Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31395
標題: 蘿蔔嵌紋病毒台灣分離株 (RaMV-TW) 之分子特性分析
Molecular Characterization of the Radish mosaic virus Taiwan isolate (RaMV-TW)
作者: 王淨竹
Wang, Ching-Chu
關鍵字: Cruciferous vegetables
十字花科作物
Radish mosaic virus
RaMV
Full length sequences
Comovirus
蘿蔔嵌紋病毒
全長度核酸基因體
Comovirus
出版社: 植物病理學系所
引用: 台灣省政府農林廳。1995。台灣農業年報。380頁。 林正忠。1984。蘿蔔兩種毒素病-蕪菁嵌紋毒素病與畸脈贅生嵌紋毒素病。豐年 34: 34-35。 郭宗德。1961。蘿蔔之嵌紋病. 中研院植物所彙報2: 51-61。 張怡珊、陳煜焜。2010。蕪菁輪點病毒之分離與分子鑑定。台灣植物病理學會年會摘要。 陳脈紀。1965。十字花科蔬菜嵌紋病之電子顯微鏡研究。 植保會刊 17: 319-328。 陳滄海、吳秀芳、陳翠蓉、陳惠玲。2000。台灣地區十字花科作物病毒病害之發生與血清學診斷。植病會刊 9: 39-46。 陳滄海。2003。台灣地區甜菜西方黃化病毒(Beet western yellows virus)之發生、鑑定及蚜媒傳播特性與生態。植病會刊 12: 43-56。 黃德昌、徐世典。1987。利用選擇性培養基由台灣十字花科蔬菜種子及土壤中偵測黑腐病之技術。植保會刊 29: 217-231。 楊佐琦、林俊義、陳俊位。1994。台灣進口十字花科蔬菜種子之真菌相。植保會刊 36: 333-339。 楊秀吉。1971。台灣蘿蔔毒素病之研究。台大植病所碩士論文。84頁。 楊秀珠。1990。台湾産Colletotrichum菌による植物の炭疽病について。北海道大學農學院農學博士論文。208頁。 楊瓊儒。1978。台灣根瘤線蟲之鑑定。國立台灣大學植物病蟲害研究所碩士論文。 67頁。 蔡俊雄、郭忠吉。1981。十字花科蔬菜生長發育的生理生態。十字花科蔬菜生產與害蟲防治研討會專刊 194-207。 劉興隆。1993。中部地區設施蔬菜之病害調查。台中區農業改良場研究彙報 41: 1-9。 鍾文全、黃振文。1993。十字花科蔬菜黑斑病菌的存活研究。植保會刊 35: 39-48。 Alhubaishi, A. A., Walkey, D. G. A., Webb, M. J. W., Belland, C. J., and Cook, A. A. 1987. A survey of horticultural plant virus disease in the Yemen Arab Republic. FAO Plant Prot. Bull. 35: 135-143. Bancroft, J. B. 1962. Purification and properties of bean pod mottle virus and associated centrifugal and electrophoretic components. Virology 16: 419-427. Bruening, G. 1978. Comovirus group. CMI/AAB Descriptions of Plant Viruses, No. 74. Bruening, G., and Agrawai, H. O. 1967. Infectivity of a mixture of cowpea mosaic virus ribonucleoprotein components. Virology 32: 306-320. Brunt, A., Crabtree, K., Dakkwutz, M., Gibbs, A., and Watson, L. 1996. Viruses of Plants. CABI, UK. 484 pp. Campbell, R. N., and Tochihara, H. 1969. Radish enation mosaic virus is a strain of radish mosaic virus. Phytopathology 59: 1756-1757. Carette, J. E., van Lent, J., MacFarlane, S. A., Wellink, J., and van Kammen, A. 2002. Cowpea mosaic virus 32- and 60-kilodalton replication proteins target and change the morphology of endoplasmic reticulum membranes. J. Virol. 76: 6293-6301. Chen, X., and Bruening, G. 1992. Nucleotide sequence and genetic map of cowpea severe mosaic virus RNA 2 and comparisons with RNA 2 of other comoviruses. Virology 187: 682-692. Christie, S. R., Purcifull, D. E., Crawford, W. E., and Ahmed, N. A. 1985. Electron microscopy of negatively stained clarified viral concentrates obtained from small tissue samples with appendices on negative staining techniques. Fla. Agr. Sta. Bull. No. 872. 45 pp. Daubert, S. D., and Bruening, G. 1979. Genome-associated proteins of comoviruses. Virology 98: 246-250. Daubert, S. D., Bruening, G. and Najarian, R. C. 1978. Protein bound to the genome RNAs of cowpea mosaic virus. Eur. J. Biochem. 