請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/31298
標題: 南亞及東南亞辣椒脈斑駁病毒與台灣及菲律賓番茄Begomovirus分子特性之研究及番茄捲葉病毒轉基因抗性之研發
Molecular characterization of Chilli veinal mottle virus from South and Southeast Asia and tomato begomoviruses from the Philippines and Taiwan, and development of transgenic resistance to Tomato leaf curl Taiwan virus
作者: 蔡文錫
Tsai, Wen-Shi
關鍵字: Begomovirus
Begomovirus
amino acid sequence
nucleotide sequence
transgenic tomato
phylogenic analysis
核酸序列
氨基酸序列
轉基因番茄
演化分析
出版社: 植物病理學系所
引用: Chapter 1 References Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith TH, Vance VB, 1998. A viral suppressor of gene silencing in plants. Proceedings of the National Academy of Sciences, USA 95, 13079-84. Anon, 2007. FAO Statistical Data, 2007. Food and Agriculture Organization of the United Nations (http://faostat.fao.org/) Atreya CD, Atreya PL, Thornbury DW, Pirone TP, 1992. Site-directed mutations in the potyvirus HC-PRO gene affect helper component activity, virus accumulation, and symptoms expression in infected tobacco plants. Virology 191, 106-11. Atreya CD, Raccah B, Pirone TP, 1990. A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology 178, 161-5. Bedford ID, Briddon RW, Jones P, Alkaff N, Markham PG., 1994. Differentiation of three whitefly-transmitted geminiviruses from the Republic of Yemen. European Journal of Plant Pathology 100, 243-57. Behjatnia SAA, Dry IB, Rezaian MA, 1998. Identification of the replication-associated protein binding domain within the intergenic region of tomato leaf curl geminivirus. Nucleic Acids Research 26, 925-31. Bisaro DM, 1994. Recombination in geminiviruses: Mechanisms for maintaining genome size and generating genomic diversity. In: Paszkowski J, ed. Homologous recombination and gene silencing in plants. Dordrecht, the Netherlands: Kluwer Academic Publishers, 39-60. Briddon RW, Markham PG., 1995. Geminiviridae. In: Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli G.P, Mayo MA, Summers MD, eds. Virus taxonomy: classification and nomenclature of viruses. New York, USA: Springer, 158-65. Brigneti G, Voinett O, Li WX, Ji LH, Ding SW, Baulcombe DC, 1998. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal 17, 6739-46. Brown JK, 2001. The molecular epidemiology of begomoviruses. In: Khan JA, Dykstra J, eds. Trends in Plant Virology. New York, USA: Haworth Press, 279-315. Bull SE, Tsai WS, Briddon RW, Markham PG., Stanley J, Green SK, 2004. Diversity of begomovirus DNA β satellites of non-malvaceous plants in South East Asia. Archives of Virology 149, 1193-200. Carrington JC, Freed DD, Sanders TC, 1989a. Autocatalytical processing of the potyvirus helper component proteinase in Escherichia coli and in vitro. Journal of Virology 63, 4459-63. Carrington JC, Cary SM, Parks TD, Dougherty WG, 1989b. A second proteinase encoded by a plant potyvirus genom. The EMBO Journal 8, 365-70. Carrington JC, Freed DD, Oh CS, 1990. Expression of the potyviral polyproteins in transgenic plants reveals three proteolytic activities required for complete processing. The EMBO Journal 9, 1347-53. Carrington JC, Jensen PE, Schaad MC, 1998. Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. The Plant Journal 14, 393-400. Channarayappa, Shivashankar G, Muniyappa V, Frist RH, 1992. Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Canada Journal of Botany 70, 2184-92. Chellappan P, Vanitharani R, Fauquet CM, 2005. Micro RNA-binding viral protein interferes with Arabidopsis development. Proceedings of the National Academy of Sciences, USA 102, 10381-6. Cui X, Li G, Wang D, Hu D, and Zhou X, 2005. A begomovirus DNAβ-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. Journal of virology 79, 10764-75. Cui X, Tao X, Xie Y, Fauquet CM, and Zhou X, 2004. A DNAβ associated with Tomato yellow leaf curl China virus is required for symptom induction. Journal of virology 78, 13966-74. Dahan R, 1985. Lycopersicon pennellii as a source for resistance to the tobacco whitefly Bemisia tabaci in tomato. Be'er Sheva, Israel: Ben Gurion University of the Negev, MS Thesis. De Bokx JA, Huttinga H, 1981. Potato virus Y. CMI/AAB Descriptions of Plant Viruses No. 242. Kew, UK: Commonwealth Mycological Institute. Dolja VV, HaldemanR, Robertson NL, Dougherty WG, Carrington JC, 1994. Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. The EMBO Journal 13, 1482-91. Dolja VV, Haldeman-Cahill R, Montgomery AE, Vandenbosch KA, Carrington JC, 1995. Capsid protein determinants involved in cell-to-cell and long-distance movement of tobacco etch potyvirus. Virology 206, 1007-16. Dougherty WG, Parks TD, Cary SM, Bazan JF, Fletterick RJ, 1989. Characterization of the catalytical residues of the Tobacco etch virus 49-kDa proteinase. Virology 172, 302-10. Dougherty WG, Carrington JC, 1988. Expression and function of potyviral gene products. Annual Review of Phytopathology 26, 123-143. Dry IB, Krake LR, Rigden JE, Rezaian MA, 1997. A novel subviral agent with a geminivirus: The first report of a DNA satellite. Proceedings of the National Academy of Sciences, USA 94, 7088-93. Eagles RM, Balmorimelian E, Beck DL, Garnder RC, Foster RLS, 1994. Characteization of NTPase, RNA-binding and RNA-helicase activities of the cytoplasmic inclusion protein of tamarillo mosaic potyvirus. European Journal of Biochemistry 224, 677-84. Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J. Zerbini M, Zhou X, 2008. Geminivirus strain demarcation and nomenclature. Archives of Virology 153, 783-821. Fauquet CM, Maxwell DP, Gronenborn B, Stanley J, 2000. Revised proposal for naming geminiviruses. Archives of Virology 145, 1743-61. Fauquet CM, Mayo CM, Maniloff J, Desselberger U, Ball LA, 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA, USA: Elsevier Academic Press, 301-26. Fontes EPB, Eagle PA, Sipe PS, Luckow VA, Hanley-Bowdoin L, 1994. Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. Journal of Biological Chemistry 269, 8459-65. Gafni Y, 2003. Tomato yellow leaf curl virus, the intracellular dynamics of a plant DNA virus. Molecular Plant Pathology 4, 9-15. Green SK, Shanmugasundaram S, 2007.AVRDC's international networks to deal with the tomato yelloe leaf curl disease: the needs of developing countries. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 417-39. Hanson P, Green SK, Kuo G, 2006. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Report of the Tomato Genetic Cooperative 56, 17-8. Hanson PM, Bernacchi D, Green SK, Tanksely SD, Muniyappa V, Padmaja AS, Chen H-M, Guo G, Fang D, Chen J-T, 2000. Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. Journal of the American Society for the Horticultural Science 125, 15-20. Harrison BD, Robinson DJ, 1999. Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (begomoviruses). Annual Review of Phytopathology 37, 369-98. Hong Y, Hunt AG, 1996. RNA polymerase activity catalysed by a potyvirus encoded RNA-dependent RNA polymerase. Virology 226, 146-51. Ji Y, Schuster DJ, Scott JW, 2007. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding 20, 271-84. Jones, 2003. Plant viruses transmitted by whiteflies. European Journal of Plant Pathology 109, 195-219. Jones JB, Jones JP, Stall RE, Zitter TA, 1991. Compendium of tomato diseases. Minnesota, USA: The American Phytopathological Society. Jovel J, Reski G., Rothenstein D, Ringel M, Frischnuth T, Jeske H, 2004. Sida micrantha mosaic is associated with a complex infection of begomoviruses different from Abutilon mosaic virus. Archives of Virology 149, 829-41. Kasschau KD, Carrington JC, 1998. A counterdefensive strategy of plant viruses: Suppression of posttranscriptional gene silencing. Cell 95, 461-70. Kitamura K, Murayama A, Ikegami M, 2004. Evidence for recombination among isolates of Tobacco leaf curl Japan virus and Honeysuckle yellow vein mosaic virus. Archives of Virology 146, 1221-9. Klein PG, Klein RR, Rodrígues-Cerezo E, Hunt AG, Shaw JG, 1994. Mutational analysis of the Tobacco vein mottling virus genome. Virology 204, 759-69. Laín S, Riechmann JL, GarcIa JA, 1990. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Research 18, 7003-6. Lazarowitz SG., 1992. Geminiviruses: Genome structure and gene function. Critical Reviews in Plant Sciences 11, 327-49. Leonard S, Plante D, Wittmann S, Daigneault N, Fortin MG, Laliberté JF, 2000. Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. Journal of Virology 74, 7730-7. Luafs J, Traut W, Heyraud F, Matzeit V, Rogers S, Schell J, Gronenborn B, 1995. In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proceedings of the National Academy of Sciences, USA 92, 3879-83. Mahajan S, Dolja VV, Carrington JC, 1996. Roles of the sequence encoding tobacco etch virus capsid protein in genome amplification: Requirements for the translation process and cis-active element. Journal of Virology 70, 4370-9. Maruthi MN, Seal S, Colvin J, Briddon RW, Bull SE, 2004. East African cassava mosaic Zanzibar virus - a recombinant begomovirus species with a mild phenotype. Archives of Virology 149, 2365-77. Merits A, Guo DY, Järvekülg L, Saarma M, 1999. Biochemical and genetic evidence for interaction between potato A potyvirus-encoded proteins P1 and P3 and proteins of the putative replication complex. Virology 263, 15-22. Merits A, Guo DY, Saarma M, 1998. VPg, coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence-unspecific manner. Journal of General Virology 79, 3123-7. Navas-Castillo J, Sanches-Campos S, Noris E, Louro D, Accotto GP, Moriones E, 2000. Natural recombination between Tomato yellow leaf curl virus - Is and Tomato leaf curl virus. Journal of General Virology 81, 2797-801. Nicolas O, Dunnington SW, Gotow LF, Pirone TP, Hellmann GM, 1997. Variations in the VPg protein allow a potyvirus to overcome va gene resistance in tobacco. Virology 237, 452-9. Ong CA, Varghese G, Poh TW, 1980. The effect of Chilli veinal mottle virus on yield of chilli (Capsicum annuum L.). Malaysian Agriculture Research and Development Institute Research Bulletin 8, 7479. Padidam M, Beachy RN, Fauquet CM, 1995. Classification and identification of geminiviruses using sequence comparisons. Journal of General Virology 76, 249-63. Padidam M, Maxwell DP, Fauquet CM, 1997. A proposal for naming geminiviruses. Archives of Virology 142, 2553-62. Padidam M, Sawyer S, Fauquet CM, 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218-25. Pascal E, Goodlove PE, Wu LC, Lazarowitz SG, 1993. Transgenic tobacco plants expressing the geminivirus BL1 protein exhibit symptoms of viral disease. Plant Cell 5, 795-807. Pascal E, Sanderfoot AA, Ward BM, Medville R, Turgeon R, Lazarowitz SG, 1994. The geminivirus BR1 movement protein binds single-stranded DNA and localizes to the cell nucleus. Plant Cell 6, 995-1006. Pernezny K, Roberts PD, Murphy JF, Goldberg NP, 2003. Compendium of pepper diseases. Minnesota, USA: The American Phytopathological Society. Picó B, Díez MJ, Nuez F, 1996. Viral diseases causing the greatest economic losses to the tomato crop. II. The Tomato yellow leaf curl virus - a review. Scientia Horticulturae 67, 151-96. Pirone TP, Thornbury DW, 1984. The involvement of a helper component in nonpersistent transmission of plant viruses by aphids. Microbiological Sciences 1, 191-3. Pita JS, Fondong VN, Sangare A, Otim-Nape GW, Ogwal S, Fauquet CM, 2001. Recombination, pseudo-recombination and synergism of geminiviruses are determinant keys to the epidemic of the cassava mosaic disease in Uganda. Journal of General Virology 82, 655-61. Rajamäki ML, Valkonen JPT, 1999. The 6K2 protein and the VPg of Potato virus A are determinants of systemic infection in Nicandra physaloides. Molecular Plant-Microbe Interaction 12, 1074-81. Restrepo-Hartwig MA, Carrington JC, 1994. The tobacco etch potyvirus 6-kilodaltons protein is membrane bound-associated and involved in viral replication. Journal of Virology 68, 2388-97. Ribeiro SG., Ambrozevicius B, Avil AC, Bezerra IC, Calegario RF, Fernandes JH, Lima MF, de Mello RN, Rocha H, F Zerbini.M, 2003. Distribution and genetic diversity of tomato infecting begomoviruses in Brazil. Archives of Virology 148, 281-95. Riechmann JL, Lain S, Garcia JA, 1992. Highlights and prospects of potyvirus molecular biology. Journal of General Virology 73, 1-16. Rigden JE, Krake LR, Rezaian MA, Dry I, 1994. ORF C4 of tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204, 847-50. Rodrígues-Cerezo E, Ammar ED, Pirone TP, Shaw JG, 1993. Association of the non-structural P3 viral protein with cylindrical inclusions in potyvirus-infected cells. Journal of General Virology 74, 1945-9. Rojas MR, Zerbini FM, Allison RF, Gilbertson RL, Lucas WJ, 1997. Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237, 283-95. Sanz AI, Fraile A, Garcia-Arenal F, Zhou X, Robinson DJ, Khalid S, Butt T, Harrison BD, 2000. Multiple infection, recombination and genome relationships among begomovirus isolates found in cotton and other plants in Pakistan. Journal of General Virology 81, 1839-49. Schaad MC, Haldeman-Cahill R, Cronin S, Carrington JC, 1996. Analysis of the VPg-proteinase (NIa) encoded by the tobacco etch potyvirus: Effects on mutations on subcellular transport, proteolytic processing, and genome amplification. Journal of Virology 70, 7039-48. Settlage SB, See RG, Hanley-Bowdoin L, 2005. Geminivirus C3 protein: replication enhancement and protein interactions. Journal of Virology 79, 9885-95. Shih SL, Green SK, Lee LM, Wang JT, Tsai WS, Ledesma DR, Chen JT, 2004. On-farm evaluation of tomato leaf curl disease control measures in Taiwan. Plant Protection Bulletin, ROC 46, 417-8. Shukla DD, Ward CW, 1989. Structure of potyvirus coat proteins and its application in the taxonomy of potyvirus group. Advances in Virus Research 36, 273-314. Shukla DD, Ward CW, Brunt AA, 1994. The Potyviridae. Oxon, UK: CAB International, 1-26. Snyder JC, Carter CD, 1985. Trichomes on leaves of Lycopersicon hirsutum, L. esculentum and their hybrids. Euphytica 34, 53-64. Torres-Pacheco I, Garzón-Tiznado JA, Herrera-Estrella L, Bustamante-Rivera RF, 1993. Complete nucleotide sequence of pepper huasteco virus: analysis and comparison with bipartite geminiviruses. Journal of General Virology 74, 2225-31. Umaharan P, Padidam M, Phelps RH, Beachy RN, Fauquet CM, 1998. Distribution and diversity of geminiviruses in Trinidad and Tobago. Phytopathology 88, 1262-68. Urcuqui-Inchima S, Haenni A-L, Bernardi F, 2001. Potyvirus proteins: a wealth of functions. Virus Research 74, 157-75. Varma A, Malathi VG, 2003. Emerging geminivirus problems: A serious threat to crop production. Annals of Applied Biology 142, 145-64. Verchot J, Carrington JC, 1995. Evidence that the P1 proteinase functions in tran as an accessory factor for genome amplification. Journal of Virology 69, 3668-74. Verchot J, Koonin EV, Carrington JC, 1991. The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus encoded proteinase. Virology 185, 527-30. Wang H, Buckley KJ, Yang X, Buchmann RC, Bisaro, DM, 2005. Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 protein. Journal of Virology 79, 7410-8. Wittman S, Chatel H, Fortin MG, Laliberte J-F, 1997. Interaction of the viral protein genome linked of turnip mosaic potyvirus using the yeast two-hybrid system. Virology 234, 84-92. Xie Y, Zhou XP, 2003. Molecular characterization of squash leaf curl Yunnan virus, a new begomovirus and evidence for recombination. Archives of Virology 148, 2047-54. Zamir D, Eksteinmichelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, Vanoss H, Kedar N, Rabinowitch HD, Czosnek H, 1994. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theoretical and Applied Genetics 88, 141-6. Zhou X, Liu Y, L Calvert, Munoz D, Otim-Nape GW, Robinson DJ, Harrison BD, 1997. Evidence that DNA-A of a geminivirus associated with severe Cassava mosaic disease in Uganda has arisen by interspecific recombination. Journal of General Virology 78, 2101-11. Chapter 2 References AVRDC, 1984. Progress Report 1982. Shanhua, Tainan, Taiwam, ROC: AVRDC-the World Vegetable Center, 41-3. AVRDC, 2002. Progress Report 2001. Shanhua, Tainan, Taiwam, ROC: AVRDC-the World Vegetable Center, 2-8. AVRDC, 2004. Progress Report 2003. Shanhua, Tainan, Taiwam, ROC: AVRDC-the World Vegetable Center, 67-9. Chang L-S, Lee Y-S, Su H-J, Hung T-H, 2003. First Report of Papaya leaf curl virus Infecting Papaya Plants in Taiwan. Plant Disease 87, 204. Cheng YH, Huang EL, Chang CA, 2004. Molecular characterization of a geminivirus infecting common Zinnia in Taiwan. Plant Pathology Bulletin, ROC 13, 353. Chung ML, Liao CH, Chen MJ, Chiu RJ, 1985. The isolation, transmission and host range of sweet potato leaf curl disease agent in Taiwan. Plant Protection Bulletin 27, 333-41. Czosnek H, 1999. Tomato yellow leaf curl virus-Israel. CMI/AAB Descriptions of plant viruses No. 368. Kew, UK: Commonwealth Mycological Institute. Czosnek H, Laterrot H, 1997. A worldwide survey of tomato yellow leaf curl viruses. Archives of Virology 142, 1391-406. Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J. Zerbini M, Zhou X, 2008. Geminivirus strain demarcation and nomenclature. Archives of Virology 153, 783-821. Fauquet CM, Mayo CM, Maniloff J, Desselberger U, Ball LA, 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA, USA: Elsevier Academic Press, 301-26. Gilbertson RL, Rojas MR, Kon T, Jaquez J, 2007. Introduction of Tomato yellow leaf curl virus into the Dominican Republic: the development of a successful integrated pest management strategy. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 279-303. Gilbertson RL, Rojas MR, Russell DR, Maxwell DP, 1991. Use of the asymmetric polymerase chain reaction and DNA sequencing to determine genetic variability of bean golden mosaic geminivirus in the Dominican Republic. Journal of General Virology 72, 2843-8. Green SK, Shanmugasundaram S, 2007. AVRDC's international networks to deal with the tomato yellow leaf curl disease: the needs of developing countries. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 417-39. Green SK, Sulyo Y, Lesemann DE, 1987. Outbreaks and New Records: Leaf curl virus on tomato in Taiwan Province. FAO Plant Protection Bulletin 35, 62. Green SK, Tsai WS, Shih SL, Black LL, Rezaian A, Rashid MH, Roff MMN, Myint YY, Hong LTA, 2001. Molecular characterization of begomoviruses associated with leaf curl disease in Bangladesh, Laos, Malaysia, Myanmar, and Vietnam. Plant Disease 85, 1286. Green SK, Tsai WS, Shih SL, Huang YC, Lee LM, 2005. Diversity of begomoviruses of tomato and weeds in Asia. In: Ku T-Y, Wang C-L, Chang C-A, eds. Proceeding of the International Seminar on Whitefly Management and Control Strategy. Taipei, Taiwan, ROC: Food and Fertilizer Technology Center for the Asian and Pacific Region, 19-66. Hajdukiewicz P, Svab Z, Maliga P, 1994. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biology 25, 989-94. Hanson PM, Green SK, Kuo G, 2006. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Report of the Tomato Genetics Cooperative 56, 17-8. Jan F-J, Green SK, Shih SL, Lee LM, Ito H, Kimbara J, Hosoi K, Tsai WS, 2007. First report of Tomato yellow leaf curl Thailand virus in Taiwan. Plant Disease 91, 1363. Kirthi N, Maiya SP, Murthy MRN, Savithri HS, 2002. Evidence for recombination among the tomato leaf curl virus strains/species from Bangalore, India. Archives of Virology 147, 255-72. Liao J-Y, Hu C-C, Lin T-K, Chang C-A, Deng T-C, 2007. Identification of Squash leaf curl Philippines virus on Benincasa hispida in Taiwan. Plant Pathology Bulletin, ROC 16, 11-8. Makkouk KM, Shehab S, Majdalani SE, 1979. Tomato yellow leaf curl: Incidence, yield losses and transmission in Lebanon. Journal of Phytopathology 96, 263-7. Martin DP, Williamson C, Posada D, 2005. RDP2: Recombination detection and analysis from sequence alignment. Bioinformatics 21, 260-2. Maruthi, MN, Rekha AR, Cork A, Colvin J, Alam SN, Kader KA, 2005. First report of Tomato leaf curl New Delhi virus infecting tomato in Bangladesh. Plant Disease 89, 1011. Moriones E, Navas-Castillo J, 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research 71, 123-34. Nakhla MK, Maxwell DP, Martinez RT, Garvalho MG, Gilbertson RL, 1994. Widespread occurrence of the eastern Mediterranean strain of tomato yellow leaf curl geminivirus in tomatoes in the Dominican Republic. Plant Disease 78, 726. Navas-Castillo J, Sanchez-Campos S, Noris E, Louro D, Accotto GP, Moriones E, 2000. Natural recombination between Tomato yellow leaf curl virus-Is and Tomato leaf curl virus. Journal of General Virology 81, 2797-801. Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H, 1991. Tomato yellow leaf curl virus: A whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151-61. Osaki T, Inouye T, 1981. Tobacco leaf curl virus. CMI/AAB Descriptions of plant viruses No. 232. Kew, UK: Commonwealth Mycological Institute. Padidam M, Sawyer S, Fauquet CM, 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 165, 218-25. Picó B, Díez MJ, Nuez F, 1996. Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus - a review. Scientia Horticulturae 67, 151-96. Polston JE, Anderson PK, 1997. The emergence of whitefly-transmitted geminiviruses in tomato in the Western Hemisphere. Plant Disease 81, 1358-69. Rojas MR, Gilbertson RL, Russell DR, Maxwell DP, 1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease 77, 340-7. Rojas A, Kvarnheden A, Marcenaro D, Valkonen JPT, 2005. Sequence characterization of Tomato leaf curl Sinaloa virus and Tomato severe leaf curl virus: Phylogeny of New World begomoviruses and detection of recombination. Archives of Virology 150, 1281-99. Shih SL, Green SK, Lee LM, Wang JT, Tsai WS, Ledesma DR, Chen JT, 2004. On-farm evaluation of tomato leaf curl disease control measures in Taiwan. Plant Protection Bulletin, ROC 46, 417-8. Shih SL, Wang JT, Chiang BT, Green SK, 1995. Distribution of tomato leaf curl virus in Taiwan. Plant Protection Bulletin, ROC 37, 445. Tsai WS, Shih SL, Green SK, Jan F-J, 2007. Occurrence and molecular characterization of Squash leaf curl Philippines begomovirus in Taiwan. Plant Disease 91, 907. Varma A, Malathi VG, 2003. Emerging geminivirus problems: A serious threat to crop production. Annals of Applied Biology 142, 145-64. Xie Y, Jiang T, Zhou X, 2006. Agroinoculation shows Tobacco leaf curl Yunnan virus is a monopartite begomovirus. European Journal of Plant Pathology 115, 369-75. Yuanfu JI, Scott JW, Hanson P, Graham E, Maxwell DP, 2007. Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 343-62. Chapter 3 References AVRDC, 1984. Progress Report 1982. Shanhua, Tainan, Taiwam, ROC: AVRDC-the World Vegetable Center, 41-3. Baldin ELL, Vendramim JD, Lourencao AL, 2005. Resistance of tomato genotypes to the whitefly Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae). Neotropical Entomology 34, 435-41. Channarayappa, Shivashankar G, Muniyappa V, Frist RH, 1992. Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Canada Journal of Botany 70, 2184-92. Chen J-T, 2007. Tomato leaf curl virus: development of resistant cultivars. Agriculture World 289, 40-60. (in Chinese) Czosnek H, 1999. Tomato yellow leaf curl virus-Israel. CMI/AAB Descriptions of plant viruses No.368. Kew, UK: Commonwealth Mycological Institute. Czosnek H, Laterrot H, 1997. A worldwide survey of tomato yellow leaf curl viruses. Archives of Virology 142, 1391-406. Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J. Zerbini M, Zhou X, 2008. Geminivirus strain demarcation and nomenclature. Archives of Virology 153, 783-821. Fauquet CM, Mayo CM, Maniloff J, Desselberger U, Ball LA, 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA, USA: Elsevier Academic Press, 301-26. Gilbertson RL, Rojas MR, Russell DR, Maxwell DP, 1991. Use of the asymmetric polymerase chain reaction and DNA sequencing to determine genetic variability of bean golden mosaic geminivirus in the Dominican Republic. Journal of General Virology 72, 2843-8. Green SK, Shanmugasundaram S, 2007. AVRDC's international networks to deal with the tomato yellow leaf curl disease: the needs of developing countries. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 417-39. Green SK, Sulyo Y, Lesemann DE, 1987. Outbreaks and new records: Leaf curl virus on tomato in Taiwan Province. FAO Plant Protection Bulletin 35, 62. Green SK, Tsai WS, Shih SL, Black LL, Rezaian A, Rashid MH, Roff MMN, Myint YY, Hong LTA, 2001. Molecular characterization of begomoviruses associated with leaf curl disease in Bangladesh, Laos, Malaysia, Myanmar, and Vietnam. Plant Disease 85, 1286. Hajdukiewicz P, Svab Z, Maliga P, 1994. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biology 25, 989-94. Hanson PM, Bernacchi D, Green SK, Tanksely SD, Muniyappa V, Padmaja AS, Chen H-M, Guo G, Fang D, Chen J-T, 2000. Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. Journal of the American Society for the Horticultural Science 125, 15-20. Hanson PM, Green SK, Kuo G, 2006. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Report of the Tomato Genetics Cooperative 56, 17-8. Li ZH, Zhou XP, Zhang X, Xie Y, 2004. Molecular characterization of tomato-infecting begomoviruses in Yunnan, China. Archives of Virology 149, 1721-32. Makkouk KM, Shehab S, Majdalani SE, 1979. Tomato yellow leaf curl: Incidence, yield losses and transmission in Lebanon. Journal of Phytopathology 96, 263-67. Moriones E, Navas-Castillo J, 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research 71, 123-34. Nakhla MK, Maxwell DP, 1998. Epidemiology and management of tomato yellow leaf curl disease. In: Hadidi A, Khetarpal RK, and Koganezawa H, eds. Plant virus disease control. Minnesota, USA: The America Phytopathological Society, 565-83. Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H, 1991. Tomato yellow leaf curl virus: A whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151-61. Osaki T, Inouye T, 1981. Tobacco leaf curl virus. CMI/AAB Descriptions of plant viruses No.232. Kew, UK: Commonwealth Mycological Institute. Picó B, Díez MJ, Nuez F, 1996. Viral diseases causing the greatest economic losses to the tomato crop. II. The Tomato yellow leaf curl virus - a review. Scientia Horticulturae 67, 151-96. Poleston JE, Bois D, Serra C-A, Concepcion S, 1994. First report of a tomato yellow leaf curl-like geminivirus in the Western Hemisphere. Plant Disease 78, 831. Polston JE, McGovern RJ, Brown LG, 1999. Introduction of tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Disease 83, 984-8. Rochester DE, DePaulo JJ, Fauquet CM, Beachy RN, 1994. Complete nucleotide sequence of the geminivirus tomato yellow