Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31260
標題: 台灣由 Streptomyces scabies 所引起之馬鈴薯瘡痂病-病原菌生物特性及應用拮抗性枯草桿菌於其生物防治之初探
Potato common scab caused by Streptomyces scabies in Taiwan - biological characteristics of the pathogen and an attempted biocontrol by antagonistic Bacillus subtilis var. amyloliquefaciens WG6-14
作者: 黃巧雯
Huang, Chiau-Wen
關鍵字: Streptomyces scabies
馬鈴薯瘡痂病
Bacillus subtilis
biocontrol
枯草桿菌
枯草桿菌
出版社: 植物病理學系所
引用: 王三太、林子凱、曹幸之、謝哲進。2004。馬鈴薯新品種–台農3號。農業試驗所技術服務。58:17-20。 王詩雯。2002。拮抗性桿菌屬 (Bacillus spp.) 於水稻白葉枯病防治之應用及其機制。國立中興大學植物病理學系碩士論文。84pp。 丘應模。1988。馬鈴薯。台灣之經濟作物。26-277頁。 江迪蔚。2006。枯草桿菌 Bacillus subtilis WG6-14 於檬果黑斑病防治之應用潛力與作用機制。國立中興大學植物病理學系碩士論文。79頁。 李雅惠。2002。拮抗性桿菌屬 (Bacillus spp.) 之分離、培養與抗生活性之改進以及病害防治之應用。國立中興大學植物病理學系碩士論文。79頁。 林上湖、姚士源、鍾文全。2008。台灣馬鈴薯產業現況。農業世界雜誌。294:10-13。 林漢釗。2006。益生性枯草桿菌 Bacillus subtilis WG6-14 在水稻栽培與病害管理上之應用性。國立中興大學植物病理學系碩士論文。152頁。 林漢釗。2006。益生性枯草桿菌 Bacillus subtilis WG6-14 在水稻栽培與病害管理上之應用性。國立中興大學植物病理學系碩士論文。152頁。 邱燕欣。2004。拮抗性桿草桿菌 Bacillus subtilis WG6-14 菌株於柑橘潰瘍病防治應用。國立中興大學植物病理學系碩士論文。92頁。 曹幸之、謝哲進、蔡永福。1995。蔬菜類-馬鈴薯。台灣農家要覽農作物(二)。財團法人豐年社。305-310頁。 曹幸之。1993。馬鈴薯的產業與研究。台灣蔬菜產業演進四十年專集。台灣省農業試驗所。139-156頁。 陳昭瑩。2003。根圈細菌於植物病害防治之應用。微生物多樣性及其永續利用研討會專刊。國立台灣大學植物病理與微生物學系。台北。台灣。15-25頁。 賴文瑞。2003。鏈黴菌 Streptomyces griseobrunneus S3 菌株作為植物真菌性病害防治應用生物製劑之發展。國立中興大學植物病理學系碩士論文。114頁。 賴瑞.查克曼 (Zuckerman, L.) 作。李以卿譯。2002。馬鈴薯。藍鯨出版有限公司。67-89頁。 Agrios, G. N. 2004. Plant Pathology, 5th ed., San Diego, Academic Press. 674-675pp. Aldrich, J., and Baker, R. 1970. Biological control of Fusarium roseum f. sp. dianthi by Bacillus subtilis. Plant Dis. Rep. 54:446-448. antibiotics. Chem. Biol. 4:561-567. Babad, J., Pinsky, A., Turnercraff, R., and Sharon, N. 1952. An antifungal polypeptide produced by Bacillus subtilis. Nature 170:618-619. Baker, K. F., and Cook, R. J. 1974. Biological Control of Plant Pathogens. Freeman & Company, San Francisco. 433pp. Beausejour, J., Goyer, C., Vachon, J., and Beaulieu, C. 1999. Production of thaxtomin A by Streptomyces scabies strains in plant extract containing media. Can. J. Microbiol. 45: 764-768. Besson, F., Peypoux, F., Michel, G., and Delcambe, L. 1976. Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J. Antibiotics 29:1043-1049. Bouchek-Mechiche K., Gardan, L., Andrivon, D., and Normand, P. 2006. Streptomyces turgidiscabies and Streptomyces reticuliscabiei: one genomic species, two pathogenic groups. Int. J. Syst. Microbiol. 56:2771-2776. Bouchek-Mechiche, K., Gardan, L., Normand, P., and Jouan, B. 2000. DNA relatedness among strains of Streptomyces pathogenic to potato in France: description of three new species, S. europaeiscabiei sp. nov. and S. stelliscabiei sp. nov. associated with common scab, and S. reticuliscabiei sp. nov. associated with netted scab. Int. J. Syst. Evol. Microbiol. 50:91-99. Brain, B. M. G., and Deborah, R. F. 2002. Biological control of plant pathogens: research, commercialization, and application in the USA. APSnet Feature Story May-June (www.apsnet.org/online/feature/biocontrol) Buchanan and family Streptomycetaceae Waksman and Henrici. Pages 892-980. In: Bergey’s Manual of Determinative Microbiology, 6th edn. R. S. Breed, E. G. D. Murray and A. P. Hitchens (eds.) Baltimore, Williams and Wilkins. Bukhalid, R. A., Takeuchi, T. Labeda, D., and Loria, R. 2002. Horizontal transfer of the plant virulence gene, nec1, and flanking sequences among genetically distinct Streptomyces strains in the Diastatochromogenes cluster. Appl. Environ. Microbiol. 