Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3122
標題: 網狀單層石墨烯/銀粒子複合材料之合成與應用
Synthesis and Application of Network Single-layered Graphene/Ag Hybrids
作者: 林韋辰
Lin, Wei-Chen
關鍵字: 氧化石墨
graphite oxide
石墨烯
規則性樹枝狀高分子
奈米銀粒子
graphene
dendron
silver nanoparticle
出版社: 化學工程學系所
引用: 1. 黃淑娟, et al., 石墨烯材料與應用技術專題. 工業材料雜誌, 2011. 291. 2. Seiler, M., Hyperbranched polymers: Phase behavior and new applications in the field of chemical engineering. Fluid Phase Equilibria, 2006. 241(1–2): p. 155-174. 3. Jikei, M. and M.-A. Kakimoto, Hyperbranched Aromatic Polyamides Prepared by Direct Polycondensation. High Performance Polymers, 2001. 13(2): p. S33-S43. 4. Gao, C. and D. Yan, Hyperbranched polymers: from synthesis to applications. Progress in Polymer Science, 2004. 29(3): p. 183-275. 5. Yates, C.R. and W. Hayes, Synthesis and applications of hyperbranched polymers. European Polymer Journal, 2004. 40(7): p. 1257-1281. 6. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191. 7. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453. 8. Blake, P., et al., Graphene-Based Liquid Crystal Device. Nano Lett, 2008. 8(6): p. 1704-1708. 9. Malesevic, A., et al., Combined growth of carbon nanotubes and carbon nanowalls by plasma-enhanced chemical vapor deposition. Carbon, 2007. 45(15): p. 2932-2937. 10. Tung, V.C., et al., High-throughput solution processing of large-scale graphene. Nat Nano, 2009. 4(1): p. 25-29. 11. Liang, X., Z. Fu, and S.Y. Chou, Graphene Transistors Fabricated via Transfer-Printing In Device Active-Areas on Large Wafer. Nano Lett, 2007. 7(12): p. 3840-3844. 12. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339. 13. Nakajima, T. and Y. Matsuo, Formation process and structure of graphite oxide. Carbon, 1994. 32(3): p. 469-475. 14. Hofmann, A.W., Notes of Researches on the Poly-Ammonias.--No. VII. On the Diatomic Ammonias. Proceedings of the Royal Society of London, 1859. 10: p. 224-234. 15. Staudenmaier, L., Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft, 1898. 31(2): p. 1481-1487. 16. Sutter, P., Epitaxial graphene: How silicon leaves the scene. Nat Mater, 2009. 8(3): p. 171-172. 17. Kwon, G.S. and T. Okano, Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews, 1996. 21(2): p. 107-116. 18. Kwon, G.S., Diblock copolymer nanoparticles for drug delivery. Crit Rev Ther Drug Carrier Syst, 1998. 15(5): p. 481-512. 19. Torchilin, V.P., Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release, 2001. 73(2–3): p. 137-172. 20. Moffitt, M., K. Khougaz, and A. Eisenberg, Micellization of Ionic Block Copolymers. Accounts of Chemical Research, 1996. 29(2): p. 95-102. 21. Munk, P. and K. Procházka, Exploiting polymer micelle technology. American Chemical Society, 1998. 28: p. 20-28. 22. Kuilla, T., et al., Recent advances in graphene based polymer composites. Progress in Polymer Science, 2010. 35(11): p. 1350-1375. 23. Chen, W. and L. Yan, In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale, 2011. 3(8): p. 3132-3137. 24. Park, S. and R.S. Ruoff, Chemical methods for the production of graphenes. Nat Nano, 2009. 4(4): p. 217-224. 25. Knieke, C., et al., Scalable production of graphene sheets by mechanical delamination. Carbon, 2010. 48(11): p. 3196-3204. 26. Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nano, 2008. 3(9): p. 563-568. 27. Calizo, I., et al., Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Lett, 2007. 7(9): p. 2645-2649. 