92: 45-51. Di, D., Hu, C. C., and Ghabrial, S. A. 1999. Complete nucleotide sequence of bean pod mottle virus RNA 1: sequence comparisons and evolutionary relationships to other comoviruses. Virus Genes 18: 129-137. Dorssers, L., van der Meer, J., van Kammen, A., and Zabel, P. 1984. Purification of cowpea mosaic virus RNA replication complex: identification of a virus-encoded 110,000 dalton polypeptide responsible for host chain elongation. Proc. Natl Acad. Sci. USA. 81: 1951-1955. El Manna, M. M., and Bruening, G. 1973. Polyadenylate sequences in the ribonucleic acids of cowpea mosaic virus. Virology 56: 198-206. Farzadfar, S., Pourrahim, R., Golnararghi, A. R., Jalali, S., and Ahoonmanesh, A. 2004. Occurrence of Radish mosaic virus on cauliflower and turnip crops in Iran. Plant Dis. 88: 909. Geelen, J, L. M. C., van Kammen, A., and Verduin, B. J. M. 1972. Structure of the capsid of cowpea mosaic virus: The chemical subunit: Molecular weight and number of subunits per particle. Virology 49: 205-213. Goldbach, R., and van Kammen, A. 1985. Structure, replication and expression of the bipartite genome of cowpea mosaic virus. Mol. Plant Virol. Vol. 2: 83-120. Goldbach, R. W., and Wellink, J. 1996. Comoviruses: molecular biology and replication. pages 35 - 76 in Harrison B.D., and Murant A.F. (eds) The Plant Viruses: Polyhedral Virions and Bipartite RNA Genomes. Plenum Press, New York. Gopinath, L., Wellimk, J., Porta, C., Taylor, K. M., Lomonossoff, G. P., and van Kammen, A. 2000. Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants. Virology 267:159-173. Green, S. K. 1983. Host reactions to five Taiwan strains of turnip mosaic virus. AVRDC Prog. Rep. p.113-116. Holness, C. L., Lomonossoff, G. P., Evans, D., and Maule, A. J. 1989. Identification of the initiation codons for translation of cowpea mosaic virus middle component RNA using site-directed mutagenesis of an unfectious cDNA clone. Virology 172: 311-320. Hull, R. 2002. Matthews’ Plant Virology, 4th edn. Academic Press. San Diego. 1001pp Kashiwazi, S., Shimazu, K., and Tsuchizaki, T. 1990. Serological properties of wasabi strain of tobacco mosaic virus. Ann. Phytopathol. Soc. Jpn: 56: 257-260. Kasteel, D., Wellink, J., Verver, J., van Lent, J., Goldbach, R., and van Kanmmen, A. 1993. The involvement of cowpea mosaic virus M RNA-encoded proteins in tubule formation. J. Gen. Virol. 74: 1721 - 1724. Khandekar, S., He, J., and Leisner, S. 2009. Complete nucleotide sequence of the Toledo isolate of Turnip ringspot virus. Arch Virol. 154: 1917-1922. Koenig, R., and Fischer, H. U. 1981. A Moroccan radish mosaic virus isolate from turnip. Plant Dis. 65: 758-760. Komatsu, K., Hashimoto, M., Maejima, K., Ozeki, J., Kagiwada, S., Takahashi, S., Yamaji, Y., and Namba, S. 2007. Genome sequence of a Japanses isolate of Radish mosaic virus: the first complete nucleotide sequence of a crucifer-infecting comovirus. Arch. Virol. 152: 1501-1506. Koloniuk, I., Spak, J., and Petrzik, K. 2008. Turnip ringspot virus recognized on Chinese cabbage in Russia. Eur. J. Plant Pathol. 122: 450-.477 Kozak, M. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283-292. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. Larty, R. T., Hartson, S. D., Pennington, R. E., Sherwood, J. L., and Meleher, U. 1993. Occurrence of a vein-cleaning tobamovirus in turnip. Plant Dis. 77: 21-24. Lazarowitz, S. G., and Beachy, R. N. 1999. Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11: 535-548. Lekkerkerker, A., Wellink, J., Yuan, P., van Lent, J., Goldbach, R., and van Kammen, A. 1996. Distinct functional domains in the cowpea mosaic virus movement protein. J. Virol. 