Please use this identifier to cite or link to this item:
標題: 應用鏈黴菌Streptomyces spp.防治植物真菌性病害與植物寄生性線蟲病害
Application of Streptomyces spp. for controlling disease caused by plant pathogenic fungi and plant parasitic nematodes
作者: 陳雲成
關鍵字: Streptomyces
plant fungal disease
plant parasitic nematode disease
植物寄生性 線蟲病害
出版社: 植物病理學系所
引用: 石信德. 2003. 鏈黴菌 PMS-702 防治作物病害的功效與其抑菌主要代謝物治黴色基素之鑑定. 國立中興大學植物病理學系博士論文. 146pp. 石信德、黃振文. 2001. 永續農業的重要微生物資源 ─ 放線菌. 永續農業 15:17-24. 安寶貞、張東柱. 2000. 近年來 (1997 冬季以來) 本省馬鈴薯與蕃茄晚疫病大發生之病因探討. p.115-126. 植物疫情與策略. 高清文、郭克忠、曾經州編. 中華植物保護學會出版. 台中. 144pp. 安寶貞、謝廷芳、蔡志濃、王姻婷、林俊義. 2000. 亞磷酸之簡便使用方法與防病範圍. 植物病理學會刊. 9:179 (摘要) 安寶貞. 2001. 植物病害的非農藥防治品 ─ 亞磷酸. 植物病理學會刊 10: 147-154. 李明達. 1995. 應用幾丁質分解性放射線菌防治南方根瘤線蟲. 國立中興大學植物病理學系碩士論文. 74pp. 沈家昇. 2001. 利用抑病土中無病原性尖鐮胞菌防治胡瓜萎凋病. 國立中興大學植物病理學系碩士論文. 74pp. 柯欣志. 2000. 營養供給對放線菌 Streptomyces saraceticus SS31 號菌株抗生物質與幾丁質分解酵素產生之影響. 國立中興大學植物病理學系碩士論文. 90pp. 食品工業發展研究所. 1995. 分離株S 31之種名鑑定. 食研菌字第C0672號受文者:蔡東纂. 食品工業發展研究所. 2007. 放線菌學名鑑定. 食研菌字第600048 - 49號. 受文者:陳雲成. 陳欣孝. 1998. 放線菌 Streptomyces saraceticus SS31 號菌株所產生抗生物質理化與生物特性之研究. 國立中興大學植物病理學系碩士論文. 84pp. 陳姿翰. 2006. Streptomyces saraceticus 肥料製劑對’巨峰’葡萄植株生長及果實品質之影響. 國立中興大學園藝學系碩士論文. 81pp. 陳泰元. 2005. Streptomyces griseobrunneus S3 之非無菌增量培養及其於腐霉病菌與立枯絲核菌危害防治之作用機制. 國立中興大學植物病理學系碩士論文. 109pp. 梅澤純夫. 1953. 抗菌性物質. 培風館. 東京. 320pp. 程永雄、莊明富、蔡東纂. 2001 洋香瓜囊叢枝內生菌根菌與根瘤線蟲之相互關係. 植物病理學會刊 10:19-26. 蔡東纂、程永雄、陳弘毅、林奕耀、吳文希. 1995. 球根花卉線蟲病害之發生及防治. 植物病理學會刊 4:180-192. 蔡東纂. 1996. 台灣作物線蟲病連作障害之發生及對策. 植物病理學會刊. 5:113-128. 蔡東纂. 1998. 植物寄生性線蟲之生物防治. 國立台灣大學植物病蟲害學研究所博士論文.102pp. 顏志恆、陳殿義、許秀惠、林俊義、蔡東纂. 1997. 植物寄生性線蟲對茄科植物青枯病發病程度之影響. 植物病理學會刊 6:141-152. 顏志恆、林俊義、陳殿義、李明達、蔡東纂. 1998. 拮抗植物抑制南方根瘤線蟲族群之效用 植物病理學會刊 7:94-104. Agrios, G. N. 2005. Plant Pathology. 5th ed. Academic Press. CA, USA, 922pp. Alabouvatte, C. 1990. Biological control of Fusarium wilt in suppressive soil. Biological Control of Soil-Borne Plant Pathogens. pp: 27-43. Redwood Press, Wilshire, UK. Andrieu, N., Jaworska, G., Genet, J.-L., and Bompeix G. 2001. Biological mode of action of Famoxadone on Plasmopara viticola and Phytophthora infestans. Crop Protection 20:253-260. Bolley, H. L. 1890. Potato scab: a bacterial disease. Agr. Science 4: 243-256, 277-287. Caten, C. E. and Jinks, J. L. 1968. Spontaneous variability of single isolates of Phytophthora infestans. I. cultural variation. Can. J. Bot. 46:329-348. Cohen, T., and Coffey, M. D. 1986. Systemic fungicides and the control of oomycetes. Annu. Rev. Phytopathol. 24:311-338. Crawford, D. L., L ynch, J. M., Whipps, J. M., and Ousley,M. A. 1993. Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl. Environ. Microbiol. 59:3899-3905. Dicklow, M. B., Acosta N., and Zuckerman B. M. 1993. A novel Streptomyces species for controlling plant-parasitic nematodes. J. Chem. Ecol. 19:159-173. Ebbels, D. L. 1967. Effect of soil fumigants of Fusarium wilt and nodulation of peas (Pisum sativum L). Annu. Appl. Biol. 60:391-398. El-Abyad, M. S., El-Sayed, M. A., El-Shanshoury, A. R., and El-Sabbagh, S. M. 1993. Towards the biological control of fungal and bacterial disease of tomato using antagonistic Streptomyces spp. Plant Soil 149: 185-195. Esnard J., Potter T. L., and Zuckerman B. M. 1995. Streptomyces costaricanus sp. nov., isolated from nematode-supressive soil. IJSB. 45:775-779. Fayad, K. P., Simao-Beaunoir, A.