28. Hamilton, C.E., et al., High-Yield Organic Dispersions of Unfunctionalized Graphene. Nano Lett, 2009. 9(10): p. 3460-3462. 29. Biswas, S. and L.T. Drzal, A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid−Liquid Interface. Nano Lett, 2008. 9(1): p. 167-172. 30. Qian, W., et al., Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Research, 2009. 2(9): p. 706-712. 31. Englert, J.M., et al., Soluble Graphene: Generation of Aqueous Graphene Solutions Aided by a Perylenebisimide-Based Bolaamphiphile. Advanced Materials, 2009. 21(42): p. 4265-4269. 32. Behabtu, N., et al., Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nano, 2010. 5(6): p. 406-411. 33. Brodie, B.C., On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London, 1859. 149: p. 249-259. 34. Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nano, 2008. 3(9): p. 538-542. 35. Wang, Y., et al., Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Applied Physics Letters, 2009. 95(6): p. 063302. 36. Yavari, F., et al., Tunable Bandgap in Graphene by the Controlled Adsorption of Water Molecules. Small, 2010. 6(22): p. 2535-2538. 37. Jang, B.Z., et al., Graphene Surface-Enabled Lithium Ion-Exchanging Cells: Next-Generation High-Power Energy Storage Devices. Nano Lett, 2011. 11(9): p. 3785-3791. 38. Liu, C., et al., Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett, 2010. 10(12): p. 4863-4868. 39. Xu, B., et al., What is the choice for supercapacitors: graphene or graphene oxide? Energy & Environmental Science, 2011. 4(8): p. 2826-2830. 40. Debelak, B. and K. Lafdi, Use of exfoliated graphite filler to enhance polymer physical properties. Carbon, 2007. 45(9): p. 1727-1734. 41. RamanathanT, et al., Functionalized graphene sheets for polymer nanocomposites. Nat Nano, 2008. 3(6): p. 327-331. 42. Mason, S.F., Chemical Evolution, 1991. 43. Lothian-Tomalia, M.K., et al., A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly(thioether) dendrimers. Amplified, genealogically directed synthesis leading to the de gennes dense packed state. Tetrahedron, 1997. 53(45): p. 15495-15513. 44. Jiang, D.-L. and T. Aida, Bioinspired molecular design of functional dendrimers. Progress in Polymer Science, 2005. 30(3–4): p. 403-422. 45. Xia, F. and L. Jiang, Bio-Inspired, Smart, Multiscale Interfacial Materials. Advanced Materials, 2008. 20(15): p. 2842-2858. 46. Buhleier, E., W. Wehner, and F. VÖGtle, "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies. Synthesis, 1978. 1978(02): p. 155-158. 47. Tomalia, D.A., H. Baker, and J. Dewald, A new class of polymers: starburst-dendritic macromolecules. Polymer journal, 1985. 17(1): p. 117-132. 48. Naylor, A.M., et al., Starburst dendrimers. 5. Molecular shape control. Journal of the American Chemical Society, 1989. 111(6): p. 2339-2341. 49. Turro, N.J., J.K. Barton, and D.A. Tomalia, Molecular recognition and chemistry in restricted reaction spaces. Photophysics and photoinduced electron transfer on the surfaces of micelles, dendrimers, and DNA. Accounts of Chemical Research, 1991. 24(11): p. 332-340. 50. Hawker, C.J., K.L. Wooley, and J.M.J. Frechet, Solvatochromism as a probe of the microenvironment in dendritic polyethers: transition from an extended to a globular structure. Journal of the American Chemical Society, 1993. 115(10): p. 4375-4376. 51. Grayson, S.M. and J.M.J. Fréchet, Convergent Dendrons and Dendrimers:  from Synthesis to Applications. Chemical Reviews, 2001. 