70: 5658-5661. Lomonossoff, G. P., and Johnson, J. E. 1991. The synthesis and structure of comovirus capsids. Prog. Biophys. Mol. Biol. 55: 107-137. MacFarlane, S. A., Shanks, M., Davies, J. W., Zlotnick, A., and Lomonossoff, G. P. 1991. Analysis of the nucleotide sequence of bean pod mottle virus middle component RNA. Virology 183: 405-409. Maliogka, V., Dovas, C. I., Efthimiou, K., and Katis, N. I. 2004. Detection and differentiation of Comoviridae species using a semi-nested RT-PCR and a phylogenetic analysis based on the polymerase protein. J. Phytopathol. 152: 404-409. Mayo, M. A., and Fritsch, C. 1994. A possible consensus sequence for VPg of viruses in the family Comoviridae. FEBS Lett. 354: 129-130. Niblett, C. L., and Semancik, J. S. 1969. Conversion of the electrophoretic forms of cowpea mosaic virus in vivo and in vitro. Virology 38: 685-693. Okabe, N. 1932. Bacterial diseases of plant occurring in Formosa. J. Soc. Trop. Agr. 4: 481. Oxelfelt, P. 1976. Biological and physicochemical characterization of three strains of red clover mottle virus. Virology 74: 73-80. Peters, S.A., Verver, J., Nollen, E. A., van Lent, J. W., Wellink, J., and van Kammen, A. 1994. The NTP-binding motif in cowpea mosaic virus B polyprotein is essential for viral replication. J. Gen. Virol. 75: 3167-3176. Peters, S.A., Voorhorst, W. G., Wery, J. Wellink, J., and van Kammen, A. 1992. A regulatory role for 32K protein in proteolytic processing of cowpea mosaic virus polyprotein. Virology 191: 81-89. Petrzik, K., Hola, M., and Spak, J. 2005. Complete nucleotide sequence of Radish mosaic virus RNA polymerase gene and phylogenetic relationships in the genus Comovirus. Acta Virol. 49: 271-275. Petrzik, K and Koloniuk, I. 2010. Emerging viruses in the genus Comovirus. Virus Genes. 40: 290-292. Pouwels, J., Carette, J. E., van Lent, J. W., and Wellink, J. 2002. Cowpea mosaic virus: effects on host cell processes. Mol. Plant Pathol. 3: 411-418. Pouwels, J., van der Krogt, G. N., van Lent, J., Bisseling, T., and Wellink, J. 2002. The cytoskeleton and the secretory pathway are not involved in targeting the cowpea mosaic virus movement protein to the cell periphyery. Virology 297: 48-56. Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17: 208-212. Sanfacon, H., Wellink, J., Le Gall, O., Karasev, A., van der Vlugt, R., and Wetzel, T. 2009. Secoviridae: a proposed family of plant viruses within the order Picornaviales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and proposed genus Torradovirus. Arch. Virol. 154: 899-907. Sawada, K. 1919. Desc. Catal. Formosan Fungi I: 599. Sawada, K. 1959. Desc. Catal. Formosan Fungi XI: 206. Semancik, J. S. 1974. Detection of polyadenylate sequences in plant pathogenic RNAs. Virology 62: 288-291. Shanks, M., and Lomonossoff, G. P. 1992. The nucleotide sequence of red clover mottle virus bottom component RNA. J. Gen. Virol. 