-M., Gauthier, A., Leclere, C., Mamady, H., Beaulieu, C., and Brzezinski, R. 2001. Purification and properities of a β-1,6-glucanase from Streptomyces sp. EF-14, an actinomycete antagonistic to Phytophthora spp.. Appl. Microbiol. Biotechnol. 57:117-123. Fravel, D. R. 1988. Role of antibiosis in the biocontrol of plant disease. Annu. Rev. Phytopathology 26:75-91. Fravel, D., Olivain, C., and Alabouvette, C. 2003. Research review: Fusarium oxysporum and its biocontrol. New Phytologist 157:493-502. Goodfellow, M., Williams, S. T., and Mordarski, M. 1988. Actinomycetes in biotechnology. Academic Press, London. 870pp. Hagan, H. R. 1993. Hawaii pineapple field soil temperatures in relation to the nematode Heterodera radicola (Greef) Muller. Soil Sci. 36:83-95. Hayashida, S., Choi, M. Y., Nanri, N., and Miyaguchi, M. 1988. Production of potato common scab-antagonistic biofertilizer from swine feces with Streptomyces albidoflavus. Agric. Biol. Chem. 52:2397-2402. Hussey, R. S. 1985. Host- parasitic relationships and associated physiological change. Pages 143-153. In: An Advanced Treatise on Meloidogyne volumn Ⅰ: Biology and Control. J. N. Sasser, and C. C. Carter, eds. North Carolina State University Graphics. Inagaki, H., and Powell, N. T. 1969. Infulence of the root-lesion nematode on black shank symptom development in flue-cured tobacco. Phytopathology 59:1350-1355. James, C. 1971. A Manual of Assessment Key for Plant Diseases. Can. Dept. of Agric. Publication # 1458. 80pp. Ji, P., Wilson, M., Campbell, H. L., and Kloepper, J. W. 1997. Rhizobacterial mediated induced systemic resistance for the control of bacterial speck of fresh-market tomato. Pages 269-272 in: Plant Growth-Promoting Rhizobacteria, Present Status and Future Prospects. A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo, and S. Akino. eds. Nakanishi Printing, Sapporo, Japan. Keinath, A. D. 1994. Pathogenicity and host range of Fusarium oxysporum from sweet basil and evaluation of disease control methods. Plant Disease 78:1211-1215. Kloepper, J. W., Tuzun, S., Zehnder, G. W., and Wei, G. 1997. Multiple disease protection by rhizobacteria that induce systemic resistance-historical precedence. Phytopathology 87:136-137. Komagata , K., and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systemics. Methods in microbiology 19:161-207. Kotcon, J. B., Rouse, D. I., and Mitchell, J. E. 1985. Interaction of Verticillium dahliae, Colletotrichum coccodes, Rhizoctonia solani and Pratylenchus penetrans in the early dying syndrome of Ruset Burbank potatoes. Phytopathology. 75:68-73. Larkin, R. P. and Fravel, D. R. 1999. Mechanisms of action and dose-response relationships governing biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 89:1152-1161. Larkin, R. P., Hopkins, D. L. and Martin, F. N. 1993. Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conducive to Fusarium wilt of watermelon. Phytopathology 83:1097-1105. Latin, R. X. and Snell, S. J. 1986. Comparison of methods for inoculation of muskmelon with Fusarium oxysporum f. sp. melonis. Plant Disease 70:297-300. Lechevalier, M. P., and Lechevalier, H. A. 1980. The chemotaxonomy of actinomycetes. pp. 227-291 in: Actinomycete Taxonomy, SIM Special Publication in No. 6. A.Dietz, and D. W. Thayer eds., VA, USA. Liu, L., Kloepper, J. W., Tuzun, S. 1995. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85:843-847. Liu, D., Anderson, N. A., and Kinkel, L. L. 1995. Biological control of potato scab in the field with antagonistic Streptomyces scabies. Phytopathology. 85: 827-831. Locci, R. 1989. Streptomyces and related genera. pp. 2451-2508 in : Bergey’s Manual of Systematic Bacteriology Vol. 4. S. T. Williams, M. E. Sharpe, and J. G. Holt, (eds.), Williams & Wilkins. Baltimore. USA. pp. 2299-2648. Mahadevan, B., and Crawford, D. L. 1997. Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme Microb. Technol. 20:489-493. Mandeel, Q. and Baker, R. 1991. Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 81:462-469. Mandeel, Q. 2006. Influence of plant root exudates, germ tube orientation and passive conidia transport on biological control of fusarium wilt by strains of nonpathogenic Fusarium oxysporum. Mycopathologia 161:173-182. Martinez-Ochoa, N., Kloepper, J. W., Rodriguez-Kábana, R., and Ji, P. 1997. Induced resistance and phenotypic characteristics of several PGPR compared to biocontrol activity against root knot nematode Meloidogyne incognita. Pages 296-300 in: Plant Growth-Promoting Rhizobacteria, Present Status and Future Prospects. A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo, and S. Akino. eds. Nakanishi Printing, Sapporo, Japan. Miller, H. J., Henken, G., and Van Veen, J. A. 1989. Variation and composition of bacterial populations in the rhizospheres of maize, wheat, and grass cultivars. Can. J. Microbiol. 35:656-660. Mitani, S., Araki, S., Yamaguchi, T., Takii, Y., Ohshima, T., and Matsuo, N. 2001a. Biological properties of the novel fungicide cyazofamid against Phytophthora infestans on tomato and Pseudoperonospora cubensis on cucumber. Pest Manag. Sci. 58:139-145. Mitani, S., Araki, S., Yamaguchi, T., Takii, Y., Ohshima, T., and Matsuo, N. 2001b. Antifungal activity of the novel fungicide cyazofamid against Phytophthora infestans and other plant pathogenic fungi in vitro. Pestic. Biochem. Physiol. 70:92-99 Mitani, S., Araki, S., Yamaguchi, T., Takii, Y., Ohshima, T., and Matsuo, N., Miyoshi, H. 2001c. The biochemical mode of action of the novel selective fungicide cyazofamid: specific inhibition of mitochondrial complex Ⅲ in Pythium spinosum. Pestic. Biochem. Physiol. 71:107-115. Miyadoh, S. 1997. Atlas of Actinomycetes. The Society for Actinomycetes Japan. Asakura ublishing Co., Ltd. 223 pp. Nakhimovskaia, M. I. 1937. The antagonism between actinomycetes and soil bacteria. Microbiologia 6:131-157. Nonomura, H. 1974. Key for classification and identification of 458 species of the Streptomycetes included in ISP. J. Ferment. Technol. 52:78-92. O’Brien, J. G., Blanchette, R. A., and Sutherland, J. B. 1984. Assessment of Streptomyces spp. From elms for biological control of Dutch elm diseases. Plant Dis. 68:104-106. Ogura, H. and Ma, J. 1992. Persistence of Fusarium oxysporum f. sp. cucumerinum in continuous cropping fields. Ann. Phytopathol. Soc. Japan 58:671-676. Owen, J. H. 1955. Fusarium wilt of cucumber. Phytopathology 45:435-439. Oyekan, P. O., and Mitchell, J. E. 1971. Effect of Pratylenchus penetrans on the resistance of a pea variety to Fusarium wilt. Plant Dis. Rep. 55:1032-1035. Park, C. S., Paulitz, T. C. and Baker, R. 1988. Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum. Phytopathology 78:190-194. Postma, J. and Rattink, H. 1992. Biological control of Fusarium wilt of carnation with a nonpathogenic isolate of Fusarium oxysporum. Can. J. Bot. 70:1199-1205. Powell, N. T. 1963. The role of plant parasitic nematodes in fungus disease. Phytopathology 53:28-34. Powell, N. T. 1971. Interaction between nematodes and fungi in disease complexes. Annu. Rev. Phytopathology 9:253-274 Prinham, T. G., Lindenfelser, L. A. Shotowell, O. L., Stodola, F. H., Benedict, R. G., Foley, G., Jackson, R. W., Zaumeyer, W. J., Preston, W. H., and Mitchell, J. W. 1956. Antibiotics against plant disease in laboratory and greenhouse survey. Phytopathology. 46:568-575. Raatikainen, O. J., Paivinen, T. H., and Tdhvonen, R. T. 1994. HPLC separation and subsequent detection of aromatic heptaene polyenes in peat after treatment with Streptomyces griseovirids. Pestic. Sci. 41:149-154. Sabaratnam, S., and Traquair, J. A. 2002. Formulation of a Streptomyces biological agent for the suppression of Rhizoctonia damping-off in Tomato transplants. Biological Control. 23:245-253. Saindrenan, P. and Guest, D. V. 1995. Involvement of phytoalexins in the response of phosphonate-treated plants to infection by Phytophthora species. pp. 375-390 In: Handbook of Phytoalexin Metabolism and Action. M. Daniel, and R. P. Purkayastha. eds. Marcel Dekker, INC. New York, 615pp. Samac, D. A., and Kinkel, L. L. 2001. Suppression of root-lesion nematode (Pratylenchus penetrans) in alfalfa (Medicago sativa) by Streptomyces spp. Plant and Soil 235:35-44. Sasser, J. N., and Freckman, D. W. 1987. A world perspective on Nematology: the role of the society. pp 7-14. In: Vistas on Nematology. J. A. Veech and D. W. Dickson, eds. Society of Nematologists Inc. U.S.A. 509 pp. Scher, F. M. and Baker, R. 1980. Mechanism of biological control in a Fusarium-suppressive soil. Phytopathology 70:412-417. Selitrennikoff, C. P. 2001. Antifungal proteins. Appl. Environ. Microbiol. 67:2883-2894. Shirling, E. B., and Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16:313-340. Shirling, E. B., and Gottlieb, D. 1969. Cooperative description of type cultures of Streptomyces Ⅵ. and fourth studies. Int. J. Syst. Bacteriol. 19:391-512. Sikora, R. A., and Carter, W. W. 1987. Nematodes interaction with fungal and bacterial plant pathogens fact or fantasy. pp. 307-312. In: Vistas on Nematology. J. A. Veech and D. W. Dickson, eds. Society of Nematologists Inc., USA. 509 PP. Skinner, F. A. 1953. Inhibition of Fusarium culmorum by Streptomyces albidoflavus. Nature 172(4391):1191. Sneh, B. 1998. Use of non-pathogenic or hypovirulent fungal strains to protect plants against closely related fungal pathogens. Biotechnology Advances, 16 (1):1-32. Spiegel, Y., Chet, I., and Cohn, E. 1986.Use of chitin for controlling plant-parasitic nematodes. Ⅰ. Direct effect on nematode reproduction and plant performance. Plant and Soil 95:87-95. Spiegel, Y., Chet, I., and Cohn, E. 1987.Use of chitin for controlling plant-parasitic nematodes. Ⅱ. Mode of action. Pant and Soil 98:337-345. Spiegel, Y., Chet, I., Cohn, E., Galper, S., and Sharon, E. 1988. Use of chitin for controlling plant-parasitic nematodes. Ⅲ. Influence of temperature on nematicidal effect, mineralization and microbial population buildup. Plant and Soil 109:251-256. Suslow, T. V., and Schroth, M. N. 1982. Rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology 72:199-206. Theis, T., and Stahl, U. 2004. Antifungal proteins: targets, mechanisms, and prospective applications. Cell. Mol. Life Sci. 61:437-455. Trudgill, D. L. 1991. Resistance to and tolerance of plant parasiticnematodes in plants. Annu. Rev. Phytopathol. 