101(12): p. 3819-3868. 52. Newkome, G.R., et al., Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. The Journal of Organic Chemistry, 1985. 50(11): p. 2003-2004. 53. Padias, A.B., et al., Starburst polyether dendrimers. The Journal of Organic Chemistry, 1987. 52(24): p. 5305-5312. 54. Miller, T.M. and T.X. Neenan, Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chemistry of Materials, 1990. 2(4): p. 346-349. 55. Hawker, C.J. and J.M.J. Frechet, Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society, 1990. 112(21): p. 7638-7647. 56. Schlüter, A.D. and J.P. Rabe, Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. Angewandte Chemie International Edition, 2000. 39(5): p. 864-883. 57. Cheng, C.-X., et al., Molecular Architecture Effect on Self-Assembled Nanostructures of a Linear-Dendritic Rod Triblock Copolymer in Solution. Macromolecules, 2005. 38(8): p. 3044-3047. 58. Roovers, J. and B. Comanita, Dendrimers and Dendrimer-Polymer Hybrids, in Branched Polymers I, J. Roovers, Editor 1999, Springer Berlin Heidelberg. p. 179-228. 59. Zhao, Y., et al., Synthesis of novel dendrimer-like star block copolymers with definite numbers of arms by combination of ROP and ATRP. Chemical Communications, 2004. 0(14): p. 1608-1609. 60. Darcos, V., et al., Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chemical Communications, 2004. 0(18): p. 2110-2111. 61. Matthews, O.A., A.N. Shipway, and J.F. Stoddart, Dendrimers—Branching out from curiosities into new technologies. Progress in Polymer Science, 1998. 23(1): p. 1-56. 62. Gennes, P.G.d. and H. Hervet, Statistics of « starburst » polymers. Journal De Physique Lettres, 1983. 44(9). 63. Mourey, T.H., et al., Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules, 1992. 25(9): p. 2401-2406. 64. Tomalia, D.A., Architecturally Driven Properties Based on the Dendritic State. High Performance Polymers, 2001. 13(2): p. S1-S10. 65. Michels, J.J., et al., Well-defined assemblies of adamantyl-terminated poly(propylene imine) dendrimers and [small beta]-cyclodextrin in water. Journal of the Chemical Society, Perkin Transactions 2, 2000. 0(9): p. 1914-1918. 66. Wooley, K.L., J.M.J. Fréchet, and C.J. Hawker, Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters. Polymer, 1994. 35(21): p. 4489-4495. 67. Hawker, C.J., et al., Exact Linear Analogs of Dendritic Polyether Macromolecules:  Design, Synthesis, and Unique Properties. Journal of the American Chemical Society, 1997. 119(41): p. 9903-9904. 68. Tomalia, D.A., A.M. Naylor, and W.A. Goddard, Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angewandte Chemie International Edition in English, 1990. 29(2): p. 138-175. 69. de Brabander-van den Berg, E.M.M. and E.W. Meijer, Poly(propylene imine) Dendrimers: Large-Scale Synthesis by Hetereogeneously Catalyzed Hydrogenations. Angewandte Chemie International Edition in English, 1993. 32(9): p. 1308-1311. 70. Hawker, C.J., et al., Molecular Ball Bearings: The Unusual Melt Viscosity Behavior of Dendritic Macromolecules. Journal of the American Chemical Society, 1995. 117(15): p. 4409-4410. 71. Farrington, P.J., et al., The Melt Viscosity of Dendritic Poly(benzyl ether) Macromolecules. Macromolecules, 1998. 31(15): p. 5043-5050. 72. Tomalia, D.A. and P.M. Kirchhoff, U.S. Patent, 1987. 4(064): p. 694. 73. Frauenrath, H., Dendronized polymers—building a new bridge from molecules to nanoscopic objects. Progress in Polymer Science, 2005. 