73: 2473-2477. Shanks, M., Stanley, J., and Lomonossoff, G. P. 1986. The primary structure of red clover mottle virus middle component RNA. Virology 155: 697-706. Shepherd, R. J. 1981. Cauliflower mosaic virus. C.M.I./A.A.B. Descriptions of Plant Viruses. No. 243. Stanley, J., Rottier, P., Davies, J. W., Zabel, P., and van Kammen, A. 1978. A protein linked to the 5’ termini of both RNA components of the cowpea mosaic virus genome. Nucleic Acids Res. 5: 4505-4522. Taylor, K. M., Spall, V. E., Butler, P. J. G. and Lomonossoff, G. P. 1999. The cleavable carboxyl-terminus of the small coat protein of cowpea mosaic virus is involved in RNA encapsidation. Virology 255: 129-137. Taylor, W. M., and Hagerman, P. J. 1987. A general methods for cloning DNA fragments in multiple copies. Gene 53: 139-144. Tochihara, H. 1968. Radish enation mosaic virus. Ann. Phytopathol. Soc. Japan 34: 119-1 30. Tompkins, C. M. 1939. A mosaic disease of radish in Carlifornia. J. Agr. Res. 58: 119-130. van Bokhoven, H., van Lent, J, W, M., Custers, R., Vlak, J. M., Wellink, J., and van Kammen, A. 1992. Sythesis of the complete 200K polyprotein encoded by cowpea mosaic virus B-RNA in insect cell. J. Gen. Virol. 73: 2775-2784. van Kammen, A. 1967. Purification and properties of the components of cowpea mosaic virus. Virology 31: 633-642. van Lent, J. W., Wellink, J., and Goldbach, R. W. 1990. Evidence for the involvement of the 58K and 48K proteins in the intracellular movement of cowpea mosaic virus. J. Gen. Virol. 71: 219-223. Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. 1982. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945-951. Wellink, J. 1998. Comovirus isolation and RNA extraction. Pages 205-209 in Foster G.D. and Taylor, S.C (eds.) Methods in Molecular Biology Vol. 81, Plant Virology Protocols, from Virus Isolation to Transgenic Resistance. Humana Press. New Jersey. USA. 571pp. Wellink, J., and van Kammen, A. 1988. Protease involved in the processing of viral polypeptides. Arch. Virol. 98: 1-26. Wellink, J., van Lent, J. W., Verver, J., Sijen, T., Goldbach, R. W., and van Kammen, A. 1993. The cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts. J. Virol. 67: 3660-3664. Wu, G. J., and Bruening, G. 1971. Two proteins from cowpea mosaic virus. Virology 46: 596-612. Zein, S. N., and Shafie, M. S. 2005. Radish mosaic comovirus (RaMV) isolated from Eruca sativa L. Egyptian J. Virol. 2: 61-76.
摘要: 台灣地區栽培的十字花科作物種類繁多,為重要的蔬菜之一,但普遍受病毒病為害。2007年於苗栗大湖地區採集得疑受病毒感染之蘿蔔植株,病株葉片上有嚴重之嵌紋(mosaic)病徵,以穿透式電子顯微鏡鏡檢罹病組織粗汁液,可觀察到直徑大小約30 nm的球形病毒顆粒。以罹病組織粗汁液機械接種於奎藜(Chenopodium quinoa)進行純系分離,並以機械接種方式將純系的病毒回接至健康蘿蔔苗,發現能在蘿蔔引起葉片嵌紋、變形及畸脈贅生(enation)的病徵,証實該病毒對蘿蔔的病原性。使用Maliogka等人(2004)所發表適用於Comoviridae的簡併式引子對,以半巢式反轉錄聚合酶鏈鎖反應(semi-nested RT-PCR)進行檢測,證實該病毒為蘿蔔嵌紋病毒(Radish mosaic virus, RaMV) ,遂以蘿蔔嵌紋病毒台灣分離株(Radish mosaic virus Taiwan isolate, RaMV-TW)為其代稱。寄主範圍測試顯示RaMV-TW能在台灣地區常見的8種十字花科作物上產生輪紋和嵌紋的病徵,感染嚴重者則會呈現葉片皺縮變形的徵狀。罹病葉片粗汁液經過淨化、PEG濃縮、以及40%蔗糖緩衝液為墊層(sucrose cushion)的超高速離心後,所得的部份純化之懸浮液內含大量直徑約30 nm的球形病毒顆粒。利用SDS-PAGE蛋白質電泳分析,顯示所純化的病毒其具有兩種外鞘蛋白次單位(coat protein subunit),其分子量分別約為41 kDa及25 kDa。選取目前已發表的RaMV分離株,包括: RaMV-J (AB295643和AB295644 )、RaMV-CA (AB456531和AB456532)及RaMV1 (EU450837 和EU450838)之全長度核酸基因體RNA 1及RNA 2,利用CLUSTALW 程式進行比對後,針對序列較保守的區域設計各基因的專一性引子對進行RaMV-TW全長度基因體核酸序列 RNA1及RNA2之選殖與序列解讀。RaMV-TW基因體核酸RNA1已完成6041個核苷酸的解序,具有單一開放讀架(ORF),轉譯出之複合大蛋白,能被protease裂解成5個病毒功能蛋白,由5’端依序分別為Co-factor、helicase、VPg、Protease和RdRp 。RNA2已完成4012個核苷酸的解序,一樣具有單一開放讀架(ORF),但RNA2含有兩個ATG起始碼(start codons),根據不同的ATG起始碼能轉譯出包含4個蛋白轉譯架的複合大蛋白,由5’端依序分別為CR / MP、LCP、及SCP。將RaMV-TW基因體核酸全長序列 RNA1 (Acce. No. HM032712)及RNA2 (Acce. No. HM032711)分別與目前已在NCBI上登錄的三個RaMV分離株及6個Comovirus屬病毒(genus Comovirus)之全長基因體RNA1和RNA2核苷酸及蛋白胺基酸序列進行比對分析,結果顯示在三個RaMV分離株中,RaMV-TW和RaMV-CA與 RaMV-J的親緣關係最為相近。
