Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31382
標題: 由土壤中分離之Humicola phialophoroides 誘導寄主產生抗病性之研究
Induction of host resistance by Humicola phialophoroides isolated from soil
作者: 楊靜惠
Yang, Ching-Hui
關鍵字: Biological control
生物防治
Humicola Phialophoroides
locally induced resistance
Phytophthora capsici
microorganisms
Humicola Phialophoroides
局部性的抗病
Phytophthora capsici
微生物
出版社: 植物病理學系所
引用: 1. 安寶貞。2001。植物病害的非農藥防治品-亞磷酸。植物病理學會刊10:147-154。 2. Abdellaoui-Maane, S., Seng, J. M., Saindrenan, P., and Bompeix, G. 1988. Fosetyl-Al is effective against mutants of Phytophthora capsici resistant to metalaxyl. Cryptogam. Mycol. 9: 47-56. 3. Agrawal, A. A., Tuzun, S., and Bent E. eds. 1999. Induced Plant Defenses Against Pathogens and Herbivores-Biochemistry, Ecology, and Agriculture. APS press. St. Paul. Minnesota. 390 p. 4. Ahmed, A. S., Sanchez, C. P. and Candela, M. E. 2000. Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytopthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur. J. Plant Pathol. 106: 817–824. 5. Ann, P. J., Tsai, J. N., Wang, T. C., Chen, C. H., Lin, M. J., Ko, W. H. 2010. Reevaluation of the report of the A2 mating type of Phytophthora infestans on tomato in Taiwan. Bot Stud 51: (in press) 6. Ippolito, A., El-Ghaouth, A., Wilson, C. L., and Wisniewski, M. 2000. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biol Technol 19: 265–272. 7. Attitalla, I. H., Johnson, P., Brishammar, S. and Quintanilla, P. 2001. Systemic resistance to Fusarium wilt in tomato induced by Phythophthora cryptogea. J. Phytopath 149: 373–380. 8. Bakker, P. A. H. M., Pieterse, C. M. J., and van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97: 239-243. 9. Baysal, Ö., Turgut, C., and Mao, G. 2005. Acibenzolar-S-methyl induced resistance to Phytophthora capsici in pepper leaves. Biol Plantarum 49: 599–604. 10. Benhamou, N., Garand, C., and Goulet, A. 2002. Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl. Environ. Microbiol. 68: 4044-4060. 11. Bigirimana J, De Meyer G, Poppe J, Elad Y and H‥ofte M. 1997. Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Med Fac Landbouww Univ Gent 62: 1001–1007. 12. Bower, L. A., and Coffey, M. D. 1985. Development of laboratory tolerance to phosphorus acid, fosetyl-Al, and metalaxyl in Phytophthora capsici. Can. J. Plant Pathol. 7: 1-6. 13. Bruin, G. C. A., and Edington, L. V. 1981. Adaptive resistance in Peronosporales to metalaxyl. Can. J. Plant Pathol. 3: 201-206. 14. Bruin, G. C. A., and Edington, L. V. 1982. Induction of fungal resistance of metalaxyl by ultraviolet irradiation. Phytopathology 72: 476-480. 15. Café-Filho, A.C., and J.B. Ristaino. 2008. Fitness of isolates of Phytophthora capsici resistant to mefenoxam from squash and pepper field in North Carolina. Plant Dis. 92: 1439–1443. 16. Cohen, Y. R. 2002. β-Aminobutyric acid-induced resistance against plant pathogens. Plant Dis. 86: 448–57. 17. Cook, R. J., and Baker, K. F. 1983. The Nature and Practice of Biological Control of Plant Pathogens. The American Phytopathological Society, St. Paul, MN. 539p. 18. Cordier, C., Pozo, M. J., Barea, J. M., Gianinazzi, S., Gianinazzi- Pearson, V. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Ineract 11: 1017–1028. 19. Deacon, J .W. 1976. Biologica l control of the take-all fungus, Gaeumannomyces graminis, by Phialophora radicicola and similar fungi. Soil Biol. Biochem. 8: 275-283. 20. De Meyer, G., Bigirimana, J., Elad, Y. and Hofte, M. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. 1998. Eur. J. Plant Pathol. 104: 279–286. 21. Durrant, W. E., and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42: 185-209. 22. Erwin, D. C., and Ribeiro, O. K. 1996. Phytophthora Diseases Worldwide. American Phytopathological Society, St. Paul, MN. 23. Ezziyyani, M., Requena, M.E., Egea-Gilabert, C. and Candela, M.E. 2007. Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. J. Phytopath. 155: 342-349. 