30(3–4): p. 325-384. 74. Schlüter, A.D., The macromonomer route to dendronized polymers. Comptes Rendus Chimie, 2003. 6(8–10): p. 843-851. 75. Dai, S.A., et al., Synthesis of N-aryl azetidine-2,4-diones and polymalonamides prepared from selective ring-opening reactions. Journal of Applied Polymer Science, 2007. 103(6): p. 3591-3599. 76. Liao, K.-H., et al., Aqueous Only Route toward Graphene from Graphite Oxide. ACS Nano, 2011. 5(2): p. 1253-1258. 77. Stankovich, S., et al., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 2006. 44(15): p. 3342-3347. 78. Solomons, T.W.G., Organic Chemistry 6th Edition, 1996: p. 263. 79. Thomas, T.T., Ketenes. John Wiley & Sons, 1995: p. 38. 80. Shen, B., et al., Synthesis of graphene by low-temperature exfoliation and reduction of graphite oxide under ambient atmosphere. Journal of Materials Chemistry C, 2013. 1(1): p. 50-53. 81. Hsiao, M.-C., et al., Preparation of Covalently Functionalized Graphene Using Residual Oxygen-Containing Functional Groups. ACS Applied Materials & Interfaces, 2010. 2(11): p. 3092-3099. 82. Kim, Y.H. and O.W. Webster, Polym. Prepr., 1988. 29: p. 310. 83. Schniepp, H.C., et al., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The Journal of Physical Chemistry B, 2006. 110(17): p. 8535-8539. 84. Cai, M., et al., Methods of graphite exfoliation. Journal of Materials Chemistry, 2012. 22(48): p. 24992-25002. 85. 汪建民, 材料分析: p. 353. 86. Bratt, A. and A.R. Barron, XPS of Carbon Nanomaterials. Science and Technology, 2010. 87. Chien, C.-T., et al., Tunable Photoluminescence from Graphene Oxide. Angewandte Chemie International Edition, 2012. 51(27): p. 6662-6666. 88. Ahn, H.S., et al., Self-assembled foam-like graphene networks formed through nucleate boiling. Sci Rep, 2013. 3: p. 1396-1396. 89. Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97(18): p. 187401. 90. 謝雅萍 and M. Hofmann, 目睹原子-利用光來發掘石墨烯(Graphene). 物理雙月刊, 2011. 33(2): p. 145-256. 91. Luo, D., et al., Evaluation Criteria for Reduced Graphene Oxide. The Journal of Physical Chemistry C, 2011. 115(23): p. 11327-11335. 92. Gómez-Navarro, C., et al., Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Lett, 2007. 7(11): p. 3499-3503. 93. Wang, H., et al., Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. Journal of the American Chemical Society, 2009. 131(29): p. 9910-9911. 94. H, G. and G. H-U, IR spectroscopy. Winheim: Wiley-VSH, 2002: p. 223-227. 95. Meyer, J.C., et al., On the roughness of single- and bi-layer graphene membranes. Solid State Communications, 2007. 143(1–2): p. 101-109. 96. Li, S.-S., et al., Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano, 2010. 4(6): p. 3169-3174. 97. Shau, S.-M., et al., Organic/Metallic Nanohybrids Based on Amphiphilic Dumbbell-Shaped Dendrimers. ACS Applied Materials & Interfaces, 2012. 4(4): p. 1897-1908. 98. Kuo, P.-L. and W.-F. Chen, Formation of Silver Nanoparticles under Structured Amino Groups in Pseudo-dendritic Poly(allylamine) Derivatives. The Journal of Physical Chemistry B, 2003. 107(41): p. 11267-11272. 99. Dong, R.-X., W.-C. Tsai, and J.-J. Lin, Tandem synthesis of silver nanoparticles and nanorods in the presence of poly(oxyethylene)-amidoacid template. European Polymer Journal, 2011. 47(7): p. 1383-1389. 100. Hsu, Y.-C., et al., Hierarchical synthesis of silver nanoparticles and wires by copolymer templates and visible light. Journal of Colloid and Interface Science, 2010. 352(1): p. 81-86.
