gene of Zucchini yellow mosaic potyvirus: effects on aphid transmission and binding to purified virions. J. Gen. Virol. 79: 897-904. Plisson, C., Drucker, M., Blanc, S., German-Retana, S., Le Gall, O., Thomas, D., and Bron, P. 2003. Structural characterization of HC-Pro, a plant virus multifunctional protein. J. Biol. Chem. 278: 23753-23761. Provvidenti, R., and Gonsalves, D. 1982. Resistence to Papaya ringspot virus in Cucumis metuliferus and its relationship to resistance to Watermelon mosaic virus 1. J. Hered. 73: 239-240. Pruss, G., Ge, X., Shi, X. M., Carrington, J. C., and Vance, V. B. 1997. Plant viral synergism: The potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9: 859-868. Purcifull, D. E., and Edwardson, J. R. 1967. Watermelon mosaic virus: Tubular inclusion in pumpkin leaves and aggregates in leaf extracts. Virology 32: 393-401. Purcifull, D. E., Edwardson, J. R., Hiebert, E., and Gonsalves, D. 1984. Papaya ringspot virus. In CMI/AAB Descriptions of Plant Viruses. No 292. Puurand, U., Valkonen, J., Makinen, K., Rabenstein, F., and Saarma, M. 1996. Infectious in vitro transcripts from cloned cDNA of the Potato A potyvirus. Virus Res. 40: 135-140. Puustinen, P., and Makinen, K. 2004. Uridylylation of the potyvirus VPg by viral replicase NIb correlates with the nucleotide binding capacity of VPg. J. Biol. Chem. 279: 38103-38110. Quillet, L., Guilley, H., Jonard, G., and Richards, K. 1989. In vitro synthesis of biologically active Beet necrotic yellow vein virus RNA. Virology 172: 293-301. Racaniello, V. R., and Baltimore, D. 1981. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214: 916-919. Rajamäki, M., and Valkonen, J. 1999. The 6K2 protein and the VPg of Potato virus A are determinants of systemic infection in Nicandra physaloides. Mol. Plant-Microbe Interact. 12: 1074-1081. Rajamäki, M., and Valkonen, J. 2002. Viral genome-linked protein (VPg) controls accumulation and phloem-loading of a potyvirus in inoculated potato leaves. Mol. Plant-Microbe Interact. 15: 138-149. Rajamäki, M. L., Kelloniemi, J., Alminaite, A., Kekarainen, T., Rabenstein, F., and Valkonen, J. P. 2005. A novel insertion site inside the potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions. Virology 342: 88-101. Rakitina, D. V., Kantidze, O. L., Leshchiner, A. D., Solovyev, A. G., Novikov, V. K., Morozov, S. Y., and Kalinina, N. O. 2005. Coat proteins of two filamentous plant viruses display NTPase activity in vitro. FEBS J. 579: 4955-4960. Reanney, D. C. 1982. The
摘要: 大部分的木瓜輪點病毒 (Papaya ringspot virus, PRSV) 可以分為兩型,一種是造成世界各地瓜類嚴重損失的西瓜型病毒 (PRSV type W),另一種是造成熱帶與亞熱帶區域木瓜災害的木瓜型 ( PRSV type P) 病毒。西瓜型病毒的寄主範圍僅限於藜科 (Chenopodiaceae) 及葫蘆瓜科 (Cucuribitaceae),而木瓜型病毒則可再感染番木瓜科 (Caricaceae)。為了研究木瓜輪點病毒決定寄主範圍的病毒基因,本研究首先構築了木瓜輪點病毒西瓜型及木瓜型之生體內具感染力的載體 (in vivo infectious clone),再進一步利用這些載體構築成重組或突變病毒以進行感染木瓜與否之分析,發現NIaPro為決定木瓜寄主的關鍵因子,同時研究中發現木瓜輪點病毒的6K2蛋白與木瓜上呈現萎凋病徵相關,另外為了研究可擊垮轉基因木瓜抗性的木瓜輪點病毒分離株P-5-19,將此分離株的全長度基因進行解序並分析其序列,探討擊垮轉基因抗性之相關基因。本論文共分四個章節,茲分述其重點如下。 第一章為「前人研究」,主要是彙整近年來與本研究相關的研究概況。 