24. Farley, J. D., Lockwood, J. L. 1968. The suppression of actinomycetes by PCNB in culture media used for enumerating soil bacteria. Phytopathology 58: 714-715. 25. Graham, T. L., Sequeira, L., and Huang, T. S. R. 1977. Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl. Environ. Microbiol. 34: 424-432. 26. Harman, G. E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96: 190-194. 27. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., and Lorito, M. 2004. Trichoderma species—Opportunistic, avirulent plant symbionts. Nature Rev. 44: 43-56. 28. Harman, G. E., Petzoldt, R., Comis, A., and Chen, J. 2004. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of this interaction on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94: 147-153. 29. Hase, S., Takahashi, S., Nakaho, K., Arie, T., Seo, S., Ohashi, Y., and Takahashi, H. 2008. Involvement of jasmonic acid signaling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathol. 57: 870-876. 30. Hausbeck, M. K., and Lamour, K. H. 2004. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis. 88: 1292–1303. 31. Hendricks, C. W., Doyle, J. D., and Hugley, B. 1995. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl Environ Microbiol 61: 2016–2019. 32. Ho, W. C., Ko, W. H. 1980. A simple medium for selective isolation and enumeration of soil actinomycetes. Annals of the Phytopathological Society of Japan 46: 634-638. 33. Howell, C. R., Hanson, L. E., Stipanovic, R. D. & Puckhaber, L. S. 2000. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90: 248–252. 34. Hsu, S. C., and Lockwood, J. L. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Microbiol. 29: 422-6 35. Huang, H. C., and Acharya, S. N. 2003. Advances in plant disease management. Research Signpost. India. 429p. 36. Kessmann, H., Staub, T., Hofmann, C., Maetzke, T., Herzog, J., Ward, E., Uknes, S., and Ryals, J. 1994. Induction of systemic acquired resistance in plants by chemicals. Annu. Rev. Phytopathol. 32: 439-59. 37. Khan, J., Ooka, J. J., Miller, S. A., Madden, L. V., and Hoitink, H. A. J. 2004. Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis:88: 280-286. 38. Kloepper, J. W., Ryu, C. M., and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266. 39. Ko, W. H., and Hora, F. K. 1971. A selective medium for the quantitative determination of Rhizoctonia solani in soil. Phytopathology 61: 707-710. 40. Ko, W. H., Chang, H. S., and Su, H. J. 1978. Isolates of Phytophthora cinnamomi from Taiwan as evidence for an Asian origin of the species. Trans. Br. Mycol. Soc. 71: 496-499. 41. Ko, W. H., I. T. Wang and P. J. Ann. 2005. A simple method for the detection of lipolytic microorganisms in soils. Soil Biol. Biochem. 37: 597-599. 42. Ko, W. H., L. L. Chase, and R. K. Kunimoto. 1973. A microsyringe method for determining concentration of fungal propagules. Phytopathology 63: 1206-1207. 43. Ko, W. H., Tsou, Y. J., Ju, Y. M., Hsieh, H. M., Ann, P. J. 2010. Production of a fungistatic substance by Pseudallescheria boydii isolated from soil amended with vegetable tissues and its significance. Mycopathologia 169: 125-131. 44. Lahoz, E., Contillo, R., and Porrone, F. 2004. Induction of systemic resistance to Erysiphe orontii cast by application on roots of an isolate of Gliocladium roseum Bainier. J Phytopathol. 152: 465–470. 45. Lamour, K. H., and Hausbeck, M. K. 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology 90: 396-400. 46. Leonian, L. H. 1922. Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology 12: 401-408. 47. Leu, L. S., and Kao, C. W. 1981. Pepper blight induced by Phytophthora capsici. Plant Prot Bull. 23: 59-66. 48. Lo, C. T., Liao, T. F. and Deng, T. C. 2000. Induction of systemic resistance of cucumber to cucumber green mosaic virus by the root-colonizing Trichoderma spp. Phytopathology 90: S47. 49. Madi, L., and Katan, J. 1998. Penicillium janczewskii and its metabolites, applied to leaves, elicit systemic acquired resistance to stem rot caused by Rhizoctonia solani. Physiol. Mol. Plant Pathol. 