Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31289
標題: 以單一轉基因誘發後轉錄基因沉寂作用發展抗多種病毒之轉基因東方甜瓜
Engineering multiple virus resistance based on post-transcriptional gene silencing mechanism in oriental sweet melon (Cucumis melo L.) using single chimeric gene constructs
作者: 潘維尼
Panwar, Vinay
關鍵字: RNA silencing
RNA默化
出版社: 植物病理學系所
引用: Ahlquist, P. 2002. RNA-dependent RNA polymerase, viruses, and RNA silencing. Science 296, 1270-1273. Al-Kaff, N. S., Covey, S. N., Kreike, M. M., Page, A. M., Pinder, R., and Dale, P. J. 1998. Transcriptional and post-transcriptonal gene silencing in response to a pathogen. Science 279, 2113-2115. Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., and Vance, V. B. 1998. A viral suppressor of gene silencing in plants. Pros. Natl. Acad. Sci. USA 95, 13079-13084. Anderson, E. J., Stark, D. M., Nelson, R. S., Tumer, N. E., and Beachy, R. N. 1989. Transgenic plants that expresses the coat protein gene of tobacco mosaic virus or alfalfa mosaic virus interfere with disease development of some non related viruses. Phytopathology 79, 1284-1290. Angel, S. M., and Baulcombe, D. C. 1999. Potato virus X-amplicon mediated silencing of nuclear genes. Plant J. 20, 357-362. Ares, X., Calamante, G., Cabral, S., Lodge, J., Hemenway, P., Beachy, R. N., and Mentaberry, A. 1998. Transgenic plants expressing potato virus X ORF2 protein (p24) are resistant to tobacco mosaic virus and other tobamoviruses. J. Virol. 72, 731-738. Assad, F. F., Tucker, K. L., and Singer, E. R. 1993. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol. Biol. 22, 1067-1085. Audy, P., Palukaitis, P., Slack, S. A., and Zaitlin, M. 1994. Replicase mediated resistance to potatao virus Y in transgenic tobacco plants. Mol. Plant Microbe Interact. 7, 15-22. Ballut, L., Drucker, M., Pugniere, M., Combon, F., Blanc, S., Roquet, F., Candresse, T., Schmid, H., Nicolas, P., Gall, O. L., and Badaoui, S. 2005. HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteosome and affects its enzymic activities. J. Gen. Virol. 86, 2595-2603. Ballut, L., Petit, F., Mouzeyar, S., Le Gall, O., Candresse, T., Schmid, P., Nicolas, P., and Badaoui, S. 2003. Biochemical identification of proteosome associated endonuclease activity in sunflower. Biochim. Biophys. Acta. 1645, 30-39. Bass, B. L. 2000. Double stranded RNA as a template for gene silencing. Cell 101, 235-238. Baulcombe, D. C. 1996. Mechanism of pathogen derived resistance to viruses in transgenic plants. Plant Cell 2, 1833-1844. Baulcombe, D. C. 1999a. Fast forward genetics based in virus induced gene silencing. Curr. Opin. Plant. Biol. 2, 109-113. Baulcombe, D. C., 1999b. Gene silencing: RNA makes RNA no protein. Curr. Biol. 9, 599-601. Baulcombe, D. C. 2002. Viral suppression of systemic silencing. Trends Microbiol. 10, 306-308. Baulcombe, D. C. 2007. Molecular biology. Amplified silencing. Science 315, 199-200. Baulcombe, D. C., and English, J. J. 1996. Ectopic pairing of homologous DNA and post transcriptional gene silencing in transgenic plants. Curr. Opin. Biotechnol. 7, 173-180. Bayne, E. H., Rakitina, D. V., Morozov, S. Y., and Baulcombe, D. C. 2005. Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. Plant J. 44, 471-482. Bazzini, A. A., Asurmendi, S., Hopp, H. E., and Beachy, R. N. 2006. Tobacco mosaic virus (TMV) and potato virus X (PVX) confers heterologous interference to TMV and PVX infection, respectively. J. Gen. Virol. 87, 1005-1012. Beachy, R. N. 1994. Introduction: transgenic resistance to plant viruses. Semin. Virol. 4, 327-328. Beachy, R. N., Powell, A. P., Nelson, R. S., Rogers, S. G., and Fraley, R. T. 1986. Transgenic plants that express the coat protein gene of TMV are resistant to infection by TMV. In: Arnzten, C. S., and Ryan, C. A. (ed.) Molecular strategies for crop improvement. New York, pp. 205-213. Beck, D. L., Van Dolleweerd, C. J., Lough, T. J., Balmori, E., Voot, D. M., Andersen, M. T., O'Brien, I. E. W., and Forster, R. L. S. 1994. Disruption of virus movement confers broad spectrum resistance against systemic infection by plant viruses with a triple gene block. Proc. Natl. Acad. Sci. USA 91, 10310-10314. Beclin, C., Berthome, R., Palauqui, J. C., Tepfer, M., and Vaucheret, H. 1998. Infection of tobacco or Arabidopsis plants by CMV counteracts systemic post transcriptional silencing of nonviral (trans) genes. Virology 252, 313-317. Beclin, C., Boutet, S., Waterhouse, P., and Vaucheret, H. 2002. A branched pathway for transgene-induced RNA silencing in plants. Curr. Biol. 12, 684-688. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. 2001. Role of a bidendate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366. Brederode, F. T., Taschner, P. E. M., Posthumus, E., and Bol, J. F. 1995. Replicase -mediated resistance to alfalfa mosaic virus. Virology 207, 467-474. Brigneti, G., Voinett, O., Li, W. X., Ji, L. H., Ding, S. W., and Baulcombe, D. C. 1998. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739-6746. Bonfim, K., Faria, J. C., Nogueira, E. O. P. L., Mendes, E. A., and Aragão, F. J. L. 2007. RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). MPMI 20, 717-726. Boonrod, K., Galetzka, D., Nagy, P. D., Conrad, U., and Krczal, G. 2004. Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nat. Biotech. 22, 856-862. Bowling, S. A., Guo, A., Gordon, A. S., Klessig, D. F., and Dong, X. 1994. A mutation in Arabidopsis that leads to constitutive expression of syatamic acquired resistance. Plant Cell 6, 1845-1857. Bucher, E., Lohuis, D., van Poppel, P. M. J. A., Geerts-Dimitriadou, C., Goldbach, R., and Prins, M. 2006. Multiple virus resistance at a high frequency using a single transgene construct. J. Gen. Virol. 87, 3697-3701. Canto, T., Choi, S. K., and Palukaitis, P. 2001. A subpopulation of cucumber mosaic virus RNA I contains 3' termini originating from RNAs 2 or 3. J. Gen. Virol. 82, 941-945. Cao, H., Li, X., and Dong, X, 1999. Generation of broad spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 95, 6531-6536. Carrington, J. C., and Herndon, K. L. 1992. Characterization of the potyviral HC-pro autoproteolytic cleavage site. Virology 187, 308-315. Carrington, J. C., Kasschau, K. D., and Johansen, L. K. 2001. Activation of suppression of RNA silencing by plant viruses. Virology 281, 1-5. Carrington, J. C., Kasschau, K. D., Mahajan, S. K., and Schaad, M. C. 1996. Cell-to-cell and long distance transport of viruses in plants. Plant Cell 8, 1669-1681. Carr, J. P., Gal, O. A., Palukaitis, P., and Zaitlin, M. 1994. Replicase mediated resistance to cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and long-distance movement. Virology 199, 439-447. Carr, J. P., and Zaitlin, M. 1991. Resistance in transgenic tobacco plants expressing a non structural gene sequence of tobacco mosaic virus is a consequence of markedly reduced virus replication. Mol. Plant Microbe Interact. 4, 579-585. Casterblanque, L., Marfa, V., Claveria, E., Martinez, I., Grau, L. P. and Sanjuan, R. D. 2008. Improving the genetic transformation efficiency of Cucumis melo subsp. melo ‘Piel de Sapo' via Agrobacterium. Cucurbitaceae 2008, proceedings of the 1Xth EUCARPIA meeting on genetic and breeding of Cucurbitaceae (Pitrat M ed.), INRA, Avignon (France), May 21-24. Cattaneo, A., and Biocca, S. 1999. The selection of intracellular antibodies. Trends Biotechnol. 17, 115-121. Chen, L., Marmey, P., Taylor, N. J., Brizard, J. P., Espinoza, C., D'Cruz, P., Huet, H., Zhang, S., de Kochko, A., Beachy, R. N., and Fauquet, M. 1998. Expression and inheritance of multiple transgenes in rice plants. Nature Biotechnol. 16, 1060-1064. Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V., and Carrington, J. C. 2004. Viral RNA silencing suppressors inhibit the micro RNA pathway at an intermediate steps. Genes Dev. 18, 1179-1186. Chellappan, P., Masona, M. V., Vanitharani, M. R., Taylor, N. J., and Fauquet, C. M. 2004. Broad-spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol. Biol. 56, 601-611. Chuang, C. F., and Meyerowitch, E. M., 2000. Specific and heritable genetic interference by double stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97, 4985-4990. Citovsky, V., and Zambryski, P. 1999. Systemic transports of RNA in plants. Tren. Plant Sci. 5, 52-54. Clarke, J. D., Liu, Y., Klessig, D. F., and Dong, X. 1998. Uncoupling PR Gene Expression from NPR1 and Bacterial Resistance: Characterization of the Dominant Arabidopsis cpr 6-1 Mutant. Plant cell 10, 557-569. Clark, W. G., Fitchen, J. H., Nejidat, A., Deom, C. M., and Beachy, R. N. 1995a. Studies of coat protein mediated resistance to tobacco mosaic virus (TMV) II. Challenge by a mutant with altered virion surface does not overcome resistance conferred by TMV coat protein. J. Gen. Virol. 76, 2613-2617. Clark, W. G., Fitchen, J. H., and Beachy, R. N. 1995b. Studies of coat protein mediated resistance to TMV. Virology 206, 307-313. Cogoni, C., and Macino, G. 1999. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399, 166-169. Conrad, U., and Fiedler, U. 1998. Compartment specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol. Biol. 38, 101-109. Cooper, B., Lapidot, M., Heick, J. A., Doods, J. A., and Beachy, R. N. 1995. A defective mutant protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206, 307-313. Coux, O., Tanaka, K., and Goldberg, A. L. 1996. Structure and function of the 20S ans 26S proteosome. Annu. Rev. Biochem. 65, 801-847. Covey, S. N., Al-Kaff, N., Langara, A., and Turner, D. S. 1997. Plants combat infection by gene silencing. Nature 385, 781-782. Dalmay, T., Hamilton, A. J., Mueller, E., and Baulcombe, D. C. 2000. Potato virus X amplicons in Arabidopsis mediates genetic and epigenetic gene silencing. Plant Cell 12, 369-380. Damirdagh, I. S., and Ross, A. F. 1968. A marked synergistic interaction of potato virus X and Y in inoculated leaves of tobacco. Virology 31, 296-307. de Carvalho, N. F., Frendo, P., van Montagu, M., and Cornelissen, M. 1995. Post transcriptional cosuppression of β-1,3-glucanase gene does not affect accumulation of transgene nuclear mRNA. Plant Cell 7, 347-358. Deom, C. M., Oliver, M. J., and Beachy, R. N. 1987. The 30-kilodalton gene product of tobacco mosaic virus potentates virus movement. Science 237, 389-394. Deom, C. M., Xian, Z. H., Beachy, R. N., and Weissinger, A. K. 1994. Influence of heterologous tobamovirus movement protein and chimeric movement protein genes on cell-to-cell and long distance movement. Virology 205, 198-209. Depicker, A., and Montagu, M. V. 1997. Post-transcriptional gene silencing in plants. Curr. Opin. Cell Biol. 9, 373-382. Ding, S.W. 2000. RNA silencing. Curr. Opin. Biotecnol. 11, 152-156. Dong, J. Z., Yang, M. Z., Jia, S. R., and Chua, N. H. 1991. Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus 35S prometer in transgenic melon plants. Bio/technology 9, 858-863. Donson, J., Kearney, C. M., Turpen, T. H., Khan, I. A., Kurath, G., Turpen, A. M., Jones, G. E., Dawson, W. O., and Lewandowski, D. J. 1993. Broad resistance to tobamoviruses is mediated by a modified tobacco mosaic virus replicase transgene. Mol. Plant Microbe Interact. 6, 635-642. Dougherty, W. G., Lindbo, J. A., Smith, H. A., Parks, T. D., Swaney, S., and Proebsting, W. M. 1994. RNA-mediated virus resistance in transgenic plants: Exploitation of a cellular pathway possibly involved in RNA degradation. Mol. Plant Microbe Interact. 7, 544-552. Dougherty, W. G., and Parks, T. D. 1995. Transgenes and gene suppressions: telling us something new? Curr. Opin. Cell Biol. 7, 399-405. Dunoyer, P., Herzog, E., Hemmer, O., Ritzenthaler, C., and Fritsch, C. 2001. Peanut clump virus RNA-1-encoded P15 regulates viral RNA accumulation but is not abundant at viral RNA replication sites. J. Virol. 75, 1941-1948. English, J. J., Mueller, E., and Baulcombe, D. C. 1996. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant cell 8, 179-188. Elbashir, S. M., Lendeckel, W., and Tuschl, T. 2001. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15, 188-200. Ezura, H. 1999. How biotechnology can contribute to conventional breeding in melon. Acta. Hort. 492, 135-147. Fang, G. W., and Grumet, R. 1993. Genetic engineering of potyvirus resistance using constructs derived from the Zuccini yellow mosaic virus coat protein gene. Mol. Plant Microbe Interact. 6, 358-367. Ferreira, S. A., Pitz, K. Y. Manshardt, R., Zee, F., Fitch, M., and Gonsalves, D. 2002. Virus coat protein transgenic papaya provides practical control of papaya ring spot virus in Hawaii. Plant Dis. 86, 101-105. Fire, A. 1999. RNA-triggered gene silencing. Trends Genet. 15, 358-363. Fire, A., Albertson, D., Harrison, S. W., and Moerman, D. G. 1991. Production of antisense RNA leads to effective and specific inhibition of gene expression in Coenorhabditis elegans muscle. Development 113, 503-514. Fire, A., Xu, S. Q., Montgomry, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. 1998. Potent and specific genetic interference by double-stranded RNA in Coenorhabditis elegans. Nature 391, 806-811. Francesco, D.S., Hanspeter, S., Alejandro, L., Cornia, T., Estelle, B., and Frederick, M. 2001. Sense and antisense mediated gene silencing in tobacco is inhibited by the same viral suppressors and is associated with accumulation of small RNAs. Proc. Natl. Acad. Sci. USA 96, 6506-6510. François, I. E. J. A., Broekaert, W. F., and Cammue, B. P. A. 2002. Different approaches for multi-transgene stacking in plants. Plant Sci. 163, 281-295. Frederick, M. 2000. RNA degradation and models for post transcriptional gene silencing. Plant Mol. Biol. 43, 261-273. Fuchs, M., and Gonsalves, D. 1995. Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/technology 13, 1466-1473. Fuchs, M., and Gonsalves, D. 2007. Safety of virus resistant transgenic plants two decades after there introduction: lessons from realistic field risk assessement studeies. Annu. Rev. Phytopathol. 45, 173-202. Fuchs, M., McFerson, J. R., Tricoli, D. M., McMaster, J. R., Deng, R. Z., Boeshore, M. L., Reynolds, J. F., Russell, P. F., Quemada, H. D., and Gonsalves, D. 1997. Cantaloupe line CZW-30 containing coat protein genes of cucumber mosaic virus, zucchini yellow mosaic virus and watermelon mosaic virus-2 is resistance to these three viruses in the field. Mol. Breed. 3, 279-290. Gaba, V., Zelcer, A., and Gal-On, A. 2004. Cucurbit biotechnology-The importance of virus resistance. In Vitro Cell. Dev. Biol. 40, 346-358. Gal-On, A., Wolf, D., Antignus, Y., Patlis, L., Ryu, K. H., Min, B. E., Pearlsman, M., Lachman, O., Gaba, V., Wang, Y., Shiboleth, Y. M., Yang, J., and Zelcer, A. 2005. Transgenic cucumber harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection. Trans. Res. 14, 81-93. Galperin, M., Patlis, L., Ovadia, A., Wolf, D., Zelcer, A., and Kenigsbuch, D. 2003. A melon genotype with superior competence for regeneration and transformation. Plant Breed. 122, 66-69. Gautier-Bert, K., Murol, B., Jarrousse, A. S., Ballut, L., Badaoui, S., Petit, F., and Schmid, H. P. 2003. Substrate affinity and substrate specificity of proteosomes with RNAse activity. Mol. Biol. Rep. 30, 1-7. Geley, S., and Muller, C. 2004. RNAi: ancient mechanism with a promising future. Exp. Gerontol. 39, 985-98. Gelvin, S. B. 1998. Multigene plant transformation: more is better. Nature Biotech. 16, 1009-1010. Gerlach, W. L., Llewellyn, D., and Haseloff, J. 1987. Construction of a plant disease resistance gene from the satellite RNA of tobacco ringspot virus. Nature 328, 802-805. Gilbert, A. F., Lecoq, H., Pitrat, M., and Nicolet, J. L. 1993. Resistance of Cucurbits moschata to watermelon mosaic virus type 2 and its genetic relation to resistance to zucchini yellow mosaic virus. Euphytica 69, 231-237. Golemboski, D. B., Lomonossoff, G. P., and Zaitlin, M. 1990. Plants transformed with a tobacco mosaic virus non structural gene sequence are resistance to the virus. Bio/Technology 9, 1363-1367. Goldbach, R., Etienne, B., and Prins, M. 2003. Resistance mechanisms to plant viruses: an overview. Virus Res. 92, 207-212. Gonsalves, C., Xue, B., Yepes, M., Fuchs, M., Ling, K., and Namba, S. 1994. Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infection. J. Amer. Soc. Hort. Sci. 119, 345-355. Gonsalves, D., Chee, P., Provvidenti, R., Seem, R., and Slightom, J. L. 1992. Comparision of coat protein-mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors. Biotechnology 10, 1562-1570. Gonsalves, D., and Slightom J. L. 1993. Coat protein mediated-protection - analysis of transgenic plants for resistance in a variety of crops. Semin. Virol. 4, 397-405. Goodwin, J., Chapman, K., Swaney, S., Parks, T. D., Wernsman, E. A., and Dougherty, W. G. 1996. Genetic and biochemical dissection of transgenic RNA mediated virus resistance. Plant Cell 8, 95-105. Goldbach, R., Bucher, E., and Prins, M. 2003. Resistance mechanism to plant viruses: an overwiew. Virus Res. 92, 207-212. Govier, D. A., Kassanis, B. and Pirone, T. P. 1977. Patrial purification and characterization of the potato virus Y helper component. Virology 78, 306-314. Gray, S. M., and Banerjee, N. 1999. Mechanisms of arthropod transmission of plant and animal viruses. Microbiol Mol. Biol. Rev. 63, 128-148. Greene, A. E., and Allison, R. F. 1994. Recombination between viral RNA and transgenic plant trancripts. Science 263, 1423-1425. Guis, M., Roustan, J. P., Dogimont, C., Pitrat, M., and Pech, J. C. 1998. Melon biotechnology. Biotechnol. Genet. Engng. Rev. 15, 289-311. Guo, H. S., and Ding, S. W. 2002. A viral protein inhibits the long range signaling activity of the gene silencing signal. EMBO J. 21, 398-407. Guo, H. S. and Garcia, J. A. 1997. Delayed resistance to plum pox potyvirus mediated by a mutated RNA replicase gene: involvement of a gene silencing mechanism. Mol. Plant Microbe Interact. 