leaf curl virus, Thailand isolate. Journal of General Virology 75, 477-85. Rochester DE, Kositratana W, Beachy RN, 1990. Systenmic movement and symptom production following agroinoculation with a single DNA of tomato yellow leaf curl geminivirus (Thailand). Virology 178, 520-26. Rojas MR, Gilbertson RL, Russell DR, Maxwell DP, 1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease 77, 340-7. Sawangjit S, Chatchawankanphanich O, Chiemsombat P, Attathom T, Dale J, Attathom S, 2005. Molecular characterization of tomato-infecting begomoviruses in Thailand. Virus Research 109, 1-8. Shih SL, Green SK, Lee LM, Wang JT, Tsai WS, Ledesma DR, Chen JT, 2004. On-farm evaluation of tomato leaf curl disease control measures in Taiwan. Plant Protection Bulletin, ROC 46, 417-8. Shih SL, Wang JT, Chiang BT, Green SK, 1995. Distribution of tomato leaf curl virus in Taiwan. Plant Protection Bulletin, ROC 37, 445. Varma A, Malathi VG, 2003. Emerging geminivirus problems: A serious threat to crop production. Annals of Applied Biology 142, 145-64. Xie Y, Jiang T, Zhou X, 2006. Agroinoculation shows Tobacco leaf curl Yunnan virus is a monopartite begomovirus. European Journal of Plant Pathology 115, 369-75. Chapter 4 References Benigno DA, 1979. Leaf curl disease of squash. Philippine Agriculture 61, 304-5. Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM, 2004. Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Molecular Biology 56, 601-11. Clark MF, Adams AN, 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34, 475-83. De Barro PJ, Hidayat SH, Frohlich D, Subandiyah S, Ueda S, 2008. A virus and its vector, pepper yellow leaf curl virus and Bemisia tabaci, two new invaders of Indonesia. Biological Invasions 10, 411-33. Dolores LM, Bajet NB, 1995. Isolation and transmission of tomato leaf curl virus in the Philippines. Philippine Phytopathology 31, 40-51. Dolores LM, Pissawan C, 1994. Detection of leaf curl virus in pepper by using non-productive DNA probe. Philippine Journal of Crop Science 19, 80. Dolores LM, Valdez RB, 1988. Identification of squash viruses and screening for resistance. Philippine Phytopathology 24, 43-52. FAO, 2006. FAOSTAT, Food and Agriculture Organization of the United Nations. http://faostat.fao.org. Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X, 2008. Geminivirus strain demarcation and nomenclature. Archives of Virology 153, 783-821. Gilbertson RL, Rojas MR, Russell DR, Maxwell DP, 1991. Use of the asymmetric polymerase chain reaction and DNA sequencing to determine genetic variability of bean golden mosaic geminivirus in the Dominican Republic. Journal of General Virology 72, 2843-8. Green SK, Shanmugasundaram S, 2007. AVRDC's international networks to deal with the tomato yellow leaf curl disease: the needs of developing countries. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 417-39. Green SK, Tsai WS, Shih SL, Black LL, Rezaian A, Rashid MH, Roff MMN, Myint YY, Hong LTA, 2001. Molecular characterization of begomoviruses associated with leaf curl disease in Bangladesh, Laos, Malaysia, Myanmar, and Vietnam. Plant Disease 85, 1286. Kon T, Dolores LM, Murayama A, Bajet NB, Hase S, Takahashi H, Ikegami M, 2002. Genome organization of an infectious clone of Tomato leaf curl virus (Philippines), a new monopartite Begomovirus. Journal of Phytopathology 150, 587-91. Kon T, Dolores LM, Bajet NB, Hase S, Takahashi H, Ikegami M, 2003. Molecular characterization of a strain of Squash leaf curl China virus from the Philippines. Journal of Phytopathology 151, 535-9. Makkouk KM, Shehab S, Majdalani SE, 1979. Tomato yellow leaf curl: Incidence, yield losses and transmission in Lebanon. Journal of Phytopathology 96, 263-7. Picó B, Díez MJ, Nuez F, 1996. Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus - a review. Sc