第二章、「木瓜輪點病毒之NIaPro蛋白的單一胺基酸決定感染木瓜寄主,是探討決定感染木瓜的病毒基因」,進行木瓜輪點病毒西瓜型及木瓜型生體內具感染力載體的構築,及兩者間之雜合重組病毒的構築。經由寄主範圍的分析,發現木瓜型病毒基因體NIaVPg的羧基端 (142個胺基酸)、全長的NIaPro、及NIb蛋白的前18個胺基酸是感染木瓜與否的決定因子,經比對西瓜型及木瓜型病毒該區域之胺基酸序列,發現不同型病毒在NIaVPg的第176個胺基酸及NIaPro的第27與205位置的胺基酸存在顯著差異。經由構築木瓜型及西瓜型病毒該位置之點突變病毒並進行寄主範圍分析,發現NIaPro的第27個離胺酸 (lysine) 為病毒感染木瓜之決定因子。經預測NIaPro的三維結構發現,離胺酸並不會影響NIaPro蛋白酶 (protease) 之活性區域結構,此外研究中發現到這些突變的病毒雖可成功感染木瓜但卻有病徵回復的情形,故推測應有其它木瓜型病毒基因參與木瓜輪點病毒在木瓜上的毒力及適應性。 第三章、「木瓜輪點病毒之6K2蛋白的單一胺基酸是產生木瓜萎凋病徵的關鍵」,為接續第二章的研究,該章節發現重組病毒P-WCI6K係由木瓜型的病毒將其部分CI、全長的6K2及一小部分的NIaVPg取代成西瓜型而成,它造成木瓜寄主萎凋,此病徵與原本親本型P-YK造成的嵌紋型病徵有顯著的不同,其與P-YK序列不同的地方包括一部分的CI、全長的6K2及一小部分的NIaVPg序列。當受感染木瓜出現萎凋病徵後,其樹勢衰弱並快速死亡。為了研究造成木瓜萎凋的決定基因,本章節在該區域更進一步構築重組病毒,經過生物分析後發現西瓜型W-CI的6128-6509核酸序列與萎凋病徵相關,再經比對13個木瓜輪點病毒的6128-6509序列的相對應胺基酸,發現6K2第53位置的酪胺酸 (tyrosine) 與其它病毒為組胺酸 (histidine) 具顯著不同,經定點突變後發現6K2第53個胺基酸的確為造成木瓜萎凋病徵的決定因子。 第四章、「可擊垮轉基因木瓜抗性之木瓜輪點株系基因體之分析」,目的在於分析木瓜輪點病毒的變異性及病毒對轉基因抗性的潛在威脅,一個能夠感染具抗性之鞘蛋白基因轉基因木瓜的木瓜輪點病毒分離株P-5-19於先前的台灣的轉基因木瓜田間試驗被分離出來。在本研究中,依據其他臺灣分離株的全長序列的保留區設計六組引子對,經由反轉錄聚合酶連鎖反應放大P-5-19的六個重疊基因序列,並將其全基因體進行選殖及解序,P-5-19序列全長為10320個核苷酸,具一個含有3344個胺基酸的譯架構。將P-5-19全長與其它16個木瓜輪點病毒序列比對分析後發現在P1區域的差異最大,此外之前報導P-5-19的HC-Pro蛋白為擊垮轉基因木瓜抗性的關鍵,經比對不具感染轉基因木瓜抗性的P-YK及P-HA分離株的HC-Pro胺基酸序列,發現在胺基酸位置25、103、161具有差異,可能為擊垮抗性的重要因子。P-5-19病毒6K2及NIaPro在病原性及寄主範圍的可能胺基酸也被預測。
Most strains of Papaya ringspot virus (PRSV) belong to type W (PRSV W) causing severe loss on cucurbits worldwide or type P (PRSV P) devastating papaya in tropical areas. While the host range of PRSV W is limited to plants of the families Chenopodiaceae and Cucuribitaceae, PRSV P, in addition, infects plants of the family Caricaceae (papaya family). In this investigation, the viral genetic determinant(s) for papaya infection, the infectious clones of PRSV type P and W were constructed for creating recombinant or mutated viruses. The NIaPro was found to be critical for papaya infection, while the 6K2 of the PRSV was found to be correlated with the wilting symptom on papaya. In addition, in order to understand the characteristics of transgenic resistance-breakdown isolate P-5-19, the full-length sequence of the genome of P-5-19 were determined. The genes responsible for overcoming transgenic resistance, wilting symptom, and papya infection of P-5-19 were analyzed. This dissertation is divided into four chapters as follows. Chapter 1 “Litterature review” describes all relevant references for this study. This chapter is written in Chinese. The orher chapters are written in English for publication in journal. Chapter 2 “A single amino acid of NIaPro of Papaya ringspot virus determines host specificity for infection of papaya”. The in vivo infectious clones of PRSV P-YK and W-CI were constructed for creating the recombinant viruses. Host reactions to recombinant viruses indicated that the viral genomic region covering the C-terminal region (142 residues) of NIaVPg, full NIaPro and N-terminal region (18 residues) of NIb from P-YK, is critical for papaya infection. Sequence analysis of this region revealed residue variations at position 176 of NIaVPg, and positions 27 and 205 