Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31315
標題: 利用根圈細菌研製生物性肥料的評估
Evaluation for development of a biofertilizer using rhizobacteria
作者: 陳睦鈞
Chen, Mu-Chun
關鍵字: rhizosphere bacteria
吲哚乙酸
indole-3-acetic acid
tryptic soy broth
radish
peanut seed pomace
大豆酪蛋白培養液
蘿蔔
花生粕
出版社: 植物病理學系所
引用: 丁姵分。2006。番茄萎凋病之生物防治菌的鑑定與防病潛力評估。國立中興大學植物病理學系碩士論文。51pp。 王淳禾。2006。枯草桿菌Bacillus subtilis WG6-14懸浮培養增量菌液製作及其病害管理之應用。國立中興大學植物病理學系碩士論文。59pp。 朱宏怡。2002。不同施肥管理下作物根圈固氮菌多樣性之探討。國立中興大學土壤環境科學系碩士論文。62pp。 吳繼光、林素禎。1989。囊叢之內生菌根菌應手技術手冊。行政院農業委員會出版。232pp。 李雅惠。2002。拮抗性桿菌屬 (Bacillus spp.)之分離、培養與抗生活性之改進以及病害防治之應用。國立中興大學植物病理學系碩士論文。79pp。 洪平。1986。飼料原料要覽(含添加物)。作伙逗陣雜誌社。628pp。 徐善德、廖玉琬。2005。植物生理學。偉明圖書有限公司。574pp。 張淑賢。1998。日本生物肥料之研發策略與製劑管理。囊叢枝內生菌根菌應用技術手冊。23-34 pp。台灣省農業試驗所。 許秋燕。1996。溶磷菌之特性及其接種於玉米根面之效應。國立中興大學土壤環境科學系碩士論文。57pp。 陳國樹。1998。高溫菌在生物肥料製作上應用與其抗菌活性之探討。國立台灣大學生物化科技學系博士論文。298pp。 黃文的。1998。黑穗病菌(Ustilago esculenta P. Henn.)致病作用過程中茭白(Zizania latifolia Turcz.)鐵需求性與胺基態氮代謝之改變。國立中興大學植物病理學系碩士論文。68pp。 黃振文、孫守恭。1982。植物病害彩色圖鑑。世維出版社。160pp。 楊秋忠。1989。土壤與肥料。農世股份有限公司出版。290pp。 楊秋忠。1997。固氮菌及溶磷菌的應用及發展。有益微生物在農業上之應用研討會專刊。11-26 pp。中華永續農業協會。 楊秋忠。2005。生物性肥料之特性及開發。農業生技產業季刊 4:18-22。 楊秋忠。2007。微生物肥料管理現況及訂定要義與展望。農業生技產業季刊 12:16-20。 經濟部產業科技叢書。1991。微生物肥料之市場調查。財團法人生物技術開發中心.。79pp。 趙震慶、王銀波。1991。重金屬於台灣土類脂土壤中對囊叢枝菌與大豆固氮作用之影響。中國農業化學誌。29:290-300。 劉嵋恩。1985。植物病理研究法。茂昌圖書有限公司。484pp。 謝廷芳、黃振文、張志展、彭玉湘。2001。碳氮源影響拮抗細菌防治百合灰黴病的效應。植病會刊。10:79-87。 鍾文全。1993。台灣十字花科蔬菜黑斑病菌的生物特性研究。國立中興大學植物病理學系碩士論文。133pp。 Adhar, C. M. and Das, H. K.. 1997. The Azotobacter vinelandii chromosome. J. Genet. 76:55-60. Akbari, A. G., Seyyed, M.A., Alikhani, H.A. Allahdadi, I. and Arzanesh, M.H. 2007. Isolation and selection of indigenous Azospirillum spp. and the IAA of superior strains effects on wheat roots. J. Agric. Sci. 3(4):523-529. Anandham, R., Choi, K. H., Gandhi, P. I., Yim, W. J., Park, S. J., Kim, A K., Madhaiyan, M., Sa, T. M. 2007. Evaluation of shelf life and rock phosphate solubilization of Burkholderia sp. in nutrient-amended clay, rice bran and rock phosphate-based granular formulation. World J. Microbiol. Biotechnol. 23:1121–1129. Arkhipchenko, I. A., Shaposhnikov, A. I. and Kravchenko, L. V. 2006. Tryptophan concentration of animal wastes and organic fertilizers. Appl. Soil Ecol. 34:62-64. Broggini, G.A.L., Duffy, B., Holliger, E. Schärer, H.-J. Gessler, C. and Patocchi, A. 2005. Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro®) in a swiss apple orchard. Eur. J. Plant Pathol. 111: 93-100. David H. B. and John, G. H. 1994. Bergey’s Manual of Determinative Bacteriology. 753pp. Lippincott Williams & Wilkins. Asia. Ehmann, A. 1977. The Van Urk-Salkowski Reagent - a sensitive and specific chromogenic reagent for silica gel thin-layer chromatograph detection and identification of indole derivatives. J. Chromatogr. 132:267-276. Eisorra, E.I., Domingo, J.I. , Manuel, T. and Rainer, B. 2007. Tryptophan-dependent production of indole-3-acetic acid(IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant. Microbe. Inter. 20(6):619-626. Elena, A. T., Tatiana, A. C., Svetlana, G. B. and Alexander, I. N. 2007. Bacteria associated with orchid roots and microbial production of auxin. Microbiol. Res. 162:69-76. Elsorra, E. I., Bochow, H., Ross, H. and Borriss, R. 2004. Use of Bacillus subtilis as biocontrol agent. VI. Phytohormonelike action of culture filtrates prepared from plant growthpromoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J. Plant Dis. Prot. 111(6): 583–597. Eric Glickmann and Yves Dessaux.. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61(2): 793–796. Fabio, F. A., Ademir, A. H. and Mariangela, H. 2005. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J. Microbiol. Biotechnol. 21:1639-1645. Farah, A., Iqbal, A. and Khan, M.S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173-181. Faria da mota, F., Nobrega, A., Marriel, I.E., Paiva, E. and Seldin, L. 2002. Genetic diversity of Paenibacillus polymyxa populations isolated from the rhizosphere of four cultivars of maize (Zea mays) planted in Cerrado soil. Appl. Soil Ecol. 20:119-132. Grossman, A. D. and Losick, R. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA. 85:4369-4373. Halverson, L. J., Clayton, M. K. and Handelsman, J. 1993. Population biology of Bacillus cereus UW85 in the rhizosphere of field-grown soybeans. Soil Biol. Biochem. 25:485-493. Hilda, R. and Reynaldo, F. 1999. Phosphate solubilizing bacteria and their roles in plant growth promotion. Biotechnol. Adv. 17:319-339. Ilbas, A. I. and Sahin, S. 2005. Glomus fasciculatum inoculation improves soybean production. Acta Agr. Scand. B-S. P. 55: 287-292. Jacobsen, B. J., Zidack, N. K. and Larson, B. J. 2004. The role of Bacillus-based biological control agents in integrated pest management systems. Phytopathology 94:1272-1275. John, M. B., Richard, M. B. and Sara, E. S. 1991. Rapid in situ assay for indole-acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol., 57(2): 535-538. Jose, L., Juan, C. C., Erasto, H., Crisanto, V., Rodolfo, F., Lourdes, I. M. and Eurduardo, V. 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol. Plant. Microbe. Inter. 20(2):207-217. Kenerley, C. M., Bruck, R. I. and Grand, L. F.. 1984. Effects of metalaxyl on growth and ectomycorrhizae of fraser fir seedling. Plant Dis. 68(1):32-35. Kose, C. and Guleryuz, M. 2006. Effects of auxins and cytokinins on graft union of grapevine (Vitis vinifera). New Zeal. J. Crop Hort. 34(2):145-150. Krylov, S. N. and Dunford, H. B. 1996. Accelerating effect of umbelliferone on peroxidase-catalyzed oxidation of indole-3-acetic acid at neutral pH. J. Phys. Chem. 100:19719-19727. Luis, E. F. and Jesus, C.. 2005. Bacterial Biofertilizers. In Zaki, A. S.(ed), PGPR: Biocontrol and Biofertilization. pp.143-172. Netherlands:Springer) Mani Rajkumar and Helena Freitas. 2008. Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour. Technol. 99:3491-3498. Michael, R., Michael, S. and Anton, H.. 2003. In situ localizationand PGPR-Effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis. 34:261-279. Miyasaka, S. C. and Habte, M. 2001. Plant mechanisms and mycorrhizal symbioses to increase phosphorus uptake efficiency.Commun. Soil Sci. Plant Anal. 32: 1101–1147. Nomeda, K., Juozas, R. and Donaldas, Č., 2007. Identification of Geobacillus stearothermophilus by restriction digestion with AluI of the amplified 16S rDNA. Biologija. 53(4):62-66. Nomeda, K., Juozas, R., Milda, S. and Donaldas C. 2007. Identification of the genus Geobacillus using genus-specific primers,based on the16S-23S rRNA gene internal transcribed spacer. FEMS Microbiol. Lett. 277:165–172. Patten and Glick. 2006. Mode of action of PGPR as biofertilizers. p.143-p.153. Rai, M. K. ed. Hand book of microbial biofertilizers. 549pp. International Book Distributing Co. Binghamton. Seldin, L., Soares R. A., da Crus, D. W., Nobrega, A., van Elsas, J. D., and Paiva, E. 1998. Comparsion of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere and non-root-associated soil from maize planted in two different Brazilian soils. Appl. Environ. Microbiol. 64:3860-3868. Solon, A. G. and Robert, P. W. 1951. Colorimetric Estimation Of Indole-acetic Acid. Plant Physiol. 26:192-195. Song, O., Lee1, S. J., Lee1,Y. S., Lee1, S. C., Kim, K. K. and Choi, Y. L. 2008. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz. J. Microbiol. 39:151-156. Tejera, N., Lluch, C., Mart’ınez-Toledo, M.V. and Gonz’alez-L’opez, J. 2005. Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270:223-232. Tetsu, H. 1981. Properties of Amino Acid Composition of the Tryptic Fragments of the Heavy Chain of Myosin Subfragment. J. Biochem. 90:785-788. Vivek, K., Rishi, K. B. and Neeru, N. 2001. Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiol. Res. 156:87–93. Wadii, B., Joan, P., Francisco, R. T., Manuel, T. and Eduardo, P. 1997. Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol. 114:557-564. Young, C. C. 1990. Effects of phosphorus-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the growth of tree species in subtropical-tropical soils. Soil Sci. Plant Nutr. 36:225-231. Youssef, Y. A. and Mankarios, A. T. 1974. Production of plant growth substances by rhizosphere mycoflora of broad bean and cotton. Biol. Plantarum 17(3):175-181. Zhen M., Li, G., Anna, S.Y., Leea, J., Wan, H. Y., Swee, N. T. and Eng, S. O.. 2008. Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry after solid-phase extraction. Anal. Chim. Acta 610:274–281.
摘要: 測試72株細菌產生吲哚乙酸(Indole-3-acetic acid, IAA)的能力,結果發現Gh1與Gh4菌株產生IAA的濃度最高,約61~80 mg/L;其次有Bg12、BSSC-01、Bg31及Bg26等15菌株之產量介於10~60 mg/L。經鑑定Gh1、Gh4、Bg12及Bg31等菌株的學名,分別是Paenibacillus polymyxa、Geobacillus thermoblucosidasius、Bacillus megaterium及Microbacterium resistense。色胺酸 (L-form Tryptophan)是細菌產生IAA的決定性因子。本研究在LB (Luria-Bertani)培養液中添加不同濃度的色胺酸,結果顯示隨著色胺酸濃度的提高,IAA產量也隨著增加。測試不同的培養基質對菌量增殖及產生IAA的影響,發現大豆酪蛋白培養液(Trypic soy broth;TSB)優於其餘培養液。將番茄、甜瓜及蘿蔔種子分別浸泡於上述菌株之細胞懸浮液,並種植於栽培基質中,結果發現Gh1、Gh4及Bg31等三菌株可顯著促進甜瓜及番茄幼苗的生長。另外將四菌株分別培養於TSB後,混拌於介質後並種植不同作物,結果發現菌株Bg31促進蘿蔔生長之效果最佳。將蘿蔔幼苗培養在(Murashige and Skoog medium, MS)植物組織培養液中,分別加入Bg31菌株之TSB培養液與IAA標準品,評估它們對幼苗根系的發育的影響,結果發現兩處理均可促進支根的發育且誘使支根較為粗壯。進一步,將Bg31菌株之花生粕醱酵培養液與味丹公司的糖蜜醱酵液混合施用,證明可顯著促進蘿蔔植株鮮重增加一倍以上。
Seventy two bacterial isolates were examined the ability of production Indole-3-acetic acid (IAA). Among them, Gh1 and Gh4 isolates produced the highest concentration of IAA (61~80 mg/L), followed by Bg12 and Bg31 isolates. These isolates (Gh1, Gh4, Bg12 and Bg31) were identified as Paenibacillus polymyxa, Geobacillus thermoblucosidasius, Bacillus megaterium and Microbacterium resistense ,respectively. The L-form tryptophan was a determinant factor for these isolates to produce IAA. The production of IAA was increased, with the increase of tryptophan in LB (Luria-Bertani) broth. The ability of producing IAA by bacterial isolates grown in different commercial media was tested. The tryptic soy broth (TSB) showed the best effect for these isolates to produce IAA, and increased the biomass of bacterial isolates. The seeds of tomato, melon and radish were dipped into bacterial cell suspension and sown in peat moss. The results indicated that Bg31, Gh1 and Gh4 isolates could significantly promote the seedlings growth of melon and tomato. The Bg31 isolate showed marked effect on promoting the growth of radish seedlings when its culture filtrate of TSB was added into peat moss before sowing. In addition, the Bg31 isolate cultured in TSB showed similar effect on promoting branch root development of radish seedlings as treatment with IAA standard. For practical use, a formula consisted of molasses and peanut seed pomace meal was used for culturing Bg31 isolate and showed significant effect on promoting the growth of radish plants.
URI: http://hdl.handle.net/11455/31315
其他識別: U0005-1808200911210100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808200911210100
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.