10, 160-170. Gutierrez, R. A., MacIntosh, G. C., and Green, P. J. 1999. Current perspectives on mRNA stability in plants: multiple levels and mechanism of controls. Trends Plant Sci. 4, 429-438. Hamilton, A. J. and Baulcombe, D. C., 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950-952. Hamilton, A. J., Brown, S., Han, Y. H., Ishizuka, M., Lowe, A., Solis, A. G. A., and Grierson, D. 1998. A transgene with repeated DNA causes high-frequency post transcriptional suppression of ACC-oxidase gene expression in tomato. Plant J. 15, 737-746. Hamilton, C. M., Frary, A., Lewis, C., and Tanksley, S. D. 1996. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93, 9975-9979. Hamilton, R. I. 1980. Defenses triggered by previous invaders: viruses. Pages 279-303 in Horsfall, J. G. and Cowling, E. B., eds. Plant Diseases: An advanced treatise. Academic press, New York. Hammond. K. K. E., and Jones, J. D. G. 1996. Resistance gene dependent plant defense response. Plant Cell 8, 1173-1791. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. 2000. An RNA directed nuclease mediates post transcriptional gene silencing in Drosophilla cells. Nature 404, 293-296. Hammond, S. M., Caudy, A. A., and Hannon G. J. 2001. Post-transcriptional gene silencing by double-stranded RNA. Nat. Rev. Genet. 2, 110-119. Hannon, G. J. 2002. RNA interference. Nature 418, 244-251. Harrison, B. D., Mayo, M. A., and Baulcombe, D. C. 1987. Virus resistance in transgenic plants that expresses cucumber mosaic virus satellite RNA. Nature 328, 799-802. Heo, W. D., Lee, S. H., Kim, M. C., Kim, J. C., Chung, W. S., Chun, H. J., Lee, K. J., Park, C. Y., Park, H. C., Choi, J. Y., and Je, M. 1999. Involvement of specific calmodullin isoforms in salicylic acid-independent activation of plant disease resistance response. Proc. Natl. Acad. Sci. USA 96, 766-771. Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C., and Voinnet, O. 2003. Transitivity-dependent and independent cell-to-cell movement of RNA silencing. EMBO J. 22, 4523-4533. Hobbs, S. L. A., Warkentin, T. D., and Delong, C. M. O. 1993. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol. Biol. 21, 17-26. Holland, J. J. 1990. Defective viral genomes. In B. N. Fields and D. M. Knipe (ed.), Virology. Raven Press, N.Y. pp. 151-165. Holtorf, H., Schob, H., Kunz, C., Waldevogel, R., and Meins, F., 1999. Stochastic and nonstochastic post-transcriptional silencing of chitinase and β-1,3-glucanase gene involves increased RNA turnover-possible role for ribosome-independent RNA degradation. Plant Cell 11, 471-484. Holzberg, S., Brosia, P., Gross, C., and Pogue, G. P. 2002. Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 30, 315-327. Homma, S., Horsch, A., Pouch, M. N., Petit, F., Briand, Y., and Schmid, H. P. 1994. Proteosomes (prososomes) inhibit the translation of tobacco mosaic virus RNA by preventing the formation of initiation complexes. Mol. Biol. Rep. 20, 57-61. Hong, Y., Saunders, K., Hartley, M. R., and Stanley, J. 1996. Resistance to germinivirus infection by virus-induced expression of dianthin in transgenic plants. Virology 220, 119-127. Huttner, E., Tucker, W., Vermeulen, A., Ignart, F., Sawyer, B., and Birch, R. 2001. Ribozyme genes protecting transgenic melon plants against potyviruses. Curr. Issues Mol. Biol. 3, 27-34. Hutvágner, G., and Zamore, P. D. 2002. RNAi: nature abhors a double-strand. Curr. Opin. Genet. Develop. 12, 225-232. Ingelbrecht, I., Van Houdt, H., Van Montagu, M., and Depicker, A. 1994. Posttranscriptional gene silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc. Natl. Acad. Sci. USA 96, 766-771. Jan, F. J., Fagoaga, C., Pang, S. Z., and Gonsalves, D. 2000a. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81, 2103-2109. Jan, F. J., Fagoaga, C., Pang, S. Z., and Gonsalves, D. 2000b. A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J. Gen. Virol. 81, 235-242. Jan, F. J., Pang, S. Z., Tricoli, D. M., and Gonsalves D. 2000c. Evidense that resistance in squash mosaic virus comovirus coat-protein-transgenic plants is affected by plant developmental stage and enhanced by combination of transgenes from different lines. J. Gen. Virol. 81, 2103-2109. Jeffrey, D. 1990. Biology and utilization of the Cucurbitaceae. In: Bates, D. M., Robinson, R. W., and Jeffrey, C. (ed.). Cornell University Press, Ithaca and London, pp. 49-463. Johansen, L. K., and Carrington, J. C. 2001. Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium mediated transient expression system. Plant Physiol. 