Cruciferous vegetables are one of the important crops in Taiwan and generally suffer from virus infections in the field. Radish plants (Raphanus sativus) with severe mosaic symptoms on leaves were observed in the fields of Dar-Hu, Miaoli in 2007. Spherical virus-like particles (ca. 30 nm in diameter) were observed in the preparations of infected crude saps by electron microscopic examination . Pure virus isolate obtained from the single lesion induced by mechanical inoculation on Chenopodium quinoa successively and was back-inoculated to original host to confirm its pathogenicity. The isolated virus induced systemic mosaic and enation symptoms on the leaves of back-inoculated radish plants. Semi-nested RT-PCR tests using Comoviridae degenerate primers ( Maliogka et al., 2004) amplified a cDNA fragment of expected size which highly homologous to the nucleotide sequence of Radish mosaic virus (RaMV). The isolated virus thus designated as Radish mosaic virus Taiwan isolate (RaMV-TW). Host range tests revealed that RaMV-TW caused symptoms of mosaic, rugose, enation and ringspot on various cruciferous crops. Virus particles were partially purified through clarification, PEG concentration, and sedimented by ultracentrifugation in a 40% sucrose cushion. The partially purified virus preparations contained numerous spherical virus particles with a diameter of about 30 nm. SDS-PAGE analysis on the partially purified sample indicating that the virus contains two coat protein subunits, i.e. large coat protein (LCP) and small coat protein (SCP), with relative molecular mass of 41 kDa and 25 kDa, respectively. Full length sequences of RNA1 and RNA 2 of RaMV-TW have been determined and deposited in GenBank with accession numbers of HM032712 and HM032711, respectively. The RNA 1 contains 6041 nt and encodes a polyprotein which is further cleaved into 5 funtional proteins including protease cofactor (Co-factor), helicase (Hel) , viral genome-linked protein (VPg), Protease (Pro), and RNA-dependent RNA polymerase (RdRp) at the order from N-terminus. The RNA2 consists of 4012 nt and contains an open reading frame (ORF) with two ATG start codons. The polyprotein derived from RNA 2 can also be further cleaved into 4 functional proteins including cofactor required for the replication of RNA 2 (CR) , movement protein (MP), large coat protein (LCP), and small coat protein (SCP) at the order from N-terminus. Based on the comparison of nucleotide sequences, RaMV-TW is identified as a new isolate of RaMV and highly homologous to other strains of RaMV. Among these, RaMV-TW is more closely related to strains RaMV-CA and RaMV-J than to RaMV-1.
URI: http://hdl.handle.net/11455/31395
其他識別: U0005-1208201002182400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208201002182400
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.