摘要: 感染番茄的begomoviruses引起廣泛性的嚴重病害,曾經在許多地區造成高達百分之百生產損失。台灣於1981年首次發現此病害,目前則是全省性的廣泛分佈。從台灣已鑑定出四個感染番茄的begomoviruses,包括Ageratum yellow vein Hualien virus (AYVHuV),Tomato leaf curl Hsinchu virus (ToLCHsV),Tomato leaf curl Taiwan virus (ToLCTWV)和Tomato yellow leaf curl Thailand virus (TYLCTHV)。2007年發現,單基因體的ToLCTWV和雙基因體的TYLCTHV為主要分佈者。所有抗ToLVTWV的種原,包括L. esculentum,L. hirsutum,L. peruvianum和L. chilense,皆對TYLCTHV無抗性。菲律賓於1971年首次發現番茄begomoviruses引起的病害。從菲律賓偵測到五個番茄begomoviruses,包括Ageratum yellow vein China virus (AYVCNV),Tomato leaf curl Cebu virus (ToLCCeV),Tomato leaf curl Cotabato virus (ToLCCoV),Tomato leaf curl Mindanao virus (ToLCMiV)和Tomato leaf curl Philippines virus (ToLCPV)。在番椒上亦測得ToLCPV和ToLCCeV。在呂宋島的葫蘆科植物測得另外二個begomoviruses,為Squash leaf curl China virus 和Squash leaf curl Philippines virus。呂宋島測得ToLCPV和ToLCCeV,而宿霧島則只測得ToLCCeV。民達那峨島的狀況較複雜,共有AYVCNV,ToLCCeV,ToLCCoV及ToLCMiV等四個病毒。此等的病毒歧異狀況,為發展有效疾病管理所必需考慮者。由於病毒差異性和寄主抗性的不穩定性,發展源自病毒引發的抗性(virus-derived resistance)可作為另一有效的病毒防治策略。利用三個病毒引發抗性的策略發展抗ToLCTWV的轉基因番茄,包括利用基因反意股, silencer-linked和IR flanked with the 5’ C1 and 5’ V2。初步結果顯示源自C2所產生的R0植物抗病毒性較高,可達100%。由IR flanked with the 5’ C1 and 5’ V2所產生的R1植物亦具有較高抗病毒性,抗性可達67%。這二個病毒基因體片段可適用於發展多重抗病毒性的轉基因番茄,以抵抗begomoviruses及其他重要的番茄病毒,如tospovirus和胡瓜嵌紋病毒等。Chilli veinal mottle virus (ChiVMV)是另一個感染茄科作物的重要病毒。由南亞及東南亞分離的24個ChiVMV病毒分離株,經定序及分析其基因相關性,結果與已發表的ChiVMV有高相似度,其CP氨基酸和核酸序列分別有超過94.8和89.5%相似度,因此全部24個分離株均歸屬於ChiVMV。分析其演化關係,所有ChiVMV分離株可分為3群。此外,ChiVMV和Pepper veinal mottle virus (PVMV) CP基因的C端,有一長204個氨基酸的保留區,其氨基酸序列相似度大於90.2%。此高相似度保留區可解釋此兩種病毒之間的血清學交互回應。另外,此保留區,亦可用以發展同時抗ChiVMV和PVMV的轉基因作物。
World-wide distributed tomato-infecting begomoviruses cause severe disease epidemics and possibly up to 100% yield losses. In Taiwan, the disease was first observed in 1981 and now distributed throughout the island. Four tomato-infecting begomoviruses have been determined, including Ageratum yellow vein Hualien virus (AYVHuV), Tomato leaf curl Hsinchu virus (ToLCHsV), Tomato leaf curl Taiwan virus (ToLCTWV) and Tomato yellow leaf curl Thailand virus (TYLCTHV). As 2007, the monopartite ToLCTWV and the bipartite TYLCTHV were determined as the two most predominant ones. All currently available ToLVTWV resistant sources, including L. esculentum, L. hirsutum, L. peruvianum and L. chilense can not hold up against TYLCTHV. In the Philippines, tomato-infecting begomovirus disease was first observed in 1971. Five tomato-infecting begomoviruses were detected, including Ageratum yellow vein China virus (AYVCNV), Tomato leaf curl Cebu virus (ToLCCeV), Tomato leaf curl Cotabato virus (ToLCCoV), Tomato leaf curl Mindanao virus (ToLCMiV) and Tomato leaf curl Philippines virus (ToLCPV). ToLCPV and ToLCCeV were also detected in symptomatic peppers. Two cucurbit-infecting begomoviruses, Squash leaf curl China virus and Squash leaf curl Philippines virus were detected in Luzon Island. ToLCPV and ToLCCeV were found in Luzon Island, whereas only ToLCCeV was detected in Cebu Island. Begomoviruses were more diverse in Mindanao Island, where four tomato-infecting begomoviruses, AYVCNV, ToLCCeV, ToLCCoV and ToLCMiV have been detected. The virus diversity should be considered in the development of effective disease management practices. Based on the virus diversity and unstability of host resistance, virus-derived resistance (VDR) provides an alternative strategy to control these viruses. Transgenic tomato plants against ToLCTWV were developed based on three VIR strategies, including anti-sense, silencer DNA-linked and IR flanked with the 5' C1 and 5' V2. Preliminary results showed that high virus resistance (up to 100 % resistance) of R0 plants was developed by constructs generated from C2. Highest virus resistance (up to 67 %) of R1 plants was found in the construct of IR flanked with the 5'C1 and 5'V2. Both virus genomic regions may be useful for the development of multiple-virus resistance targeting begomoviruses and other important tomato-infecting viruses, such as tospovirus and Cucumber mosaic virus. Chilli veinal mottle virus (ChiVMV) is another important Solanaceae-infecting virus. Twenty-four ChiVMV isolates from South and Southeast Asia have been analyzed to determine their genetic relationships. All 24 isolates were considered as belonging to ChiVMV because of their high CP amino acid and nucleotide identity (>94.8 and 89.5%, respectively) with the reported ChiVMV. Based on the phylogenic analysis, ChiVMV isolates was classified into three groups. A conserved region (204 amino acids located at C terminal of CP gene) has been identified among ChiVMV and Pepper veinal mottle virus (PVMV). Their high amino acid identity (> 90.2%) may explain the serological cross-reaction between these two viruses. The conserved region may also provide useful information for developing transgenic resistance to both ChiVMV and PVMV.
URI: http://hdl.handle.net/11455/31298
其他識別: U0005-3007200815553100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3007200815553100
顯示於類別:植物病理學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。