53: 163-175. 50. Melotto, M., Underwood, W., He, S. Y. 2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122. 51. Mohamed, N., Lherminier, J., Farmer, M. J., Fromentin, J., Béno, N., Houot, V., Milat, M. L., and Blein, J. P. 2006. Defense Responses in Grapevine Leaves Against Botrytis cinerea Induced by Application of a Pythium oligandrum Strain or Its Elicitin, Oligandrin, to Roots. Phytopathology 97: 611–620. 52. Pal, K. K. and McSpadden Gardener, B. 2006. Biological Control of Plant Pathogens. The Plant Health Instructor DOI: 10.1094/PHI-A -2006-1117-02. 53. Parra, G., and Ristaino, J. B. 2001. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis. 85: 1069-1075. 54. Parra, G., and Ristaino, J. 1998. Insensitivity to Ridomil Gold (mefenoxam) found among field isolates of Phytophthora capsici causing Phytophthora blight on bell pepper in North Carolina and New Jersey. Plant Dis. 82: 711. 55. Paulitz, T. C., and Belanger, R. R. 2001. Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39: 103-133. 56. Picard, K., Ponchet, M., Blein, J. P., Rey, P., Tirilly, Y., and Benhamou, N. 2000. Oligandrin. A Proteinaceous Molecule Produced by the Mycoparasite Pythium oligandrum Induces Resistance to Phytophthora parasitica Infection in Tomato Plants. Plant Physiol 124: 379-395. 57. Pieterse, C. M., van Wees, S. C. M., Hoffland, E., van Pelt, J. A., and van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8: 1225-1237. 58. Poala, P., Wilcox, C., and Finland, M. 1970. Effect of pH of medium and size of inoculum on activity of antibiotics against group D Streptococcus (Enterococcus). Appl. Microbiol. 19: 623-637. 59. Ramamoorthy, V., R. Viswanathan, T. Raguchander, V. Prakasam, and R. Smaiyappan. 2001. Induction of systemic resistance by plant growth-promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 20: 1–11. 60. Rasmussen, J.B., Hammerschmidt, R., and Zook, M.N. 1991. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiol. 97: 1342–1347. 61. Reuveni, M., and Reuveni, R. 2000. Prior inoculation with nonpathogenic fungi induces systemic resistance to powdery mildew on cucumber plants. Eur. J. Plant Pathol. 106: 633–638. 62. Sato, A., Kageyama, K. and Hyakumachi, M. 1999. Biological Control of Snow Mold Diseases in Turfgrasses by Humicola grisea var. grisea M6834. Annals of the Phytopathological Society of Japan. 65(3): 354. 63. Seaman, A.2003. Efficacy of OMRI-approved products for tomato foliar disease control. New York State Integrated Pest Management Program publication 129: 164–167. 64. Shimizu, M., Meguro, A., Hasegawa S., Nishimura, T., and Kunoh, H. 2006. Disease resistance induced by nonantagonistic endophytic Streptomyces spp. on tissue- cultured seedlings of rhododendron. J Gen Plant Pathol. 72: 351–354. 65. Shulaev, V., Leon, J., and Raskin, I. 1995. Is salicylic acid a translocated signal of systemic acquired resistance? Plant Cell. 7: 1691-1701. 66. Sutherland, E.D. and Lockwood, J.L. 1984. Hyperparasitism of oospores of some Peronosporales by Actinoplanes missouriensis and Humicola fuscoatra and other actinomycetes and fungi. Can J Plant Pathol 6: 139–145. 67. Tuzun, S., and Bent, E. 2006. Multigenic and induced systemic resistance in plants. Springer Science. New York. 521p. 68. Vallad, G. E., and Goodman, R. M. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 44: 1920-1934. 69. van Loon, L. C., Bakker, P. A. H. M., and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483. 70. Van Wees, S. C. M., Van der Ent, S., and Pieterse, C. M. J. 2008. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11: 443-448. 71. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D., Franken, P., and Kogel, K. H. 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. U.S.A. 102: 13386-13391. 72. Xu, X. L., and Ko, W. H. 1998. A quantitative confined inoculation method for studies of pathogenicity of fungi on plants. Bot. Bull. Acad. Sin. 39: 187-190.