29: 167-192. Tu, C. C., Cheng, Y. H. and Chang, Y. C. 1978. Antagonistic effect of some bacteria from Fusarium oxysporum wilt-suppressive soil and thier effect on the biological control of flax wilt in the field. Chung-Hua Nung Yeh Yen Chiu Journal of Agricultural Research of China 27 (3):245-258. Tzeng, D. S., Huang, J. W., and Tzeng, K. C. 2001. Development of antagonistic bacteria as biofungicide for the control of plant diseases. Pages 107-117 in: Proceedings of International Symposium on Biological Control of Plant Diseases for the New Century – Mode of Action and Application Technology. Dean D. S. Tzeng and J. W. Huang. eds. Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, 250pp. Tu, J. C. 1986. Hyperparasitism of Streptomyces albus on a destructive mycoparasite Nectria inventa. J. Phytopathol. 117:71-76. Tu, J. C. 1988. Antibiosis of Streptomyces griseus against Colletotrichum lindemuthianum. J. Phytopathol. 121:97-102. Vakalounakis, D. J. 1996. Allelism of the Fcu-1 and Foc genes conferring resistance to Fusarium wilt in cucumber. Eur. J. Plant Pathol. 102 (9): 855-858 Valkonen, J.P.T., and H. Koponen. 1990. The seed-borne fungi of Chinese cabbage (Brassica pekinensis), their pathogenicity and control. Plant Pathology 39:510-516. Webster, J. M. 1985. Interaction of Meloidogyne with fungi on crop plants. pp. 183-192. In: An Advance Treatise on Meloidogyne. Vol. 1. J. N. Sasser and C. C. Carter, eds. Raleigh: North Carolina State University Graphics, 422 pp. Whitehead, A. G. 1998. Plant parasitic nematodes, their importance and control. Pages 1-12. In: Plant nematode control. A. G. Whitehead, eds. CAB International, UK. Williams, S. T., Goodfellow, M. and Alderson, G. 1989. Genus Streptomyces. Pages 2452-2492 in : Bergey’s Manual of Systematic Bacteriology Vol. 4. S. T. Williams, M. E. Sharpe, and J. G. Holt, (eds.), Williams & Wilkins. Baltimore. USA. pp. 2299-2648. Williams, S. T., Lanning, S., and Wellington, E. M. 1983. Ecology of actinomycetes. pp. 481-528 in: The Biology of Actinomycetes. M. Goodfellow, M. Mordarski and S. T. Williams, eds. Academic Press Inc., London, 544 pp. Wilson, M., Ji, P., Campbell, H. L., and Kloepper, J. W. 1996. Development of an integrated biocontrol strategy for bacterial speck of tomato caused by Pseudomonas syringae pv. tomato. Pages 387-389 in: Advances in Biological Control of Plant Diseases. W. Tang, J. Cook, and A. Rovira. eds. Beijing Agricultural University Press, Beijing. Xiao, K., Kinkel, L. L., Samac, D. A. 2002. Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biological Control 23:285-295. Yan, Z., Reddy, M. S., Ryu, C.-M., McInroy, J. A., Wilson, M., and Kloepper, J. W., 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329-1333. Zimmerman, W. 1990. Degradation of lignin by bacteria. J. Biotechnology 13: 119-130.