68:738-744. Castillo, U. F., Browne, L., Strobel, G. A., Hess, W. M., Ezra, S., Pacheco, G. and Ezra, D. 2006. Biologically active endophytic Streptomycetes from Nothofagus spp. and other plants in patagonia. Microb. Ecol. 53:12-19. Challis, G. L., and Hopwood, D. A. 2003. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc. Natl. Acad. Sci. USA 100:14555-14561. Chang, I. P., and Kommedahl, T. 1968. Biological control of seedling blight of corn by coating kernels with antagonistic microorganism. Phytopathology 58:1395-1401. Chater, K. F. 2006. Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Phil. Trans. R. Soc. B. 361:761-768. Douglas, D. R., and Pavek, J. J. 1971. An efficient method of inducing sporulation of Alternaria solani in pure culture. Phytopathology 61:239. Dunleavy, J. 1954. Control of damping-off of sugarbeet by Bacillus subtilis. Phytopathology 45:252-258. El-Sayed el-S, A. 2001. Production of thaxtomin A by two species of Streptomyces causing potato scab. Acta Microbiol. Immunol. Hung. 48:67-79. Faucher, E., Otrysko, B., Paradis, E., Hodge, N. C., Stall, R. E., and Beaulieu, C. 1993. Characterization of Streptomyces causing russet scab in Quebec. Plant Dis. 77:1217-1220. Faucher, E., Savard, T., and Beaulieu, C. 1992. Characterization of actinomycetes isolated from common scab lesions on potato tubers. Can. J. Plant Pathol. 14:197-202. Ferreira, J. H., Matthe, F. N., and Thomas, A. C. 1990. Biological control of Eutypa lata on grapevine by an antagonistic strain of Bacillus subtilis. Phytopathology 81:283-287. Fiddaman, P. J., and Rossall, S. 1993. The production of antifungal volatiles by Bacillus subtilis. J. Appl. Bacteriol. 74:119-126. Fry, B. A., and Loria, R. 2002. Thaxtomin A: evidence for a plant cell wall target. Physiol. Mol. Plant Pathol. 60:1-8. Glick, B. R., and Bashan. Y. 1997. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 15:353-378. Goyer, C., and Beaulieu, C. 1997. Host range of Streptomyces strains causing common scab. Plant Dis. 81:901-904. Goyer. C., Vachon, J., and Beaulieu, C. 1998. Pathogenicity of Streptomyces scabies mutants altered in thaxtomin A production. Phytopathology 88:442-445. Hacker, J., and Carniel, E. 2001. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep. 2:376-381. Hall., T. J. 1986. Effect of xylem-colonization of Bacillus spp. on Verticillium wilt in maples. Plant Dis. 70:521-524. Han, J. S., Cheng, J. H., Yoon, T. M., Song, J., Rajkarnikar, A., Kim,W. G., Yoo,I. D., Yang, Y. Y., and Suh, J. W. 2005. Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. J. Appl. Micobiol. 99:213-221. Hayashida, S., Choi, M. Y., Nanri, N., and Miyaguchi, M. 1988. Producing of potato common scab-antagonistic biofertilizer from swine feces with Streptomyces albidoflavus. Agric. Biol. Chem. 52:2397-2402. Healy, F. G., Wach, M., Krasnoff, S. B., Gibson, D. M., and Loria, R. 2000. The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Mol. Microbiol. 