of NIaPro, between P and W type viruses. Host reactions to the point-mutated viruses indicated that the amino acid Lys27 of NIaPro determines the host-specificity of PRSV for papaya infection. Predicted 3-dimensional structures of NIaPros of parental viruses suggested that the Lys27 does not affect the protease activity of NIaPro. Recovery of the infected plants from certain papaya-infecting mutants implied involvement of other viral factors for enhancing virulence and adaptation of PRSV on papaya. Chapter 3 “A single amino acid of 6K2 region of PRSV critical for inducing wilting symptom on papaya plants”. Previous investigation described in Chapter 2 indicated that the P-WCI6K recombinant virus, created from a mosaic P-type isolate PRSV P-YK, containing the partial CI, full 6K2 and partial NIaVPg region of a W-type isolate PRSV W-CI causes wilting symptom. For investigating viral determinant for wilting, further recombinations were constructed in this investigation. Results of the bioassay on papaya plants revealed that the genomic region of nts 6128-6509 of PRSV W-CI is responsible for the wilting symptom. Sequence analysis of the amino acid of this region of 13 PRSV isolates indicated that the amino acid 53 (tyrosine) of 6K2 of W-CI is different from that (histidine) of other PRSV isolates. Bioassay of the mutant with point mutation (codon CAC to TAC, histidine to tyrosine) of P-YK at the amino acid 53 of 6K2 also induced the wilting symptom. Our results indicated that a single amino acid change of 6K2 gene (His53 to Tyr53) is critical to the change of the mosaic to wilting symptom. Chapter 4 “Genomic analysis of an isolate of Papaya ringspot virus overcoming resistance of transgenic papaya”. In order to study the variability of PRSV and the emerging threat to transgenic resistance, a virus isolate P-5-19 that was able to overcome the transgenic resistance to PRSV was previously collected from diseased transgenic papaya plants during field tests in Taiwan. In this investigation, six primer pairs, designed according to the consensus sequences of PRSV Taiwan isolates were used to amplify the cDNA fragments corresponding to different overlapping regions of PRSV P-5-19. The full-length cDNA sequence of PRSV P-5-19 contains 10320 nts, with a single predicted open reading frame for 3344 aa. The comparative analysis of the genomic sequence of P-5-19 isolate with those of the other 16 isolates reported in GenBank showed that P1 protein is the most variable. The amino acid sequences of the gene silencing suppressor, HC-Pros, of 17 PRSV isolates were compared and the possible motifs responsible for the homology-independent breakdown of transgenic resistance are discussed. The 6K2 and NIaPro regions were also analyzed and the possible residues which determine the host range and pathogenesis are predicted.
URI: http://hdl.handle.net/11455/31173
其他識別: U0005-0808200817342900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0808200817342900
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.