126, 930-938. Jones, A. L., Hamilton, A. J., Voinnet, O., Thomas, C. L., Maule, A. J., and Baulombe, D. C. 1999. RNA-DNA interaction and DNA methylation in post-transcriptional gene silencing. Plant Cell 11, 2291-2301. Jones, A. L., Johansen, I. E., Bean, S. J., Bach, I., and Maule, A. J. 1998. Specificity of the resistance to pea seed-born mosaic potyvirus in transgenic pees expressing the viral replicase (NIb) gene. J. Gen. Virol. 79, 3129-3137. Jones, R. W., Jackson, A. O., and Morris, T. J. 1990. Defective-interferring RNAs and elevated temperatures inhibit replication of tomato bushy stunt virus in inoculated protoplasts. Virology 181, 313-318. Jorgensen, R.A. 1995. Cosuppression, flower color patterns, and metastable gene expression states. Science 268, 686-691. Jorgenson, R. A., Atkinson, R. G., Forster, R. G. A., and Lucas, W. J. 1998. An RNA-based information superhighway in plants. Science 279, 1486-1487. Jorgensen, R., Cluster, P., Que, Q., English, J., and Napoli, C. 1996. Chalcone synthase co-suppression phenotypes in petunia flowers: comparison of sense verses antisense constructs and single copy vs. complex T-DNA sequences. Plant Mol. Biol. 31, 957-973. Kaniewski, W., Lawson, C., Sammons, B., Haley, L., Hart, J., Delannay, X., and Tumer, N. E. 1990. Field resistance of transgenic russet Burbank potato to effects of infection by potatao virus X and potato virus Y. Bio/technology 8, 750-754. Kasschau, K. D., and Carrington, J. C. 1998. A counter-defensive strategy of plant viruses: suppression of post transcriptional gene silencing. Cell 95, 461-470. Katoh, T., and Suzuki, T. 2007. Specific residues at every third position of siRNA shape its efficient RNAi activity. Nucleic Acid Res. 35, No.4 e27. Keen, N. T. 1990. Gene-for-Gene complimentarity in plant-pathogen interaction. Annu. Rev. Genet. 24, 447-463. Kennedy, Y. A., Tomita, K. O., and Ezura, H. 2004. Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in melon (Cucumis melo L.). Plant Science 166, 763-769. Kennerdell, J. R. and Carthew, R. W. 1998. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017-1026. Kido, K., Mochizuki, T., Matsuo, K., Tanaka, C., Kubota, K., Ohki, T., and Tsuda, S. 2008. Functional degeneration of the resistance gene nsv against Melon necrotic spot virus at low temperature. Eur. J. Plant Pathol. 121, 189-194. Kjemtruph, S., Sampson, K. S., Peele, C. G., Nguyen, L. V., Conkling, M. A., Thompson, W. F., and Robertson, D. 1998. Gene silencing from plant DNA carried by a geminivirus. Plant J. 14, 91-100. Kooter, J. M., Matzke, M. A., and Meyer, P., 1999. Listening to silent gene: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 4, 2269-2271. Kuc, J. 1982. Induced immunity to plant disease. Biosciences 32, 854-860. Kumagai, M. H., Donson, J., Della-Cioppa, G., Harvey, D., Hanley, K., and Grill, L. K. 1995. Cytoplasmic Inhibition of Carotenoid Biosynthesis with Virus-Derived RNA. Proc. Natl. Acad. Sci. USA 92, 1679-1683. Lam, Y. H., Wong, Y. S., Wang, B., Wong, R. N. S., Yeung, H. W., and Shaw, P. C. 1996. Use of trichosanthin to reduce infection by turnip mosaic virus. Plant Sci. 114, 111-117. Lamb, C. J. 1994. Plant disease resistance genes in signal perception and transduction. Cell 76, 419-422. Lapidot, M., Gafny, R., Ding, B., Wolf, S., Lucas, W. J., and Beachy, R. N. 1993. A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J. 4, 959-970. Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10, 71-82. Lecellier, C. H., and Voinnet, O. 2004. RNA silencing: no mercy for viruses. Immuno. Rev. 198, 285-303. Lecoq, H., Moury, B., Desbiez, C., Palloix, A., and Pitrat, M. 2004. Duarable virus rssistance in plants through conventional approaches: a challenge. Virus research 100, 31-39. Lee, K. Y., Baden, C., Howie, W. J., Bedbrook, J., and Dunsmuir, P. 1997. Post transcriptional gene silencing of ACC synthase in tomatoes results from cytoplasmic RNA degradation. Plant J. 12, 1127-1137. Leibman, D., Wolf, D., Segav, O., Raskin, A., Gaur, R., Saharan, V., Zelcer, A., and Gal-on, A. 2008. Transgenic resistance to RNA viruses in cucurbits is dependent on transgene construct and varies between viruses. Cucurbitaceae 2008, proceedings of the 1Xth EUCARPIA meeting on genetic and breeding of Cucurbitaceae (Pitrat M ed.), INRA, Avignon (France), May 21-24. Lenee, P., Perez, P., Gruber, V., Baudot, G., and Ollivo, C. 2001. Polyribozyme capable of conferring on plants resistance to cucumber mosaic virus and resistant plants producing this polyribozyme. US patent 6, 265,634. Li, H. W., and Ding, S. W. 2005a. Antiviral silencing in animals. FEBS Letters 579, 5965-5973. Li, Z., Yao, L., Yang, Y., and Li, 2005b. Transgenic approach to improve quality traits of melon fruit. Scientia Horti. 