38:794-804. Hooker, W. J. 1949. Parasitic action of Streptomyces scabies on roots of seedlings. Phytopathology 39:442-462. Joshi, M. V., Bignell, D. R., Johnson, E. G., Sparks, J. P., Gibson D. M., and Loria R. 2007. The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies. Mol. Microbiol. 66:633-642. Joshi, M.V., and Loria, R. 2007. Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls. Mol. Plant-Microbe Interact. 20:751-758. Katz, E., and Demain, A. L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41:449-474. Keinath, A. D. 1994. Pathogenicity and host range of Fusarium oxysporum from sweet basil and evaluation of disease control methods. Plant Dis. 78:1211-1215. Kers, J. A., Cameron, K. D., Joshi, M. V., Bukhalid, R. A., Morello, J. E., Wach, M. J., Gibson D. M., and Loria R. 2005. A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Mol. Microbiol. 55:1025-1033. Kers, J. A., Wach, M. J., Krasnoff, S. B., Widom, J., Cameron, K. D., Bukhalid, R. A., Gibson, D. M., Crane, B. R. and Loria, R. 2004. Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature 429:79-82. Kilian, M., Steiner, U., Krebs, B., Junge, H., and Schmiedeknecht, R. H. 2000. FZB24 Bacillus subtilis-mode of action of microbial agent in enhancing plant vitality. Pflanzenschutz-Nachr. 1:72-93. King, R. R., Lawrence, C. H., and Calhoun, L. A. 1992. Chemistry of phytotoxins associated with Streptomyces scabies, the causal organism of potato common scab. J. Agric. Food Chem. 40:834-837. King, R. R., Lawrence, C. H., and Gray, J. A. 2001. Herbicidal properties of the thaxtomin group of phytotoxins. J. Agric. Food Chem. 49:2298-2301. King, R. R., Lawrence, C. H., Clark, M. C., Calhoun, L. A. 1989. Isolation and characterization of phytotoxins associated with Streptomyces scabies. J. Chem. Soc. Chem. Commun. 13:849-50. King, R. R., Lawrence, H., Clark, M. C., and Calhoun, L. A. 1989. Isolation and characterization of phytotoxins associated with Streptomyces scabies. J. Chem. Soc. Chem. Commun. 13:849-850. Kinkel L. L., Bowers, J. H., Shimizu, K., Neeno-Eckwall, E. C., Schottel, J. L. 1998. Quantitative relationships among thaxtomin A production, potato scab severity, and fatty acid composition in Streptomyces. Can. J. Microbiol. 44:768-76. Kutchma, A. J., Roberts, M. A., Knaebel, D. B., and Crawford, D. L. 1998. Small-scale isolation of genomic DNA from Streptomyces mycelia or spores. Biotechniques 24:452-457. Küuster, E. 1959. Outline of a comparative study of criteria used in characterization of the actinomycetes. Intern. Bull. Bact. Nomen. and Taxon. 9:98-104. Lambert, D. H., and Loria, R. 1989a. Streptomyces scabies sp. nov. Int. J. Syst. Bacteriol. 39:387-392. Lambert, D. H., and Loria, R. 1989b. Streptomyces acidiscabies sp. nov. Int. J. Syst. Bacteriol. 39:393-396. Latoud, C., Peypoux, F., and Michel, G. 1987. Action of iturin A, an antifungal antibiotic from Bacillus subtilis, on the yeast Saccharomyces cerevisiae: modifications of membrane permeability and lipid composition. J. Antibiotics 40:1588-1595. Lawrence, C. H., Clark, M. C., and King, R. R. 1990. Induction of common scab symptoms in aseptically cultured potato tubers by the vivotoxin, thaxtomin. Phytopathology 80:606-608. Leiner, R. H., Fry, B. A., Carling, D. E., and Loria, R. 1996. Probable involvement of thaxtomin A in pathogenicity of Streptomyces scabies on