摘要: 鏈黴菌Streptomyces saraceticus 31和Streptomyces sp. 205 於對峙培養試驗中,可抑制馬鈴薯晚疫病、蕃茄晚疫病、胡瓜萎凋病與洋香瓜黑點根腐病菌生長。SS31和S205的黃豆砂糖培養液於溫室中,可降低蕃茄晚疫病、胡瓜萎凋病、南方根瘤線蟲和南方根腐線蟲的發生。Streptomyces sp. 233雖不具有抑制病害發生的效果,但其黃豆砂糖培養液中的水解胺基酸和游離胺基酸的含量卻遠高於其他兩株菌。三株鏈黴菌於ISP2、ISP3、ISP4和ISP5培養基上之生長與產孢情形都非常良好,以電子顯微鏡觀察各菌株孢子鏈上之孢子數與孢子表面形態時均大不相同。三株鏈黴菌與四株植物病原性真菌的對峙培養試驗中,SS31對馬鈴薯晚疫病、蕃茄晚疫病、胡瓜萎凋病與洋香瓜黑點根腐病病原菌的平均抑制圈大小分別為13 mm、12.5 mm、35 mm和11 mm;S205之平均抑制圈大小為8 mm、8 mm、10 mm和9 mm;S233則無任何抑制效果。三株鏈黴菌之黃豆砂糖培養濾液對四株植物病原性真菌之拮抗測試中,僅SS31第一天的濾液具有抑制效果,其他兩株菌則沒有。在南方根瘤線蟲孵化率的試驗中,SS31之幾丁質培養液和三株鏈黴菌經黃豆砂糖培養的培養液,可降低線蟲孵化率,同時,三株鏈黴菌經黃豆砂糖、黃豆幾丁質與幾丁質培養後,均能降低根瘤指數,於溫室實驗中,SS31與S205均可降低發病度。根腐線蟲溫室實驗中,三株鏈黴菌之培養液均有抑制效果,其中以SS31之效果最為顯著其發病度 (62.5%) 比對照組 (93.75%) 低。三株鏈黴菌之黃豆砂糖培養液於胡瓜萎凋病溫室防治實驗中,雖無法完全抑制病害發生,卻可將病害延遲至種植後第九週才發病,發病度約為對照組初始發病度的18.5% ~ 49.7%。SS31與S205之黃豆砂糖培養液,於番茄植株感染晚疫病菌後施用於葉面,可降低發病度。本研究結果顯示,SS31與S205菌株之培養液對於受測植物病原性真菌與植物寄生性線蟲均有一定之防治效果,S233雖不具有防治病害之效果,卻有高含量之胺基酸,頗具生物肥料之發展潛力。
Streptomyces saraceticus 31 and Streptomyces sp. 205 inhibited the growth of Phytophthora infestans, pif 65-1, Phytophthora infestans, pift 165-1, Fusarium oxysporium f. sp. cucumerinum, F.o.c. 100 and Monosporascus cannonballusr, MC-1 at dual culture test. SS31 and S205 reduced tomato late blight, fusarium wilt of cucumber, southern root-knot nematode and southern root-lesion nematode in greenhouse tests. Streptomyces sp. 233 could not reduce disease incidence, but produce higher quantity hydrolysed and free amino acid in soybean-sucrose cultural broth than the other two strains. These strains grew and sporulated very well on ISP2, ISP3, ISP4 and ISP5 medium. Scanning electron microscope results showed these strains had their own specific spores number on the spore chain and surface structure on the spores. In dual culture tests, the average inhibition zone of SS31 to pif 65-1, pift 165-1, F.o.c. 100, and MC-1 were 13 mm, 12.5 mm, 35 mm and 11 mm, respectively, S205 inhibition zone to these pathogens were 8 mm, 8 mm, 10 mm and 9 mm; S233 had no inhibitory effect to these pathogens. Only the day one soybean-sucrose broth culture filtrate of SS31 had antagonistic ability to tested fungi. The chitin cultural broth of SS31 and the soybean-sucrose cultural broth of all strains could reduce the hatching rate of southern root-knot nematode. The soybean-sucrose cultural broth of SS31 and S205 reduced the disease incidence and galling index. All cultural broth of three Streptomyces strains had inhibitory effect on southern root-lesion nematode, especially those with SS31. In greenhouse tests, all of three Streptomyces spp. could delay fusarium wilt of cucumber occurrence up to nine weeks, the disease incidence was 18.5% ~ 49.7% of the initial disease severity of control treatment. The soybean-sucrose cultural broth of SS31 and S205 could reduce the disease incidence on tomato late blight by post-treatment. The results of our research showed SS31 and S205 could control plant pathogenic fungi and plant parasitic nematode. Although S233 did not show control efficacy to these tested pathogens, it had the potent to be a biofertilizer for its high quantity of amino acid.
其他識別: U0005-2507200810062600
Appears in Collections:植物病理學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.