Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31294
標題: 利用針對病毒高序列保留區之人工微小RNAs產生廣泛抗馬鈴薯Y屬 病毒之轉基因煙草
Transgenic tobacco with resistance to potyvirus generated by artificial miRNAs targeting at highly conserved regions of potyviral genomes
作者: 帝瑪
Dmytro, Ustianenko
關鍵字: artificial miRNAs
人工微小RNA
出版社: 植物病理學系所
引用: References: Adams, M. J., Antoniw, J. F. and Fauquet, C. M. (2005). Molecular criteria for genus and species discrimination within the family Potyviridae. Arch Virol, 150: 459-479. Abel, P.P., Nelson, S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T., Beachy, R.N. (1986) Delay of disease development intransgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738-43. Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005). MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207-221. Andrejeva, J., Puurand, U., Merits, A., Rabenstein, F., Jarvekulg, L. and Valkonen, J. P. (1999). Potyvirus helper component-proteinase and coat protein (CP) have coordinated functions in virus-host interactions and the same CP motif affects virus transmission and accumulation. J Gen Virol 80, 1133-1139. Anindya, R. and Savithri H.S. (2004). Potyviral NIa proteinase, a proteinase with novel deoxyribonuclease activity J Biol Chem, 279 p. 32159-69. Atreya, C.D., Raccah B., and Pirone T.P. (1990) A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology 178, 161-165. Aukerman, M.J. and Sakai H. (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15, 2730-2741. Ayme, V., Souche, S., Caranta, C., Jacquemond, M., Chadoeuf, J., Palloix, A. and Moury, B. (2006). Different mutations in the genome-linked protein VPg of potato virus Y confer virulence on the pvr2 resistance in pepper. Mol Plant Microbe Interact 19, 557-563. Baskerville, S., Bartel, D.P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241-247. Baulcombe, D. C. (1996). Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8, 1833-1844. Baulcombe, D. (2005). RNA silencing. Trends Biochem Sci 30, 290-293. Baumberger. N., Baulcombe. D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Nat Acad Sci USA 102, 11928-11933. 22 Blanc, S., Lopez-Moya, J. J., Wang, R., Garcia-Lampasona, S., Thornbury, D. W. and Pirone, T. P. (1997). A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231, 141-147. Borsani, O., Zhu, J., Verslues, P.E., Sunkar, R., and Zhu, J.K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123, 1279-1291. Carmell, M. A., Xuan, Z., Zhang, M.Q., Hannon, G. J. (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16, 2733-42. Carrington, J. C. and Dougherty, W. G. (1987). Small nuclear inclusion protein encoded by a plant potyvirus genome is a protease. J Virol 61, 2540-2548. Carrington, J. C. and Herndon, K. L. (1992). Characterization of the potyviral HC-pro autoproteolytic cleavage site. Virology 187, 308-315. Carrington, J. C., Jensen, P. E. and Schaad, M. C. (1998). Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J 14, 393-400. Chapman, E. J. and Carrington, J. C. (2007). Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8, 884-896. Charron, C., Nicolai, M., Gallois, J. L., Robaglia, C., Moury, B., Palloix, A. and Caranta, C. (2008). Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J 54, 56-68. Chen, Y., D. Lohuis, R. Goldbach, and M. Prins. (2004). High frequency induction of RNAmediated resistance against Cucumber mosaic virus using inverted repeat constructs. Mol Breed 14, 215-226. Clark, M. F., and Adams, A. N. (1977). Characteristics of the microplate method of enzymelinked immunosorbent assay for the detection of plant viruses. J Gen Virol 34, 475-483. Cogoni, C., and G. Macino. (2000). Post-transcriptional gene silencing across kingdoms. Curr Opin Genet Dev 10, 638-43. Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A. and Carrington, J. C. (1995). Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206, 1007-1016. 23 Dougherty, W. G.and Carrington, J. C. 1988. Expression and function of potyviral gene products. Annu. Rev. phytopathol. 26: 123-143. Eiamtanasate, S., M. Juricek, Yap, Y. K. (2007). C-terminal hydrophobic region leads PRSV P3 protein to endoplasmic reticulum. Virus Genes 35, 611-7. Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A. (2005). Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. 8 Ed. San Diego: Elsevier Academic Press. 1259 p. Fortier, E. and Belote, J.M. (2000). Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26, 240-244. Ghabrial, S. A., Smith, H. A., Parks, T. D. and Dougherty, W. G. (1990). Molecular genetic analyses of the soybean mosaic virus NIa proteinase. J Gen Virol 71, 1921-1927. Granier, F., Durand-Tardif, M., Casse-Delbart, F., Lecoq, H. & Robaglia, C. (1993). Mutations in zucchini yellow mosaic virus helper component protein associated with loss of aphid transmissibility. J Gen Virol 74, 2737-2742. Hong, X. Y., J. Chen, Shi, Y., H. Chen, J. P. (2007). The ''6K1'' protein of a strain of Soybean mosaic virus localizes to the cell periphery. Arch Virol 152,1547-51. Horsch, R. B., J. E. Fry, N. L. Hottmann, D. Eichholtz, S. G. Rogers, and R. T. Fraley. (1985). A simple and general method for transferring genes to plants. Science 227, 1229-1231. Jenner, C. E., X. Wang, Tomimura, K. Ohshima, K. Ponz, F. Walsh, J. A. (2003). The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant Microbe Interact 16, 777-84. Jimenez, I., Lopez, L., Alamillo, J. M., Valli, A. and Garcia, J. A. (2006). Identification of a plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol Plant Microbe Interact 19, 350-358. Johansen, I.E., Keller, K. E. Dougherty, W. G. Hampton, R. O. (1996). Biological and molecular properties of a pathotype P-1 and a pathotype P-4 isolate of pea seed-borne mosaic virus. J Gen Virol, 77, 1329-33. Juarez, M. T., Kui, J. S., Thomas, J., Heller, B. A. & Timmermans, M. C. (2004). microRNAmediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84-88. 24 Kang, S. H., Lim, W. S., Hwang, S. H., Park, J. W., Choi, H. S. and Kim, K. H. (2006). Importance of the C-terminal domain of soybean mosaic virus coat protein for subunit interactions. J Gen Virol 87, 225-229. Kalantidis, K., S. Psaradakis, M. Tabler, and M. Tsagris. (2002). The occurrence of CMVspecific short RNAs in transgenic tobacco expressing virusderived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact 15, 826-833. Kapil,a J., De Rycke, R., Van Montagu, M., and Angenon, G. (1997). An Agrobacteriummediated transient gene expression system for intact leaves. Plant Sci 122, 101-8. Lagos-Quintana M., Rauhut, R., Lendeckel, W., Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294, 853-58. Lain, S., J.L. Riechmann, and J.A. Garcia. (1990). RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Res 18, 7003-6. Lau, N. C., Lim, L. P., Weinstein, E. G. and Bartel, D. P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-862. Lee, R. C. & Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862-864. Li, J., Yang, Z., Yu, B., Liu, J., Chen, X. (2005). Methylation protects miRNAs and siRNAs from a 3-end uridylation activity in Arabidopsis Curr Biol 15, 1501-7. Lingel, A., Simon, B., Izaurralde, E., Sattler, M. (2003). Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465-69. Liu, .J, Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-41. McDonald, J. G. & Hiebert, E. (1974). Ultrastructure of cylindrical inclusions induced by viruses of the potato Y group as visualized by freeze-etching. Virology 58, 200-208. Merits, A., Rajamaki, M. L., Lindholm, P., Runeberg-Roos, P., Kekarainen, T., Puustinen, P., Makelainen, K., Valkonen, J. P. and Saarma, M. (2002). Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. J Gen Virol 83, 1211-1221. 25 Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G. J., Qi, Y. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5'' terminal nucleotide. Cell 133, 116-27. Missiou, A., K. Kalantidis, A., Boutla, S., Tzortzakaki, M., Tabler, Tsagris.M. ( 2004). Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol. Breed. 14, 185-197. Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Wu, H. W., Yeh, S. D.,Chua, N. H. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24, 1420-8. Oruetxebarria, I., Guo, D., Merits, A., Makinen, K., Saarma, M. and Valkonen, J. P. (2001). Identification of the genome-linked protein in virions of Potato virus A, with comparison to other members in genus Potyvirus. Virus Res 73, 103-112. Parizotto, E.A., Dunoyer, P., Rahm, N., Himber, C., Voinnet, O., (2004). In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18, 2237-42. Peng, Y. H., D. Kadoury, Gal-On, A. Huet, H. Wang, Y. Raccah, B. (1998). Mutations in the HC-Pro gene of zucchini yellow mosaic potyvirus: effects on aphid transmission and binding to purified virions. J Gen Virol 79, 897-904. Puustinen, P., K. Makinen, (2004). Uridylylation of the potyvirus VPg by viral replicase NIb correlates with the nucleotide binding capacity of VPg. J Biol Chem, 279, 38103-10. Qi, Y., Denli, A.M., Hannon, G.J. (2005). Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19, 421-28. Qu, J., Ye, J., Fang, R., Artificial microRNA-mediated virus resistance in plants. J Virol 81, 6690-9. Rajamaki, M. L. and Valkonen, J. P. (1999). The 6K2 protein and the VPg of potato virus A are determinants of systemic infection in Nicandra physaloides. Mol Plant Microbe Interact 12, 1074-1081. Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., Bartel, D.P. (2002). MicroRNAs in plants. Genes Dev 16,1616-26. Restrepo, M.A., D.D. Freed, and J.C. Carrington. (1990). Nuclear transport of plant potyviral proteins. Plant Cell 2, 987-98. 26 Rodriguez-Cerezo, E. and Shaw, J. G. (1991). Two newly detected nonstructural viral proteins in potyvirus-infected cells. Virology 185, 572-579. Ruiz-Ferrer, V., Boskovic, J. Alfonso, C. Rivas, G. Llorca, O. Lopez-Abella, D. Lopez-Moya, J. J. (2005) Structural analysis of tobacco etch potyvirus HC-pro oligomers involved in aphid transmission. J Virol 79, 3758-65. Sanford, J., and Johnson, S.A. (1985). The concept of parasite-derived resistance. Deriving resistance genes from the parasite own genome. J Theor Biol 113, 395-405. Schwab, R., S. Ossowski, M. Riester, N. Warthmann, and D. Weigel. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121-1133. Shi, Y., Chen, J., Hong, X., Chen, J., Aams, M. J., (2007). A potyvirus P1 protein interacts with the Rieske Fe/S protein of its host. Molecular plant pathology 8, 785-790. Shiboleth, Y. M., Haronsky, E., Leibman, D., Arazi, T., Wassenegger, M., Whitham, S. A., Gaba, V. and Gal-On, A. (2007). The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J Virol 81, 13135-13148. Simon-Mateo, C. and Garcia, J. A. (2006). MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol 80, 2429-2436. Song, J.J., Liu, J., Tolia, N.H., Schneiderman, J., Smith, S.K., Martienssen, R.A. (2003). The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10, 1026-32. Souret, F.F., Kastenmayer, J.P., Green, P.J., (2004). AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 15, 173-83. Spetz, C. and Valkonen, J. P. (2004). Potyviral 6K2 protein long-distance movement and symptom-induction functions are independent and host-specific. Mol Plant Microbe Interact 17, 502-510. Stenger, D. C., Hein, G. L. and French, R. (2006). Nested deletion analysis of Wheat streak mosaic virus HC-Pro: Mapping of domains affecting polyprotein processing and eriophyid mite transmission. Virology 350, 465-474. 27 Szittya, G., Silhavy, D., Molnar, A., Havelda, Z., Lovas, A., Lakatos, L., Banfalvi, Z. & Burgyan, J. (2003). Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22, 633-640. Vaucheret, H., Vazquez, F., Crete, P., Bartel, D.P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18, 1187-97. Vaucheret, H. (2008) Plant ARGONAUTES. Trends Plant Sci Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., Mallory, A.C., Hilbert, J.L., Bartel, D.P., and Crete, P. (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16, 69-79. Voinnet, O., Vain, P., Angell, S., and Baulcombe, D.C. (1998). Systemic spread of sequencespecific transgene RNA degradation in plantsis initiated by localized introduction of ectopic promoterless DNA. Cell 95, 177-187. Voinnet, O. (2001). RNA silencing as a plant immune system against viruses. Trends Genet 17, 449-59. Voinnet, O. (2005). Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6, 206-220. Wang, J. W., Wang, L. J., Mao, Y. B., Cai, W. J., Xue, H. W., Chen, X. Y. (2005). Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17, 2204-16. Warthmann, N., Chen, H., Ossowski, S., Weigel, D. and Herve, P. (2008). Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 3, e1829. Wimmer, E.(1982). Genome-linked proteins of viruses. Cell 28, 199-201. Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S.A., Carrington, J.C. (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman, D., Jacobsen, S. E. & Carrington, J. C. (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2, E104. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932-35. 28 Yang, Z., Ebright, Y.W., Yu, B., Chen, X. (2006). HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2'' OH of the 3'' terminal nucleotide. Nucleic Acids Res 34, 667-75. Yeh, S. D., and Gonsalves, D. (1984). Evaluation of induced mutants of Papaya ringspot virus for control by cross protection. Phytopathology 74, 1086-1091. Yeh, S. D., Jan, F. J., Chiang, C. H., Doong, T. J., Chen, M. C., Chung, P. H.and Bau, H. J. (1992). Complete nucleotide sequence and genetic organization of Papaya ringspot virus RNA. J Gen Virol 73: 2531-2541. Zhang, X., Du, P., Lu, L., Xiao, Q., Wang, W., Cao, X., Ren, B., Wei, C. and Li, Y. (2008). Contrasting effects of HC-Pro and 2b viral suppressors from Sugarcane mosaic virus and Tomato aspermy cucumovirus on the accumulation of siRNAs. Virology 374, 351-360. Zilberman, D., Cao, X., Jacobsen, S.E. (2003). ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716-19.