seedlings. Phytopathology 86:709-713. Lindholm, P., Kortemaa, H., Kokkola, M., Haahtela, K., Salkinoja-Salonen, M., and Valkonen, J. P. T. 1997. Streptomyces spp. isolated from potato scab lesions under Nordic conditions in Finland. Plant Dis. 81:1317-1322. Lingappa, Y., and Lockwood, J. L. 1962. Chitin medium for selective isolation and culture of actinomycetes. Phytopathology 52:317-323. Liu, Z. L., and Sinclair, J. B. 1990. Biocontrol of Rhizoctonia root and crown rot of soybeans by Bacillus megaterium ATCC-55000. Phytopathology 80:1051. Loria, R., Bukhalid, R. A., and Fry, B. A. 1997. Plant pathogenicity in the genus Streptomyces. Plant Dis. 81:836-846. Loria, R., Bukhalid, R. A., Creath, R. A., Leiner, R. H., Olivier, M., and Steffens, J. C. 1995. Differential production of thaxtomins by pathogenic Streptomyces species in vitro. Phytopathology 85:537-541. Loria, R., Kers, J., and Joshi, M. 2006. Evolution of plant pathogenicity in Streptomyces. Annu. Rev. Phytopathol. 44:469-487. Marahiel, M. A. 1997. Protein templates for the biosynthesis of peptide Masahiro, N., Mayumi, K., Fumie, K., Nobuya, T., Hiroshi, K., and Hiroshi, A. 2005. Phytotoxin produced by Streptomyces sp. causing potato russet scab in Japan. J. Gen. Plant. Pathol. 71:364-369. Miyajima, K., Tanaka, F., Takeuchi, T., and Kuninaga, S. 1998. Streptomyces turgidiscabies sp. nov. Int. J. Syst. Bacteriol. 48:495-502. Morgan, F. L. 1963. Infection inhibition and germtube lysis of three cereal rusts by Bacillus pumilus. Phytopathology 53:1346-1348. Osburn, R. M., Milner, J. L., Oplinger, E. S., Smith, R. S., and Handelsman, J. 1995. Effect of Bacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis. 79:551-556. Park, D. H., Yu, Y. M., Kim, J. S., Cho, J. M., Hur, J. H., and Lim, C. K. 2003. Characterization of Streptomycetes causing potato common scab in Korea. Plant Dis. 87:1290-96. Podile, A. R., and Prakash, A. P. 1996. Lysis and biological control of Aspergillus niger by Bacillus subtilis AF1. Can. J. Microbiol. 42:533-538. Potter, H. S., Hooker, W. J., Cargo, W. and Stachwick, G. T. 1958. Pentachloronitrobenzene and urea-formadehyde for potato scab control in Michigan. Plant Dis. Rep. 43:633-637. Priest, F. G. 1993. Systematics and ecology of Bacillus. Pages 3-16. In: Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. R. Losick, J. A. Hoch, and A. L. Sonenshein eds. American Society of Microbiology, Washington. Rattikainen, O. J., Paivinen, T. H. and Tdhvonen, R. T. 1994. HPLC separation and subsequent detection of aromatic heptaene polyenes in peat after treatment with Streptomycess griseoviridis. Pestic. Sci. 41:149-154. Ritter, A., Blum, G., Emödy, L., Kerenyi, M., Böck, A., and Neuhierl, B. 1995. tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uro-pathogenic Escherichia coli. Mol. Microbiol 17:109-121. Rothrock C. S., and Gottlieb, D. 1984. Role of antibiotics in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can. J. Microbiol. 30:1440-1447. Russell, N. J. 1989. Functions of lipids: Structural roles and membrane functions. Pages 279-365 in: Microbial Lipids. C. Ratledge and S. G. Wilkinson, eds. Academic Press, San Diego, CA. Rytter, J. L., Lukezic, F. L., Craig, R. and Moonman, G. W. 1989. Biological control of Geranium rust by Bacillus subtilis. Phytopathology 79:367-370. Sambrook, J., Maniatis, T. I., and Fritsch, E. F. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press., NY. Scheible, W., Fry, B., Kochevenko, A., Schindelasch, D., Zimmerli, L., Schreiber, L. R., Gregory, G. F., Krause, C. R., and Ichida, J. M. 1988. Production, partial purification, and antimicrobial activity of a novel antibiotic produced by Bacillus subtilis isolated from Ulmus americana. Can. J. Bot. 66:2338-2346. Shimony, C. and Friend, J. 1975. Ultrastructure of the interaction between Phytophthora infestans and leaves of two cultivars of potato (Solanum tuberosum L.) Orion and Majestic. New Phytologist 74:59-65. Shirling, E. B., and Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Int. N. Syst. Bacteriol. 16:313-340. Smith, E. F. 1896. A bacterial disease of tomato, pepper, eggplant and Irish potato (Bacillus solanacearum nov. sp.). US Dep. Agric. Div. Vegetable Physiol. Pathol. Bull. 12:1-28. Somerville, S., Loria, R., and Somerville, C. 2003. An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell. 15:1781-1794. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845-857. Strohl, W. R. 1997. Biotechnology of Antibiotics, 2nd edn. New York: Marcel Dekker, Inc. 840pp. Suutari, M., and Laakso, S. 1993. Effect of growth temperature on the fatty acid composition of Mycobacterium phlei. Arch. Microbiol. 159:119-123. Thaxter, R. 1891. The potato scab. Conn. Agric. Exp. Stn. Rep. 1890:81-95. Tschen, J. S. M. 1991. Effect of antibiotic antagonists on control of basal stem rot of chrysanthemum caused by Rhizoctonia solani. Plant Prot. Bull. 33:56-62. Tsujibo. H., Hatano, N., Okamoto, T., Endo, H., Miyamoto, K., and Inamori, Y. 1999. Synthesis of chitinase in Streptomyces thermoviolaceus is regulated by a two-component sensor regulator system. FEMS Microbiol. Let. 181:83-89. Tutner, J. T., and Backman, P. A. 1911. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75:347-353. Utkhede, R. S., and Rage, J. E. 1982. Interaction of antagonist and pathogen in biological control of onion white rot. Phytopatholgy 26:379-407. Valkonen, J. P. T., and Koponen, H. 1990. The seed-borne fungi of Chinese cabbage (Brassica pekinensis), their pathogenicity and control. Plant Pathol. 39:510-516. Verschuere, L., Rombaut, G., Sorgeloos, P., and Verstrete, W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Bio. Rev. 64:655-671. Waksman, S. A., and Henrici, A. T. 1948. Family II. Actinomycetaceae Walthers, D., Carroll, R. K., Navarre, W. W., Libby, S. J., Fang, F. C., and Kenney, L. J. 2007. The response regulator SsrB activates expression of diverse Salmonella pathogenicity island 2 promoters and counters silencing by the nucleoid-associated protein H-NS. Mol. Microbiol 65:477-493. Wanner, L. A. 2004. Field isolates of Streptomyces differ in pathogenicity and virulence on radish. Plant Dis. 88:785-796. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere, J. Exp. Bot. 52:487-511. Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H. and Nishiuchi, Y. 1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol. Immunol. 39:897-904. Zehnder, W. G., Murphy, J. F., Sikora, E. J., and Kloepper, J. W. 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107:38-50.