摘要: 本研究利用Hummers-Offeman法製備出氧化石墨(GO),再成功地將氧化石墨以簡易的方式還原成單層石墨烯(XGS)。利用綠色化學法進行還原,將微量的酸性溶液與氧化石墨進行反應,去除氧化石墨上大量的含氧官能基;利用相變化的原理,水和鹽酸小分子進入氧化石墨層與層間,藉由加熱達到沸點時從液相轉變為氣相,體積大幅增加,達到脫層石墨烯並使層板部分還原,製備過程中不僅具高安全性且低污染。 探討氧化石墨與石墨烯兩系統因官能基數多寡所造成基本性質的差異。氧化石墨與雙官能基修飾分子4-isocyanato-4’(3,3-dimethyl- 2,4-dioxo-azetidino)diphenyl-methane(IDD)和親水性聚醚雙胺JEFFAMINE ED-2003反應後,氧化石墨層間距由原先7.8Å已大幅提升至脫層,生成氧化石墨烯,但透過X射線繞射觀察(XRD)仍有些微堆疊現象產生。脫層後的氧化石墨易因凡德瓦爾力再行聚集,研究中利用本實驗室開發的poly(urea/malonamide)規則性樹枝狀高分子依代數提供不同程度的立體障礙,與其進行反應,探討其堆疊現象之差異。 利用綠色還原法脫層後的單層石墨烯,同樣觀察到有些微石墨烯片有重新堆疊的現象產生,藉由雙官能基修飾分子IDD與石墨烯片上殘留的含氧官能基反應後,可使堆疊現象消失,後續再接上聚醚雙胺JEFFAMINE與規則性樹枝狀高分子亦無堆疊現象產生。從氧化石墨與石墨烯系統的研究結果顯示,藉由接枝改質可使氧化石墨達到脫層效果與大幅改善兩系統的堆疊現象。 脫層之石墨烯複合材料受限於高分子影響,電子不易傳導,因此,本研究藉由銀離子吸附在層板表面高分子進行原位還原(in-situ reduction)。奈米銀粒子於層板上還原後成為半導體,提升了電子傳遞能力,功函數數值介於4.72 – 4.76 eV之間,證明石墨烯/奈米銀粒子複合材料具有潛力應用在光電元件中的電極材料。
Exfoliated graphene sheets (XGS) were prepared from graphite oxide (GO) via a green chemistry route. Dehydration of GO is the main mechanism for the reduction and transformation of C-C bonds from sp3 to sp2. The oxygen-containing groups of GO would decompose to produce gases (H2O) and volatile substances (HCl) during the thermal treatment process. For a successful exfoliation process, the pressure generated from the evolved gases that causes rapid expansion would exceed Van der Waals forces holding GO sheets together. Different contents of the oxygen-containing moieties on the graphite oxide and graphene surface would bring about various grafting ratios of the intended compounds. First, 4-isocyanato-4’(3,3-dimethyl-2,4-dioxo- azetidino) diphenyl -methane (IDD) reacted with carboxylic acid or hydroxy functional group on the graphite oxide and graphene surface to provide a reactive site. Subsequently, a polyetheramine, JEFFAMINE® ED-2003 was reacted with the dione functional group leaving the other pendant primary amine as the grafting site for an intended dendron. The content of functional groups and the size of grafting compounds play an important role in keeping graphene and graphene oxide from aggregation. Via the thermal treatment process, XGS comprised randomly ordered graphitic platelets in a corrugated structure. As the IDD molecules reacted with the reduced graphene sheets, the spacings of graphene single-layers could be well maintained. As for GO, the covalent attachment of JEFFAMINE ED-2003 was required to achieve exfoliation. We demonstrated that the respective grafting of relatively low molecular weight JEFFAMINE ED-2003 to GO, and IDD to the reduced graphene was sufficient to prevent single-layers from aggregation. Due to poor electronic transfer ability of the polymers attached to the exfoliated graphene hybrids, silver nanoparticles were adsorbed on the grafted polymers to increase the conductivity. The work functions of XGS/Ag nanohybrids were measured to be 4.72 – 4.76 eV. The large work functions suggest that these XGS/Ag nanohybrids can potentially be applied as electrode materials for optoelectronic devices.
URI: http://hdl.handle.net/11455/3122
其他識別: U0005-0908201300180900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0908201300180900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.