摘要: 生物防治被認為是未來可以減少或替代化學藥劑的主要病害防治策略。本研究發展出篩選具誘導抗病能力之微生物的方法,並由土壤中篩選出可利用植物源且誘導青椒產生抗青椒疫病菌的有益微生物,經由型態及分生的鑑定,由於其所產生的conidia 型態和Phialophora 屬的真菌相似,chlamydospores 和Humicola 屬的真菌相似,將其命名為Humicola phialophoroides。H. phialophoroides 經單孢分離出13 個分離株,其中B6分離株最能有效的誘導植株產生抗病性。H. phialophoroides KVF-2 B6分離株製成的發酵液經過離心,將菌絲團離下,以液態氮研磨,並以50% ethanol 萃取出的萃取液,誘導抗性的效果是最佳的。誘導抗性的有效物質無法由下位葉移動到上位葉或上位葉移動到下位葉,但是能由葉面移動到葉背,也能由葉背移動到葉面,顯示其不是長距離的系統性的抗病反應,而是局部性的抗病。另外有效物質可以由尖端往下移動至少5 mm,且從葉柄至尖端方向的移動,可到10 mm,但無法左右移動至5 mm 或以上。H. phialophoroides KVF-2 B6 之萃取液,誘導抗性的有效物質,為不帶電且在高溫、酸性、中性、鹼性環境都能穩定存在且能被活性炭吸附的物質。H. phialophoroides KVF-2 B6 之萃取液誘導抗性的效果至少可以維持十四天,且此真菌會產生chitinase 和cellulase,增加在防治多種病害上的可用性及潛力。
The plant pathogens are usually controlled with chemicals, but their excessive use is harmful to human health and detrimental to the environment. It is, therefore, necessary to develop alternative ways of control. One such alternative method is biological control with microorganisms. A method was developed for isolating microorganisms capable of utilizing vegetable tissues for multiplication and screening their vegetable liquid cultures for ability to induce resistance of pepper against Phytophthora capsici. When the resulting cultures were screened for ability to induced resistance against Phytophthora blight of pepper, the culture of a new fungal species was found to be very effective in controlling the disease. The fungus produced both Phialophora type and Humicola type of asexual states and was therefore, named Humicola Phialophoroides. Among 13 single spore isolates of H. Phialophoroides tested, B6 isolate was found to the most effective. The substance responsible for inducing resistance was most efficiently obtained by grinding mycelia mats of H. phialophoroides KVF-2 B6 with liquid nitrogen, and extracting with 50% ethanol. The substance with ability to Induce resistance did not move from upper leaves to lower leaves or lower leaves to upper leaves, but it moved from leaf top to leaf base or leaf base to leaf top in the same leaf. Result showed that the substance did not presence long-distance systemic resistance. It only induced local resistance. The substance moved upward or down ward at least 5 mm upward, and 10 mm down ward in the same leaf. But it did not move from left to right or right to left. The substance with ability to Induced resistance did not have charges on their molecules, and was very stable under high temperature, alkaline, or acidic conditions. The culture extract of H. phialophoroides maintained the residual activity on leaves for at least 14 days and the fungi produced chitinase and cellulase. The technique developed in this study may be useful for isolating other microorganisms capable of inducing resistance against other pathogens.
URI: http://hdl.handle.net/11455/31382
其他識別: U0005-0607201009185900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0607201009185900
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.