108, 268-277. Lim, P. O., Lee, U., Ryu, J. S., Choi, J. K., Hovanessian, A., Kim, C. S., Cho, B. H., and Nam, H. G. 2002. Multiple virus resistance in transgenic plants conferred by the human dsRNA-dependent protein kinase. Mol. Breed. 10, 11-18. Lin, S. S., Henriques, R., Wu, H. W., Niu, Q. W., Yeh, S. D., and Chua, N. H. 2007. Strategies and mechanisms of plant virus resistance. Plant Biotechnol. Rep. 1, 125-134. Lindbo, J. A., and Daugherty, W. G. 1992a. Pathogen derived resistance to a potyvirus: immune and resistance phenotypes in transgenic tobacco expressing altered form of a potyvirys coat protein nucleotide sequence. Mol. Plant Microbe Interact. 5, 144-153. Lindbo, J. A. and Daugherty, W. G. 1992b. Untranslatable transcripts of tobacco etch virus coat protein gene sequence can interfere with tobacco itch virus replication in transgenic plants and protoplasts. Virology 189, 725-733. Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M., and Daugherty, W. G. 1993. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expressions and virus resistance. Plant Cell 2, 279-289. Llave, C., Kassahau, K. D., and Carrington, J. C. 2000. Virus encoded suppressors of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc. Natl. Acad. Sci. USA 97, 13401-13406. Lodge, J. K., Kaniewski, W. K., and Tumer, N. E. 1993. Broad spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc. Natl. Acad. Sci. USA 90, 7089-7093. Lomonossoff, G. P. 1995. Pathogen derived resistance to plant viruses. Annu. Rev. Plant Pathol. 33, 323-343. Longstaff, M., Brigneti, G., Boccard, F., Chapman, S., and Baulcombe, D. C. 1993. Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase. EMBO J. 12, 379-386. Maia, I. G., Haenni, A. L., and Bernardi, F. 1996. Potyviral HC-Pro: a multifunctional protein. J. Gen. Virol. 77, 1335-1341. Mallory, A. C., Ely, L., Smith, T. H., Marathe, R., Anandalakhshmi, R., Fagard, M., Vaucheret, H., Pruss, G. J., Bowman, L., and Vance, V. B. 2001. HC-Pro suppression of transgenic silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell 13, 571-583. Malyshenko, S. I., Kondakova, O. A., Nazarova, J. V., Kaplan, I. B., Taliansky, M. E., and Atabekov, J. G. 1993. Reduction of tobacco mosaic virus accumulation in transgenic plants producing non functional viral transport proteins. J. Gen. Virol. 74, 1149-1156. Marathe, R., Anandalakshmi, R., Smith, T. H., Pruss, G. J., and Vance, V. B. 2000. RNA viruses as inducers, suppressors and targets of post transcriptional gene silencing. Plant Mol. Bio. 43, 295-306. Martinez, J. Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. 2002. Single-stranded siRNAs guide target RNA cleavage in RNAi. Cell 14, 289-301. Masuta, C., Tanaka, H., Uehara, K., Kuwata, S., Koiwai, A., and Noma, M. 1995. Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in S-adenosylmethionin-dependent transmethyation reaction. Proc. Natl. Acad. Sci. 92, 6117-6121. Mateo, C. S., Moya, J. J. L., Guo, H. S., Gonzalez, E., and Garcia, J. A. 2003. Suppressor activity of potyviral and cucumoviral infections in potyvirus-induced transgene silencing. J. Gen. Virol. 84, 2877-2883. Matzke, A. J. M., Neuhuber, F., Park, Y. D., Ambros, P. F., and Matzke, M. A. 1994. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet. 244, 219-229. Matzke, M. A., Primig, M., Trnovsky, J., and Matzke, A. J. M., 1989. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco pla
摘要: 自從大多數作物在田間漸漸趨向於數種病毒複合感染之危害,開發能夠提供重要經濟性作物多重病毒抗性的技術可以有效減少農業上的損失。葫蘆科作物,包含瓜類 (Cucumis melo L.) 在內,容易遭受許多不同的病毒危害造成嚴重損失。影響瓜類生產的三種主要病毒為矮南瓜黃化嵌紋病毒 (Zucchini yellow mosaic virus, ZYMV)、木瓜輪點病毒 W 型 (Papaya ringspot virus type watermelon, PRSV-W) 以及胡瓜嵌紋病毒 (Cucumber mosaic virus, CMV)。在葫蘆科作物中常常偵測到病毒複合感染致使在作物上為害加重的例子,因此利用基因工程策略來培育能抵抗多重病毒感染之抗性作物品種至為重要。本實驗的主旨是根據後轉錄基因沉寂(post-transcriptional gene silencing, PTGS )的理論,發展具有廣泛性抗性的轉基因甜瓜以對抗上述三種分別隸屬於兩個不同病毒族群的主要感染葫蘆科作物的病毒 (ZYMV, PRSV-W 和 CMV)。 在本研究中,我們構築一段易誘導基因沉寂的序列(silencer DNA) 融合上述三種病毒序列片段作為轉殖載體,以達成高效率多重抗病毒之策略。為了產生對 ZYMV, PRSV-W 以及 CMV 的抗性,我們的構築取自三種病毒之鞘蛋白基因(coat protein, CP) 序列片段與西瓜銀斑病毒 (Watermelon silver mottle virus, WSMoV) 的基因默化誘發序列經設計接合成的非轉譯性基因融合載體(chimeric vector)。此基因融合載體再藉由農桿菌 (Agrobacterium) 的轉型作用產生瓜類轉基因植株。轉基因甜瓜株系進行多重病毒抗性評估發現對於ZYMV以及PRSV-W具有高度抗性;相對於ZYMV和PRSV-W,CMV具較低程度之抗性。根據結果顯示此多重基因構築可以提供病毒多重抗性,將可成功的應用在重要的經濟作物上。我們進一步的比較不同轉基因構築體之結構對於提供多重抗病毒效率之影響. 本研究中,我們分別轉殖三種不同結構之構築到甜瓜中,包括 short sense, short inverted repeat 以及 long sense 之ZYMV, PRSV-W及CMV病毒片段複合之構築。三種不同結構之構築載體誘導不同程度之基因沉寂效率,short inverted repeat 和long sense之構築能夠引發較強的基因沉寂效率,故我們可藉此設計適合的構築去提高基因沉寂之效率。轉殖此三種構築之轉基因甜瓜抗病株系具有較低的RNA累積並可偵測到short-interfering RNAs (siRNA)的產生,此結果更進一步的印證轉基因抗病機制來自於後轉錄基因沉寂之理論。我們的研究預期將來可應用在葫蘆科以外的作物並幫助培育具有廣泛病毒抗性或抗其他病原菌之重要經濟作物