摘要: 馬鈴薯Y 屬病毒是植物病毒屬中最大也是經濟上最重要的屬,本研究之目的是利用 人工微RNA (artificial miRNA, amiRNA) 的策略產生具有高度抗馬鈴薯Y 屬中不同病毒的轉 基因植物。為了產生具廣泛抗性的轉基因,比對了馬鈴薯Y 屬中16 條不同病毒全基因體 並找出高度保留區。含有273 個鹼基對的阿拉伯芥的微RNA159a (miRNA159a)被選為設計 的骨架,以用於構築人工微RNA,利用寡核苷酸直接突變 (oligonucleotide-directed mutagenesis) 的方式,將產生微RNA 的21 個核苷酸區域取代成可配對至CI、NIb 或CP 基 因高度保留區的21 核苷酸序列。六個帶有單套、一個帶有雙套、及一個帶有參套的人工 微RNA 前趨物被構築。這些突變改造完成的人工微RNA 進一步選殖至貳位元載體 (binary vector) pBA-DC-HA 或pB2T-DC-HA,為了測試這些人工微RNA 能否表現,抽取經過農桿 浸染 (agro-infiltrated) 的全RNA (total RNA),並用專一性探針以北方墨點法測定相對應的人 工微RNA 的表現,我們的結果指出所有的人工微RNA 構築,皆能有效的表現人工改造的 微RNA 於農桿菌浸染的葉片中。所有的人工微RNA 構築便以農桿菌媒介的方式將這些人 工微RNA 轉殖至菸草中。所產生的大量的植株先以蕪菁嵌紋病毒 (Turnip mosaic virus, TuMV) 在溫室的條件下分析其抗性,有些植株具有延遲發病的效果,其中一個帶有三套 人工微RNA 的轉基因展現了高度的抗病性,這證明了人工微RNA 針對病毒高度保留區是 一個很好的策略以用於生產抗病的轉基因植物,其實際廣泛性的抗病效益尚待進一步測 試。
The genus Potyvirus is the largest and economically most important plant virus group. The objective of this study was directed to generate transgenic plants with a high level of resistance against different potyviruses using the artificial micro RNA (amiRNA) approach. In order to create a broad-spectrum resistance to different viruses, highly conserved regions among 16 potyviral genomes were identified by sequence alignment. The 273-nt pre-miR159a from Arabidopsis was chosen as the backbone for the construction and expression of amiRNAs. Using oligonucleotide-directed mutagenesis, a 21 nucleotide region of miR159 was replaced by a synthetic 21-nucleotide sequence targeting at the highly conserved regions of potyviral CI, NIb, or CP genes. Six single, one double and one triple precursor amiRNAs were created. The constructed sequences were then moved to the binary vector pBA-DC-HA or pB2T-DC-HA. To check the expression of designed amiRNAs, the total RNA was isolated from agro-infiltrated leaves and detected by northern blotting with a specific probe against the corresponding amiRNA sequence (21nt). Our results revealed that all constructed amiRNAs in pre-amiRNA constructs were efficiently expressed in agroinfiltrated leaves. Agrobacterium-mediated transformation method was used to transform plants of Nicotiana benthamiana. Transgenic lines were obtained and their resistance against potyvirus was evaluated by mechanical challenge with Turnip mosaic virus under greenhouse conditions. Some transgenic lines showed symptom delay in comparison to non-transgenic plants. One transgenic line expressing the constructed three amiRNAs exhibited a high level of resistance, indicating that the amiRNA approach targeting at highly conserved regions of potyviral genomes is a good strategy for generating transgenic resistance against potyvirus. Whether the transgenic lines provide broad-spectrum resistance against different potyviruses remains to be further tested.
URI: http://hdl.handle.net/11455/31294
其他識別: U0005-3007200813313000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3007200813313000
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.