摘要: 民國 95 年冬季在中台灣的台中縣潭子鄉與雲林縣斗南鎮地區所收成之馬鈴薯突見瘡痂病之大發生,由於類似的大規模發生前所未見,且在過去兩年間發病率與嚴重程度均有增加情形,一時成為倍受栽培業者關注之課題。本研究旨在探討最近在中南部地區普遍發生之馬鈴薯瘡痂病病原菌之生物特性,及其可能解決方法。本研究計利用由罹病薯塊樣品所分離到 7 個具典型鏈黴菌菌落形態之分離菌株做為供試病原菌,其中 T1、T2、T3、T4、T5 與 T6 等為本研究由採集自潭子地區罹病薯塊分離獲得,D1 菌株則由行政院農業委員會台南區農業改良場 鄭安秀博士提供,分離自斗南地區所採集樣本。7 個供試病原菌株經於 ISP4 (International Streptomyces Project ) 培養基上培養,所長成菌落俱呈灰色,顯微鏡檢視下可見,其均可產生氣生菌絲並於其上著生螺旋狀之孢子鏈;且均可於 ISP 單一碳素源供給下生長良好;另由tyrosine agar 上黑色素 (melanin) 產生特性及膜脂肪酸含量檢測等,所獲結果顯示此 7 個供試菌株之生理、生物特性均與Streptomyces scabies 相當一致。繼而由選殖、解序各供試菌株之 16S rDNA 序列結果,經GenBank分析比對,進而證實其與同屬於 S. scabies 之已知 4 個菌株相同度 (identity) 高達99%,綜合上述型態特徵、生理與生化特性及16S rDNA 序列分析檢測結果,證實本研究中所應用 7 個供試病原菌株均歸屬於 Streptomyces scabies。由於鏈黴菌屬 (Streptomyces) 成員為土壤中腐生性、並被廣泛應用於對抗土傳性病原真菌的有益微生物,本研究進而比較此些病原菌株與本實驗室經一系列實驗證實對植物性病害具有防治效果的鏈黴菌 S1、S3、S4、B4 與 M6 等 5 個菌株間之差異性,次釐清供生物殺菌劑發展應用鏈黴菌株於作物栽培上廣為應用後可能存在之潛在風險。上述 7 個病原菌株於人工接種下,均可造成馬鈴薯薄片組織之褐化與蘿蔔新生幼苗生長之嚴重受抑制反應,另以 1×108 cfu/ml 濃度孢子懸浮液澆灌盆缽種植馬鈴薯則 7 個菌株皆可在所結成薯塊上造成表皮破裂、龜裂狀、隆起之典型瘡痂病病徵;而相對的 5 個供生物殺菌劑發展應用之鏈黴菌株,於馬鈴薯組織上與薯塊上均未見有典型瘡痂病徵表現。有鑑於 thaxtomin A 產生為本病病原菌感染攸關重要因子,將所自 12 個供試鏈黴菌株經培養,並萃取其毒質成分,所含 thaxtomin A 成分除經內加標品高效液相層析 (HPLC) cochromagraphy 證實存在,並利用串聯式液相層析質譜儀 (LC/MS/MS) 以 MRM 監測模式系統,由 m/z=437 母離子及m/z=155、140 與 107 等 3 個子離子斷片之檢出進一步加以證實。綜合檢出結果,已證實 7 個可導致典型嚴重瘡痂病徵的菌株其培養液中 thaxtomin A 產量均可達 mg/ml 以上濃度,相對的 5 個供生物製劑發展應用之鏈黴菌株則培養液中均未檢測到有此毒質之產生。另值得一提的是,7 個供試病原菌株中以 T3 菌株產率最高,其次為 T5、T6、D1、T4、T1,而以 T2 菌株為最低者。,經檢視此 7 個供試菌株於蘿蔔幼苗系統所呈現發病狀況可以明白看出各供試菌株之 thaxtomin A 毒質產生能力與其致病毒力表現有密切關係;另將 7 個供試菌株之基因體 DNA 作為模版,以 txtA 基因之專一性引子對添加後,進而證實均可如預期增幅出大小約為 398bp 之片段,經選殖、解序比對後,發現其與已知 S. acidiscabies 之 txtA 基因相同度 (identity) 高達 99.7%,繼之利用所選殖 txtA 片段所製備核酸探針進行南方雜合反應,証實於上述 5 個供生物性殺菌劑發展應用之鏈黴菌菌株之基因體中均未測到 txtA 基因之存在,此亦顯示其余成為瘡痂病病原菌之風險性應極低。為瞭解本病生物防治應用之可行性,本研究以對峙培養檢測 7 株已知對多數重要病原真菌與細菌具優異抗生活性且產孢性狀良好之枯草桿菌群 (Bacillus subtilis group; BSG) 菌株對 S. scabies T1 菌株之拮抗性,經實驗結果證實以 Bacillus subtilis var. amyloliquefaciens WG6-14 拮抗性最為優異,其次為 TKS1-1、SP4-17與WP8-12。在溫室試驗中,分別以 D1 與 T1 兩供試病原菌株之孢子懸浮液 (菌量約為 1×108 cfu/ml) 澆灌行人工接種,處理六週後採收所產生薯塊,其發病率 (infection rate) 與罹病度 (disease severity) 分別 71% 與 66.7% 及 43.8% 與 44.5% 左右,相對的接種同時以 WG6-14 澆灌處理組則可使D1 與 T1 接種病害發病率降到只有 35% 與 28%,罹病度降到只有 11.7% 與 10.5%,另外接種後一個禮拜以 WG6-14 澆灌處理組則 D1 與 T1 接種下發病率分別降到只有 34% 與 45%、罹病度分別降到只有 11.2% 與 16.7%,除了防治效果卓著,另值得注意的是,WG6-14 之澆灌處理對馬鈴薯根系與薯塊生長發育均有顯著促進效果,與未處理之對照組比較,D1 與 T1 菌株所接種植株經 WG6-14 處理後,其植株結薯總數分別多 1.4-2.0 倍與 1.7-2.8 倍。此一結果顯示,WG6-14 之施用可以兼具促進植株生長與保護薯塊使不被病原菌感染之双重效果,其確為馬鈴薯栽培與瘡痂病病害管理上極值得被推薦應用之生物製劑。
An outbreak of tuber infection showing symptoms closely resembling that of common scab disease was observed during the winter of 2006 on field harvested potatoes in central Taiwan at both Tantzu Taichung and Dounan Yunlin. The disease appeared to be new for potato cultivation in Taiwan, and the increasing incidence and severity of the disease have drawn great attention among growers during the past 2 years. The main objectives of this investigation were to explore the biological and pathological characteristics of the causal agent and the possible resolution to solve the problem. A total of 7 Streptomyces strains isolated from diseased tubers were used for the performed tests. Among them, T1, T2, T3, T4, T5 