Since most crops in the field are prone to attack by several viruses, development of technologies which could confer resistance to multiple viruses can help reduce agricultural losses to a great extent. Cucurbitaceae is a commercially important family of crop plants around the world that are subject to severe economic losses due to an array of distinct viral infections. Three major viruses that affect cucurbits production are Zucchini yellow mosaic virus (ZYMV), Papaya ringspot virus type watermelon (PRSV-W), and Cucumber mosaic virus (CMV). Mixed virus infections are quite often detected in cucurbits which further enhance the severity of crop damage. Therefore, it is highly desirable to develop virus resistant cultivars, especially which can combat multiple virus infection, making use of the advanced genetic engineering approaches. The main objective of the work presented in this thesis was directed toward the generation of broad-spectrum resistance against three highly destructive viruses i.e. ZYMV, PRSV-W, and CMV, members of two distinct viral groups, in melon (Cucumis melo L.), based on post-transcriptional gene silencing mechanism. This dissertation is divided into four chapters. Chapter 1 describes all revelent references for this study. In chapter 2 we demonstrate that fusing transgene segments of different viruses in a chimeric form along a gene silencing inducing sequence, designated as silencer DNA, represent an efficient strategy for generating multiple virus resistance. To generate triple virus resistance, a single chimeric vector consisting of partial non-translatable coat protein (CP) gene sequences of ZYMV, PRSV-W, and CMV coalesced along the silencing inducing sequence of Watermelon silver mottle virus (WSMoV) was designed. The chimeric vector was used for the generation of transgenic melon using Agrobacterium-mediated transformation. Transgenic melon lines assessed for multivirus resistance exhibited higher degrees of resistance against the two potyviruses (ZYMV and PRSV-W) and a lower, but significant, protection to CMV. The results indicated that pyramiding gene segments from different viruses in a chimeric form can be successfully applied for developing simultaneous resistance against several viruses in economically important cultivars. In chapter 3 we further extended our study to compare the influence of transgene architecture on the relative accessibility of chimeric gene constructs for generating multiple resistance against targeted viruses. Three different chimeric constructs expressing the CP gene segments of ZYMV, PRSV-W, and CMV fused together in short sense, short inverted repeat and long sense form were developed. Transgenic melon lines, generated for each construct, showed a considerable difference in silencing efficiencies against homologous viruses. The results indicated that silencing was stronger when initiated by chimeric transgene arranged in short inverted repeat, or longer sense, form then by shorter sense transgene. These results demonstrate that efficiencies of chimeric transgenes against multiple targets can be elevated by arranging them in favorable architectural forms. The silencing induced by different chimeric constructs used in this study (Chapter 2, 3) was associated with reduced transgene transcript accumulation, indicating the role of RNA mediated resistance. Detection of short-interfering RNAs (siRNAs), corresponding to different subunits of the chimeric transgene exclusively in virus resistant plants, further confirmed that resistance was indeed achieved at the post-transcriptional level. Chapter 4 describes the conclusions and future prospects of this study. Overall, we assume that the outcome of this research work can be successfully applied to other plant species, apart from cucurbits, that could be helpful to generate resistant crops not only against viruses, but also to other harmful pathogens.
URI: http://hdl.handle.net/11455/31289
其他識別: U0005-2508200815365700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200815365700
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.