and T6 were from Tantzu; and D1 (kindly given by Dr. Ann-show Cheng of Tainan DAIS) was from Dounan. Comparative study by use of ISP4 (International Streptomyces Project) medium on the morphological and physiological characteristics of these 7 tested isolates indicated that all of them grew up into grayish colony typical of Streptomyces morphology and produced spores in spiral chains on the aerial mycelia. They all appeared to grow well with the provision of each individual ISP sugar as sole carbon source, produced melanin pigment on tyrosine agar, and consisted in their membrane lipid fatty acid profile similar to that known for Streptomyces scabies. The 16S rDNA of these tested isolates were cloned and sequenced, pair-wise comparison of the sequences with the data provided by GenBank indicated all of them shared a 99% identity with that known for Streptomyces scabies. A phylogenetic tree constructed based on 16S rDNA sequences known for Streptomyces further concluded the 7 tested isolates in the same group as that of S. scabies. The morphological, physiological and molecular characteristics observed indicated that all the 7 tested isolates belong to members of S. scabies. As the majority of Streptomyces spp. are known to be saprophytic and some are important beneficial soil microbial resources which have been widely used as biological control agents, 5 Streptomyces strains S1, S3, S4, B4 and M6 known with potential of biofungicide application were included as compared strains for the pathogenicity study to learn if they may pose potential threat on crop production. Upon artificial inoculation, all the 7 diseased potato tuber derived strains were shown to cause necrotic response on potato tuber slices, reduced stem height and leaf thickening on radish seedlings. An artificial inoculation by drenching application of 1x108 cfu/ml spore suspension on pot grown potato plants (cv. Kennebec) confirmed that all 7 tested isolates were pathogenic and led to development of typical necrotic common scab symptoms. As a comparison, none of the 5 strains with potential of biofungicide application caused observable symptoms on potato tuber slices and pot grown potato plant; although slight inhibition of radish seedling growth was detected. Thaxtomin A is known to be a major determinant of Streptomyces spp. that causing the development of common scab symptoms on potato. The production of thaxtomin A of the tested strains was examined by thin layer chromatography, high performance liquid chromatography (HPLC), and a triple-quad mass detector equipped HPLC system (LC/MS/MS). The identity of thaxtomin A detected was demonstrated by use of internal standard co-chromatography in HPLC, and by LC/MS/MS at multiple reaction monitoring mode the detection of precursor ion at m/z=437 and the major product ions at m/z=150, 140 and 107, respectively. All the 7 diseased tuber-isolated strains were shown to produce
URI: http://hdl.handle.net/11455/31260
其他識別: U0005-2208200814374300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208200814374300
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.